Volume 8, Issue 5, May 2019



Spectrometric Determination of Selected Heavy Metals in Plant Tissues in Kisii County.

Authors: Isaboke Peter Abel, Njagi Njomo, John Onam Onyatta

Abstract-Heavy metals are non-biodegradable and therefore they remain in ecological systems and in the food chain indefinitely, exposing top-level predators to very high levels of pollution. Elevated levels of heavy metals in natural environment may have a detrimental effect on both human health and the environment. Apart from the direct impact on health or environmental problems, water or soil contamination can cause considerable economic and financial damage. Plant samples were air dried and gently ground to pass through a 2 mm sieve and homogenized and stored for analysis. Statistical analysis was conducted on the data to determine the mean and Pearson correlation. According to the analysis of spectrometric technique, the concentrations of the heavy metals in the selected sites were below the recommended levels. The determination of levels of lead, zinc, manganese and cadmium in plant tissues in Kisii County were to be used to sensitize the general population of Kisii County on heavy metal health effects and the importance of environmental conservation. The study was also to inform the authorities in environment management on the level of heavy metal pollution in the County hence providing a reference for future studies on the same.


[1] Audu A. A, Lawal A. O (2006). Variation in metal contents of plants in vegetable garden sites in Kano Metropolis. J. Appl.sci.Environ. Manage. 10 (2): 105-109.

[2] Bose, B. and Hemantaranjan, A. (2005). Developments in physical, biological and molecular biology of plants. New Delhi, India: New India Publishing agency.Pp 105.

[3] Castro-Gonzalez, M.I. $ Mendez-Armenta, M. (2008). Heavy Metals: Implications associated to fish consumption. Environmental Toxicology $ Pharmacology, 26, 263-271.

[4] Draghici, C; Coman, G; Jelescu, C; Dima, C. $ Chirila, E. (2010). Heavy metals determination in environment and biological samples, In: Environmental heavy metal pollution and effects on child mental development- Risk Assessment and Prevention Strategies, NATO Advanced Research Workshop, Sofia, Bulgaria, 28 April-1 May 2010.

[5] Fong, F,;Seng, C,; Azan, A. and Tahi, M. (2008). Possible source and pattern distribution of heavy metals Content in Urban soil at Kuala Terengganu Town Centre. The Malaysian journal of Analytical Science; 12: 455-467.

[6] Masood, S. B, Kamran, S. and Babar E, B. (2005). Hazardous effects of sewage water on the environment focus on heavy metals and chemical composition of soil and vegetables: Institute of food science and Technology, University of Agriculture, Faisalabad, Pakistan and Abdul Aziz Management of Environmental Quality: An International Journal. Pp 4.

[7] Shrivastav, R. (2001). Atmospheric heavy metal pollution, development of chronological records and geological monitoring. Accessed from www.ias.ac.in

[8] Vieira, C, Morais, S, Ramos, S,Delerue-Matos, C. $ Oliveira, M.B.P.P.(2011). Mercury, Cadmium, Lead and Arsenic levels in three Pelagic Fish species from the Atlantic Ocean: Intra- and Inter-Specific Variability and Human Health risks for Consumption. Food $ Chemical Toxicology, 49, 923-933





Grain Size and Surfaces Features Analysis of Quartz Grains from the Late Pleistocene along the Bizerte Coast, N-E of Tunisia

Authors: W. Sahli, J. Saadi, S. Mekni, K. Regaya

Abstract- The grain size and the exoscopic analyzes of the late Pleistocene deposits (MIS 5) of the Bizerte coast (N-E of Tunisia) are indispensable tools for sedimentological analyzes providing a wealth of information on the intrinsic properties of the sediments and their depositional environment. The grain size studies are carried out through statistical parameters, CM diagram and bivariate scatter graphs. The mean size indicates a fine to medium grained sand for most of the samples. Most of them are well sorted and mainly transported by rolling and bottom suspension. The SEM observations reveal an important microtextures development formed by mechanical and chemical processes. Their examen suggests a complex sedimentary history beginning with a violent eolinisation, a residence in the infratidal horizon then a passage towards an intertidal or fluviatile horizon ending with a possible wind recovery.

Keywords: Grain size analysis, SEM, Late Pleistocene, Bizerte coast


[1] AOUICHE, I. DAOUDI, L. IHBACH, F.Z. and OUAHMANE, B. 2015. Caractérisation minéralogique et minéralogique des sédiments littoraux de la baie d’Agadir (Maroc atlantique): dynamique sédimentaire et source des matériaux. J. Mater. Environ. Sci., 7 : 3711-3723.

[2] ATOUI, A. and BRAHIM, M. 2009. Distribution granulométrique des sédiments de surfaces de la frange littorale du Ras Taguermass au Ras Marmour (Golfe de Gabès, Tunisie). Conférence Méditerranéenne Côtière, EDITION 1, HAMMEMT, TUNISIE.

[3] BEN AYED, N. BOBIER, C. PASKOFF, R. REBHI, A. and VIGUIER, C. 1979. Sur la tectonique récente de la plage du R’mel à l’Est de Bizerte (Tunisie nord-orientale). Géologie Méditerranéenne 6, 4 : 423-425.

[4] CHAKROUN, A. 2006. Etude sédimentologique et paléontologique des affleurements du Quaternaire le long de la côte Nord Orientale de la Tunisie. Thèse de doctorat, Université de Tunis el Manar et Université de Perpignon.

[5] CHAKROUN, A. MISKOVSKY, J.C. and ZAGHBIB-TURKI, D. 2009. Quartz grain surface features in environmental determination of aeolian Quaternary deposits in northeastern Tunisia. Mineralogical Magazine, 73, 4: 607–614.

[6] CHAKROUN, A. ZAGHBIB-TURKI, D. and TURKI, M.M. 2016. The Upper Pleistocene deposits in Rafraf (Northeastern Tunisia): new data on the Persististrombus latus level. Arab J Geosci: 1-13.

[7] CHAMLEY, H. 2000. Bases de sédimentologie.

[8] FOLK R.L. and WARD M.C. 1957. Brazos River bars: a study in the significance of grain size parameters.J. Sedimen.t Petrol., 27, p. 3–27

[9] FOLK, R.L. 1966. A review of the grain size parameters: Sedimentology, 6: 73–93

[10] FRIEDMAN, G.M. 1962. On sorting, sorting coefficient and the lognormality of the grain size distribution of sandstones. J. Geol. 70: 734–753

[11] FRIEDMAN, G.M. 1967. Dynamic processes and statistical parameters compared for size frequency distribution of beach river sands. J. Sediment. Petrol., 37: 327–354

[12] FRIEDMAN, G.M. SYED, A.A. and KRINSLEY, D.H. 1976. Dissolution of quartz accompanying carbonate precipitation and cementation in reefs : example from the red sea. Journal of Sedimentary petrology, 46, 4: 970-973.

[13] GRIFFTHS, I.C. 1967. Scientific methods in the analysis of sediments. Mc. Graw-Hill, New York

[14] HARRAB, S. MANNI-TAYECH, B. RABHI, M. and ZARGOUNI, F. 2013. Study of a Neogene basin dynamics : the « Bizerte basin ». northeastern Tunisa : relevance to the global Messinian Salinity Crisis. C.R.Geoscience, 345: 251-261.

[15] KRINSLEY, D.H. TAKAHASHI, T. SILBERMAN, M. and NEWMAN, W. 1964. Transportation of sand grains along the Atlantic shore of Long Island, New York: an application of electronmicroscopy. Marine Geology, 2: 100-121.

[16] KRINSLEY, D.H. and DONAHUE, J. 1968. Environmental interpretation of sand grain surface textures by electron microscopy. Geol. Soc. Am. Bull, 79: 743–748.
[17] KRINSLEY, D.H. and DOORNKAMP, J.C. 1973. Atlas of Quartz Sand Surface Textures. Cambridge University Press, Cambridge: 91.

[18] KRINSLEY, D.H. FRIEND, P.F. and KLIMENTIDIS, R. 1976. Eolian transport textures on the surfaces of sand grains of Early Triassic age. Geol. Soc. Am. Bull., 87: 130–132.

[19] KRINSLEY, D. H. and WELLENDORF, W. 1980. Wind velocities determined from surface textures of sand grains. Nature, 283: 372-373.

[20] KRINSLEY, D.H. and MARSHALL, J.R. 1987. Sand grain textural analysis: an assessment. Clastic Particles. SEM and Shape Analysis of sedimentary and volcanic clasts (J.R. Marshall, editor). Van Nostrand-Reinhold, NewYork: 2-9.

[21] LEGIGAN, PH. and LE RIBAULT, L. 1987. Exoscopie des quartz : application à la reconstitution des environnements sédimentaires. Géologie de la préhistoire: Méthodes, Techniques, Application. L’association pour l’étude de l’environnement géologique de la préhistoire, Paris: 499-509.

[22] LEGIGAN, PH. LE RIBAULT, L. and MISKOVSKY, J.C. 1989. L’histoire des grains de quartz. Association GEOPRE: 23.

[23] LEGIGAN, P.H. 2002. Application de l’exoscopie des quartz à la reconstitution des environnements sédimentaires. Géologie de la préhistoire: Méthodes, Techniques, Application, L’association pour l’étude de l’environnement géologique de la préhistoire, Paris: 859-877.

[24] LE RIBAULT, L. 1977. L’Exoscopie des Quartz. Masson, Paris: 150.

[25] MAHANEY, W.C. STEWART, A. and KALM, V. 2001. Quantification of SEM microtextures useful in sedimentary environmental discrimination. Boreas, 30: 165–171.

[26] MAHANEY, W.C. 2002. Atlas of Sand Grain Surface Textures and Applications. Oxford Unisersity Press, New York: 237.

[27] MEJRI, H. 2012. Paléorivages marins pléistocènes du littoral est tunisien : chronologie IRSL, paléoenvironnements et régime tectonique. Thèse de doctorat, Université de Sfax, Université de Lille 1.

[28] PASKOFF, R. and SANLAVILLE, P. 1983. Les côtes de la Tunisie : variation du niveau marin depuis le Tyrrhénien. Maison de l’Orient et de la Méditerranée, Lyon: 19-33.

[29] PASKOFF, R. and SANLAVILLE, P. 1986. Oscillations climatiques en Tunisie littorale depuis le dernier interglaciaire jusqu’au début de l’holocène. Association française pour l’étude du Quaternaire, 23, 1-2: 78-83.

[30] PASKOFF, R. and OUESLATI, A. 1988. Acquisitions récentes à propos du Quaternaire supérieur des côtes de la Tunisie. Méditerranée, Troisième série, 64:79-84.

[31] PASSEGA, R. 1957. Texture as characteristic of clastic deposition. Bull Am Assoc. Petrol. Geol. 69:1952–1984.

[32] PASSEGA, R. 1964. Grain size representation by CM patterns as a geological tool. J. Sediment. Petrol ., 34: 830–847.

[33] PETTIJOHN, F.J. 1984. Sedimentary rocks. 3rd edn. Harper and Row, New York

[34] Rajganapathi, V.C. Jitheshkumar, N. Sundararajan, M. Bhat, K.H. and Velusamy, S. 2012. Grain size analysis and characterization of sedimentary environment along Thiruchendur coast, Tamilnadu, India. Arab. J ; Geosci.

[35] ROUVIER, H. 1977. Géologie de l’extrême nord tunisien, tectonique et paléogéographies superposées à l’extrémité orientale de la chaine nord maghrébine. Doctorat d’Etat és-Sciences, Paris: 703.

[36] SAIDI, H. BRAHIM, M. and GUEDDARI, M. 2004. Caractérisation granulométrique et minéralogique des sédiments de surface de la frange littorale Sidi Bou Saïd-La Goulette. Bull. Inst. Natn. Scien. Tech. Mer de Salammbô. 31: 97-106.

[37] SUTHERLAND, R.A. and LEE, C.T. 1994. Discrimination between coastal sub environments using textural characteristics. Sedimentalogy, 41: 1133-1143.

[38] VOS, K. VANDENBERGHE, N. and ELSEN, J. 2014. Surface textural analysis of quartz grains by scaning electron microscopy (SEM) : From sample preparation to environmental interpretation. Earth-Science Reviews, 128: 93-10.


4 - 17




Wave Breaking Co-Efficient and Digha Coastal Beach Profile

Authors: Nayan Dey, Dr. Purnima Shukla

Abstract- Wave properties are important influencer to tune the beach profile. And also beach profile controls the wave nature such as breaker type. Both wave properties and beach longitudinal profile organize each other through a balance. The said research paper is traced this incidents with evidence in Digha coastal beach. Through this paper, longitudinal beach profile and breaker type and their relationship have been sketched. To analyse the breaker type several parameters have been used, viz. beach slope (β), depth of water (d), wave period (T), Breaker height (Hb) and time between two successive waves (Δt). Breaker type configurations may vary between offshore (B0) and onshore (Bb) beach platform. Offshore breaker type is important for beach surfing zone.

Keywords- Breaker Type, Longitudinal Beach Profile, Beach Slope, Offshore Beach Platform, Onshore Beach Platform.


[1] Acharyya, S.K., et al., (2000): Arsenic toxicity of ground water in parts of the Bengal basin in India and Bangladesh: the role of Quaternary Stratigraphy and Holocene sea-level fluctuation, Environmental Geology, vol. 39, Iss. 10, 1127-1137.

[2] Alam, M., et al., (2003): An overview of the sedimentary geology of the Bengal basin in relation to the regional tectonic framework and basin-fill history, Sedimentary Geology, vol. 155, Iss.3, 179-208.

[3] Banerji, R.K., (1984): Post-Eocene biofacies, palaeoenvironments and palaeogeography of the Bengal basin, India; Palaeogeography, Palaeoclimatology, Palaecology, vol. 45, Iss. 1, 49-73.

[4] Davidson-Arnott, R. (2010): Introduction to Coastal Processes and Geomorphology; Cambridge University press; New York.

[5] Dean, R. G. and Dalrymple, R. A., (1991): Water Wave Mechanics for Engineers and Scientists, World Scientific Publishing Co., Singapore.

[6] Dey, N. and Shukla, P. (February 2019): Sedimentary textural characteristics of Digha coastal beach, a part of Kanthi coast, W.B., India; International Journal of Recent Development in Engineering and Technology, vol. 8, Iss. 2, pp. 1-8.

[7] Dey, N., Shukla, P. (March 2019a): Effects of Tidal Range on the Digha Coast: A Geomorphological Investigation, Indian Journal of Spatial Science, Vol. 10, Issue. 1, pp. 79-86.

[8] Dey, N., Shukla, P. (March 2019b): Wave Statistics of Digha Coast and Beach Profile, West Bengal, India; International Journal of Recent Development in Engineering and Technology, Vol. 8, Issue. 3, pp. 1-7.

[9] Dey, N., Shukla, P., (2017): Physical carrying capacity assessment in coastal tourist destination – a case study in igha, West Bengal; Economic Development & Environment (Edited book Volume), Vasundhara Publication, Gorakhpur, 102-106.

[10] Faizal, M. et al. (2011): Experimental Investigation of Water Wave Characteristics in a Wave Channel, International Journal of Fluid Mechanics Research

[11] Galvin, C.J. Jr. (1968): Breaker Type Classification on Three Laboratory Beaches, Journal of Geophysical Research, vol. 73, Iss. 12, pp. 3651-3659.

[12] Goodbred, S.L., Kuehl, S.A., (2000): The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta, Sedimentary Geology, vol. 133, Iss. 3, 227-248.

[13] Hutchison, C.S., (1989): Geological Evolution of South-east Asia; Oxford: Clarendon Press, vol. 13, p. 368.

[14] Ippen, A. T., and Kulin, G. (1955): Shoaling and breaking characteristics of the solitary wave, MIT Hydrodyn. Lab. Tech. Rept. vol. 15.

[15] Iversen, H. W., (1953): Waves and breakers in shoaling water, Proc. 3rd Con/. Coastal Eng., vol. 1.

[16] Jana, S., Paul, A.K., (2018): Genetical Classification of Deltaic and Non Deltaic Sequences of Landforms of Subarnarekha Middle Course and Lower Course Sections in Odisha and Parts of West Bengal with Application of Geospatial Technology, Journal of Coastal Sciences, vol. 5, Iss.1, 16-26.

[17] Janssen, P., (2004): The Interaction of Ocean Waves and Wind, Cambridge Univ. Press, Cambridge, UK.

[18] Komar, P.D. (1976): Beach Processes and Sedimentation, Englewood Cliffs, Nj: Prentice-Hall.

[19] Mondal, C., Dey, N., (2018): Carrying capacity assessment in coastal tourism center: a case study in Digha, West Bengal; Sustainable Development: A Dynamic Perspective (Edited Book Volume), Anjan Publisher, Kolkata, vol. 1, 175-182.

[20] Morley, C.K., (2002): A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia, Tectonophysics, vol. 347, Iss.4, 189-215.

[21] Mukherjee, A., et al., (2009): Geologic, geomorphic and hydrologic framework and evolution of Bengal basin, India and Bangladesh; Journal of Asian Earth Sciences, vol. 34, Iss.3, pp. 227-244.

[22] Patrick, D. A., and Wiegel, R. L. (1954): Amphibian tractors in the surf, Con•. Ships Waves, vol. 1, p. 397.

[23] Paul, A., (2002): Coastal Geomorphology and Environment. ACB Publications, Kolkata.

[24] Pethick, J., (1984): An Introduction to Coastal Geomorphology, Edward Arnold, London.

[25] Sikder, A.M., Alam, M.M., (2003): 2-D modelling of the anticlinal structures and structural development of the eastern fold belt of the Bengal Basin, Bangladesh; Sedimentary Geology, vol. 155, Iss.3, 209-226.

[26] Street, 1•. L., and F. E. Camfield, Observations and experiments on solitary wave deformations, Tech. Note 85(1)-66 Stan/ord Univ. Dept. o• Civil Eng., 10 pp., 1966.

[27] U.S. Navy Hydrographic Office, (1944): Breakers and surf: Principlesi n forecasting H . O. Publ. vol. 1, p. 234.

[28] Wiegel, R. L., (1964): Oceanographical Engineering, Prentice-Hall, Englewood Cliffs, N.J., p. 532.


18 - 28




A Study on Wi-Fi-based IMSI Catcher

Authors: Alpana Meena

Abstract- The integration of Wi-Fi into smartphones and its ease of access has proven to be much use for its users on the global level. Such technology greatly influencing the world is generally well secured if not for the wildest minds trying to find some vulnerabilities in it. And thanks to them the loopholes are closed. The ban on IMSI catchers was a big blow to the attackers which made them investigate for a much wider network and low-cost alternative which is readily available – Wi-Fi. The properties like automatic Wi-Fi connections and Wi-Fi calling and its protocols are the reason attackers are exploiting this technology. Exploiting these vulnerabilities lead to man-in-the-middle (MITM) attacks.

Keywords—IMSI, IMSI catcher, MITM, vulnerabilities, Wi-Fi, Wi-Fi calling.


    [1] https://en.wikipedia.org/wiki/International_mobile_subscriber_identity.

    [2] https://en.wikipedia.org/wiki/IMSI-catcher.

    [3] https://en.wikipedia.org/wiki/Extensible_Authentication_Protocol#EAP_Subscriber_Identity_Module_(EAP-SIM).

    [4] Lucian Constantin, 2016, Mobile subscriber identity numbers can be exposed over Wi-Fi https://www.pcworld.com/article/3138472/security/mobile-subscriber-identity-numbers-can-be-exposed-over-wi-fi.html

    [5] http://www.rogueap.com/.

    [6] John Leyden, 2016, Build your own IMSI slurping, phone stalking Stingray-lite box – using bog-standard Wi-Fi,  https://www.theregister.co.uk/2016/11/03/wifi_imsi_catcher/

    [7] Jenna McLaughlin, 2016, Hackers and Law enforcement could hijack wifi connections to track cellphones https://theintercept.com/2016/11/07/hackers-and-law-enforcement-could-hijack-wifi-connections-to-track-cellphones/

    [8] Lucian Constantin, 2016, Mobile subscriber identity numbers can be exposed over Wi-Fi https://www.pcworld.com/article/3138472/security/mobile-subscriber-identity-numbers-can-be-exposed-over-wi-fi.html


29 - 31



Editorial Board
Paper Submission
Conference Publication
Ethics & Policies
Publication Fee
Contact Us