International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 9, Issue 11, November 2020)

On Generalized $\boldsymbol{\mathcal { T }}$-Curvature Tensor of Para-Kenmotsu Manifolds

M. K. Pandey
Department of Mathematics, University Institute of technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, (M.P.), India

E-mail: mkp_apsu@rediffmail.com

Abstract

The object of the present paper is to generalize \mathcal{T}-curvature tensor of para-Kenmotsu manifold with the help of a new generalized (0,2) symmetric tensor Z introduced by Mantica and Suh [7]. It is shown that a generalized $\boldsymbol{T} \boldsymbol{\phi}$-symmetric para-Kenmotsu manifold is an Einstein manifold.

AMS Mathematics Subject Classification (2020): 53C15, 53 C 25.

Keywords and phrases:-- \mathcal{T}-curvature tensor, para-Kenmotsu manifold, Einstein manifold, $\boldsymbol{\eta}$-Einstein manifold, Generalized \boldsymbol{T}-curvature tensor.

I. Introduction

Several years ago, the notion of paracontact metric structures were introduced in [4].

Since the publication of [15], paracontact metric manifolds have been studied by many authors in recent years. The importance of para-Kenmotsu geometry, have been pointed out especially in the last years by several papers highlighting the exchanges with the theory of para-Kähler manifolds and its role in semi-Riemannian geometry and mathematical physics $[3,5,6,11,8]$.

Tripathi and Gupta [14] had developed the notion of \mathcal{T}-curvature tensor in pseudo-Riemannian manifolds. They defined \mathcal{T}-curvature tensor as follows.

Definition 1.1 In a n-dimensional pseudo-Riemannian manifold (M, g), a \mathcal{T}-curvature tensor is a tensor of type $(1,3)$ defined by

$$
\begin{align*}
\mathcal{T}(X, Y, Z)= & c_{0} R(X, Y, Z)+c_{1} S(Y, Z) X+c_{2} S(X, Z) Y \\
& +c_{3} S(X, Y) Z+c_{4} g(Y, Z) Q X+c_{5} g(X, Z) Q Y \tag{1.1}\\
& +c_{6} g(X, Y) Q Z+r c_{7}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where $\quad X, Y, Z \in \mathfrak{X}(M) ; \quad c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$ are smooth functions on M, S, Q, R, r, g are respectively the Ricci tensor, Ricci operator, curvature tensor, scalar curvature and pseudo-Riemannian metric tensor.

Definition 1.2 The Riemannian curvature tensor R of type $(0,4)$ on M is a quadri-linear mapping $\mathrm{R}: \mathfrak{X}(\mathrm{M}) \times \mathfrak{X}(\mathrm{M}) \times$ $\mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow C^{\infty}(M) \quad$ defined by $\quad ' R(X, Y, Z, W)=$ $\mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}), \mathrm{W})$ for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in \mathfrak{X}(\mathrm{M})$

$$
\begin{align*}
' \mathcal{T}(X, Y, Z, W)= & c_{0}{ }^{\prime} R(X, Y, Z, W)+c_{1} S(Y, Z) g(X, W)+c_{2} S(X, Z) g(Y, W) \\
& +c_{3} S(X, Y) g(Z, W)+c_{4} g(Y, Z) S(X, W)+c_{5} g(X, Z) S(Y, W) \tag{1.2}\\
& +c_{6} g(X, Y) S(Z, W)+r c_{7}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)],
\end{align*}
$$

where $X, Y, Z \in \mathfrak{X}(M), R$ is the Riemannian curvature tensor, S is the Ricci tensor, g is the pseudo-Riemannian metric tensor and ' $T(X, Y, Z, W)=g(T(X, Y, Z), W)$.

In this paper, we consider the generalized \mathcal{T} curvature tensor of para-Kenmotsu manifolds and study some properties of generalized \mathcal{T} curvature tensor. The organisation of the paper is as follows:

After preliminaries on para-Kenmotsu manifold in section 2 , we describe briefly the generalized \mathcal{T} curvature tensor on para-Kenmotsu manifold in section 3 and also we study some properties of generalized \mathcal{J} curvature tensor in para-Kenmotsu manifold. The last section is devoted to the study of the generalized $\mathcal{T} \phi$-symmetric para-Kenmotsu manifold is an Einstein manifold.

International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 9, Issue 11, November 2020)

II. Preliminaries

The notion of an almost para-contact manifold was introduced by I. Sato [10].

An n-dimensional differentiable manifold M^{n} is said to have almost para-contact structure (ϕ, ξ, η), where ϕ is a tensor field of type $(1,1), \xi$ is a vector field known as characteristic vector field and η is a 1 -form satisfying the following relations

$$
\begin{gather*}
\phi^{2}(X)=X-\eta(X) \xi, \tag{2.1}\\
\eta(\phi X)=0, \tag{2.2}\\
\phi(\xi)=0, \tag{2.3}\\
\eta(\xi)=1 . \tag{2.4}
\end{gather*}
$$

A differentiable manifold with almost para-contact structure (ϕ, ξ, η) is called an almost para-contact manifold. Further, if the manifold M^{n} has a semi-Riemannian metric g satisfying

$$
\begin{equation*}
\eta(X)=g(X, \xi) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\phi X, \phi Y)=-g(X, Y)+\eta(X) \eta(Y) . \tag{2.6}
\end{equation*}
$$

Then the structure (ϕ, ξ, η, g) satisfying conditions (2.1) to (2.6) is called an almost para-contact Riemannian structure and the manifold M^{n} with such a structure is called an almost para-contact Riemannian manifold [1, 10].

On a para-Kenmotsu manifold [2,11, 9], the following relations hold:

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) \phi X, \tag{2.7}\\
\nabla_{X} \xi=X-\eta(X) \xi, \tag{2.8}\\
\left(\nabla_{X} \eta\right) Y=g(X, Y)-\eta(X) \eta(Y), \tag{2.9}\\
\eta(R(X, Y, Z))=g(X, Z) \eta(Y)-g(Y, Z) \eta(X), \tag{2.10}\\
R(X, Y, \xi)=\eta(X) Y-\eta(Y) X, \tag{2.11}\\
R(X, \xi, Y)=-R(\xi, X, Y)=g(X, Y) \xi-\eta(Y) X, \tag{2.12}\\
S(\phi X, \phi Y)=-(n-1) g(\phi X, \phi Y), \tag{2.13}\\
S(X, \xi)=-(n-1) \eta(X), \tag{2.14}\\
Q \xi=-(n-1) \xi \tag{2.15}\\
r=-n(n-1), \tag{2.16}
\end{gather*}
$$

For any vector fields X, Y, Z, where Q is the Ricci operator that is $g(Q X, Y)=S(X, Y), S$ is the Ricci tensor and r is the scalar curvature.

In [2], Blaga has given an example on para-Kenmotsu manifold:

A para-Kenmotsu manifold is said to be η-Einstein if its Ricci tensor S is of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

For arbitrary vector fields X and Y, where a and b are smooth functions on M^{n}.

International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 9, Issue 11, November 2020)

III. Generalized \boldsymbol{T}-Curvature Tensor Of

Para-Kenmotsu Manifold
various geometric properties of it.
The \mathcal{T}-curvature tensor is defined by Tripathi and Gupta

In this section, we give a brief account of generalized
\mathcal{J}-curvature tensor of para-Kenmotsu manifold and studied

$$
\begin{align*}
T(X, Y, Z)= & c_{0} R(X, Y, Z)+c_{1} S(Y, Z) X+c_{2} S(X, Z) Y \\
& +c_{3} S(X, Y) Z+c_{4} g(Y, Z) Q X+c_{5} g(X, Z) Q Y \tag{3.1}\\
& +c_{6} g(X, Y) Q Z+r c_{7}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

such a tensor field \mathcal{T} is known as \mathcal{T}-curvature tensor.
Also, the type $(0,4)$ tensor field ${ }^{\prime} \mathcal{T}$ is given by

$$
\begin{align*}
' T(X, Y, Z, W)= & c_{0}{ }^{\prime} R(X, Y, Z, W)+c_{1} S(Y, Z) g(X, W)+c_{2} S(X, Z) g(Y, W) \\
& +c_{3} S(X, Y) g(Z, W)+c_{4} g(Y, Z) S(X, W)+c_{5} g(X, Z) S(Y, W) \tag{3.2}\\
& +c_{6} g(X, Y) S(Z, W)+r c_{7}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)],
\end{align*}
$$

where

$$
' \mathcal{T}(X, Y, Z, W)=g(\mathcal{T}(X, Y, Z), W)
$$

and

$$
' R(X, Y, Z, W)=g(R(X, Y, Z), W)
$$

for the arbitrary vector fields X, Y, Z, W.
Differentiating covariantly equation (3.1) with respect to P, we get

$$
\begin{align*}
\left.\left(\nabla_{P} \mathcal{T}\right)(X, Y) Z\right)= & \left.c_{0}\left(\nabla_{P} R\right)(X, Y) Z\right)+c_{1}\left(\nabla_{P} S\right)(Y, Z) X+c_{2}\left(\nabla_{P} S\right)(X, Z) Y \\
& +c_{3}\left(\nabla_{P} S\right)(X, Y) Z+c_{4} g(Y, Z)\left(\nabla_{P} Q\right) X \\
& +c_{5} g(X, Z)\left(\nabla_{P} Q\right) Y+c_{6} g(X, Y)\left(\nabla_{P} Q\right) Z \tag{3.3}\\
& +d r(P) c_{7}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

A new generalized $(0,2)$ symmetric tensor Z is defined by Mantica and Suh [7]

$$
\begin{equation*}
Z(X, Y)=S(X, Y)+\psi g(X, Y) \tag{3.4}
\end{equation*}
$$

where ψ is an arbitrary scalar function.
From equation (3.4), we have

$$
\begin{equation*}
Z(\phi X, \phi Y)=S(\phi X, \phi Y)+\psi g(\phi X, \phi Y) \tag{3.5}
\end{equation*}
$$

which on using equations (2.6) and (2.13), gives

$$
\begin{equation*}
\mathcal{Z}(\phi X, \phi Y)=[\psi-(n-1)][-g(X, Y)+\eta(X) \eta(Y)] . \tag{3.6}
\end{equation*}
$$

From equation (3.4) in (3.2) equation reduces to

$$
\begin{align*}
\prime \mathcal{T}(X, Y, Z, W)= & c_{0}{ }^{\prime} R(X, Y, Z, W)+c_{1} Z(Y, Z) g(X, W)+c_{2} Z(X, Z) g(Y, W) \\
& +c_{3} Z(X, Y) g(Z, W)+c_{4} g(Y, Z) Z(X, W)+c_{5} g(X, Z) Z(Y, W) \\
& +c_{6} g(X, Y) Z(Z, W)+r c_{7}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{3.7}\\
& -\psi\left[c_{1} g(Y, Z) g(X, W)+c_{2} g(X, Z) g(Y, W)+c_{3} g(X, Y) g(Z, W)\right. \\
& \left.+c_{4} g(Y, Z) g(X, W)+c_{5} g(X, Z) g(Y, W)+c_{6} g(X, Y) g(Z, W)\right] .
\end{align*}
$$

International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 9, Issue 11, November 2020)

Let

$$
\begin{align*}
\prime \mathcal{T}^{*}(X, Y, Z, W)= & c_{0}{ }^{\prime} R(X, Y, Z, W)+c_{1} Z(Y, Z) g(X, W)+c_{2} Z(X, Z) g(Y, W) \\
& +c_{3} Z(X, Y) g(Z, W)+c_{4} g(Y, Z) Z(X, W)+c_{5} g(X, Z) Z(Y, W) \tag{3.8}\\
& +c_{6} g(X, Y) Z(Z, W)+r c_{7}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
\end{align*}
$$

In the above equation, we get

$$
\begin{align*}
\mathcal{T}^{*}(X, Y, Z, W)= & \prime \mathcal{T}(X, Y, Z, W)+\psi\left[c_{1} g(Y, Z) g(X, W)+c_{2} g(X, Z) g(Y, W)\right. \\
& +c_{3} g(X, Y) g(Z, W)+c_{4} g(Y, Z) g(X, W)+c_{5} g(X, Z) g(Y, W) \tag{3.9}\\
& \left.+c_{6} g(X, Y) g(Z, W)\right] .
\end{align*}
$$

Thus ' \mathcal{T}^{*} defined in equation (3.8) is called generalized \mathcal{T} - curvature tensor of para-Kenmotsu manifold. If $\psi=0$, then from eqauation (3.9), we have

$$
\begin{equation*}
' \mathcal{T}^{*}(X, Y, Z, W)=' \mathcal{T}(X, Y, Z, W) \tag{3.10}
\end{equation*}
$$

Lemma 1 If the scalar function ψ vanishes on para-Kenmotsu manifold, then the \mathcal{T} - curvature tensor and generalized \mathcal{T}-curvature tensor are identicle.

Lemma 2 Generalized \mathcal{J}-curvature tensor of para-Kenmotsu manifold satisfies Bianchi's first identity.

- skew symmetric in first two slots.
- skew symmetric in last two slots.
- symmetric in pair of slots. para-Kenmotsu manifold satisfies the following identities:

Remark 1 Generalized \mathcal{T}-curvature tensor ${ }^{\prime} \mathcal{T}^{*}$ of para-Kenmotsu manifold is

$$
\begin{align*}
(a) \mathcal{T}^{*}(\xi, Y, Z)=-\mathcal{T}^{*}(Y, \xi, Z)= & c_{0}[\eta(Z) Y-g(Y, Z) \xi]+c_{1}[S(Y, Z)+\psi g(Y, Z)] \xi \\
& +c_{2} \eta(Z) Y[\psi-(n-1)]+c_{3} \eta(Y) Z[\psi-(n-1)] \tag{3.11}\\
& +c_{4} g(Y, Z) \xi[\psi-(n-1)]+c_{5} \eta(Z)[Q Y+\psi Y] \\
& +c_{6} \eta(Y)[Q Z+\psi Z]+r c_{7}[g(Y, Z) \xi-\eta(Z) Y],
\end{align*}
$$

$(b) \mathcal{T}^{*}(X, Y, \xi)=c_{0}[\eta(X) Y-\eta(Y) X]+c_{1} \eta(Y) X[\psi-(n-1)]$
$+c_{2} \eta(X) Y[\psi-(n-1)]+c_{3}[g(X, Y) \psi+S(X, Y)] \xi$
$+c_{4} \eta(Y)[\psi X+Q X]+c_{5} \eta(X)[\psi Y+Q Y]$ $+c_{6} g(X, Y) \xi[\psi-(n-1)]+r c_{7}[\eta(Y) X-\eta(X) Y]$,
(c) $\eta\left(\mathcal{T}^{*}(X, Y, Z)\right)=c_{0}[g(X, Z) \eta(Y)-g(Z, Y) \eta(X)]+c_{1} \eta(X)[g(Z, Y) \psi+S(Z, Y)]$

$$
+c_{2} \eta(Y)[g(Z, X) \psi+S(Z, X)]+c_{3} \eta(Z)[g(Y, X) \psi+S(Y, X)]
$$

$$
\begin{equation*}
+c_{4} \eta(X) g(Y, Z)[\psi-(n-1)]+c_{5} \eta(Y) g(X, Z)[\psi-(n-1)] \tag{3.13}
\end{equation*}
$$

$$
+c_{6} \eta(Z) g(X, Y)[\psi-(n-1)]+r c_{7}[g(Y, Z) \eta(X)-g(Z, X) \eta(Y)]
$$

IV. Generalized $\mathcal{T} \boldsymbol{\phi}$-Symmetric Para-Kenmotsu Manifold

Definition 4.1 A para-Kenmotsu manifold M^{n} is said to be locally ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{P} R\right)(X, Y, U)\right)=0, \tag{4.1}
\end{equation*}
$$

for all vector fields X, Y, U, P orthogonal to ξ.
This notion was introduced by Takahashi for Sasakian manifold [12].
Definition 4.2 A para-Kenmotsu manifold is said to be ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{P} R\right)(X, Y, U)\right)=0 \tag{4.2}
\end{equation*}
$$

International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 9, Issue 11, November 2020)

For arbitrary vector fields X, Y, U, P.
This notion was also introduced by Takahashi for Sasakian manifold [13]. Also analogous to these definitons, we define
Definition 4.3 A para-Kenmotsu manifold M^{n} is said to be generalized \mathcal{J} locally ϕ-symmetric para-Kenmotsu manifold if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{P} \mathcal{T}^{*}\right)(X, Y, U)\right)=0 \tag{4.3}
\end{equation*}
$$

for all vector fields X, Y, U, P orthogonal to ξ.
And also
Definition 4.4 A para-Kenmotsu manifold M^{n} is said to be generalized $\mathcal{T} \phi$-symmetric para-Kenmotsu manifold if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{P} \mathcal{J}^{*}\right)(X, Y, U)\right)=0 \tag{4.4}
\end{equation*}
$$

for arbitary vector fields X, Y, U, P.

Theorem 4.1 A generalized $\mathcal{T} \phi$-symmetric para Kenmotsu manifold is an Einstein manifold.

Proof. Taking covariant derivative of equation (3.9) with respect to vector field P, we obtain

$$
\begin{align*}
\left(\nabla_{P} \mathcal{J}^{*}\right)(X, Y, Z)= & \left(\nabla_{P} \mathcal{T}\right)(X, Y, Z)+d r(\psi)\left[c_{1} g(Y, Z) X\right. \\
& +c_{2} g(X, Z) Y+c_{3} g(X, Y) Z+c_{4} g(Y, Z) X \tag{4.5}\\
& \left.+c_{5} g(X, Z) Y+c_{6} g(X, Y) Z\right]
\end{align*}
$$

Using equation (3.3) in the above equation, we yields

$$
\begin{align*}
\left(\nabla_{P} \mathcal{J}^{*}\right)(X, Y, Z)= & c_{0}\left(\nabla_{P} R\right)(X, Y, Z)+c_{1}\left(\nabla_{P} S\right)(Y, Z) X+c_{2}\left(\nabla_{P} S\right)(X, Z) Y \\
& +c_{3}\left(\nabla_{P} S\right)(X, Y) Z+c_{4} g(Y, Z)\left(\nabla_{P} Q\right) X+c_{5} g(X, Z)\left(\nabla_{P} Q\right) Y \\
& +c_{6} g(X, Y)\left(\nabla_{P} Q\right) Z+d r(P) c_{7}[g(Y, Z) X-g(X, Z) Y] \tag{4.6}\\
& +d r(\psi)\left[c_{1} g(Y, Z) X++c_{2} g(X, Z) Y+c_{3} g(X, Y) Z+c_{4} g(Y, Z) X\right. \\
& \left.+c_{5} g(X, Z) Y+c_{6} g(X, Y) Z\right]
\end{align*}
$$

Assume that the manifold is generalized $\mathcal{J} \phi$-symmetric, then from equation (4.4), we have

$$
\phi^{2}\left(\left(\nabla_{P} \mathcal{J}^{*}\right)(X, Y, Z)\right)=0
$$

which on using equation (2.1), gives

$$
\begin{equation*}
\left(\nabla_{P} \mathcal{T}^{*}\right)(X, Y, Z)=\eta\left(\left(\nabla_{P} \mathcal{J}^{*}\right)(X, Y, Z)\right) \xi \tag{4.7}
\end{equation*}
$$

Using equation (4.6) in above equation, we get

$$
\begin{align*}
& c_{0}\left(\nabla_{P} R\right)(X, Y, Z)+c_{1}\left(\nabla_{P} S\right)(Y, Z) X+c_{2}\left(\nabla_{P} S\right)(X, Z) Y \\
& +c_{3}\left(\nabla_{P} S\right)(X, Y) Z+c_{4} g(Y, Z)\left(\nabla_{P} Q\right) X+c_{5} g(X, Z)\left(\nabla_{P} Q\right) Y \\
& +c_{6} g(X, Y)\left(\nabla_{P} Q\right) Z+d r(P) c_{7}[g(Y, Z) X-g(X, Z) Y]+d r(\psi)\left[c_{1} g(Y, Z) X\right. \\
& \left.+c_{2} g(X, Z) Y+c_{3} g(X, Y) Z+c_{4} g(Y, Z) X+c_{5} g(X, Z) Y+c_{6} g(X, Y) Z\right] \\
& =\eta\left(\left(\nabla_{P} R\right)(X, Y, Z)\right) \xi+c_{1}\left(\nabla_{P} S\right)(Y, Z) \eta(X) \xi+c_{2}\left(\nabla_{P} S\right)(X, Z) \eta(Y) \xi \\
& +c_{3}\left(\nabla_{P} S\right)(X, Y) \eta(Z) \xi+c_{4} g(Y, Z) \eta\left(\left(\nabla_{P} Q\right)\right) \eta(X) \xi+c_{5} g(X, Z) \tag{4.8}\\
& \eta\left(\left(\nabla_{P} Q\right)\right) \eta(Y) \xi+c_{6} g(X, Y) \eta\left(\left(\nabla_{P} Q\right)\right) \eta(Z) \xi+d r(P) c_{7} \\
& \xi+d r(\psi)\left[c_{1} g(Y, Z) \eta(X)\right. \\
& +c_{2} g(X, Z) \eta(Y)+c_{3} g(X, Y) \eta(Z)+c_{4} g(Y, Z) \eta(X) \\
& \left.+c_{5} g(X, Z) \eta(Y)+c_{6} g(X, Y) \eta(Z)\right]
\end{align*}
$$

Taking inner product of the above equation with V, we get

International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 9, Issue 11, November 2020)

$$
\begin{align*}
& c_{0} g\left(\left(\nabla_{P} R\right)(X, Y, Z), V\right)+c_{1}\left(\nabla_{P} S\right)(Y, Z) g(X, V)+c_{2}\left(\nabla_{P} S\right)(X, Z) g(Y, V) \\
& \left.+c_{3}\left(\nabla_{P} S\right)(X, Y) g(Z, V)+c_{4} g(Y, Z) g\left(\left(\nabla_{P} Q\right) X, V\right)\right)+c_{5} g(X, Z) g\left(\left(\nabla_{P} Q\right) Y, V\right) \\
& \left.+c_{6} g(X, Y) g\left(\left(\nabla_{P} Q\right) Z, V\right)\right)+d r(P) c_{7}[g(Y, Z) g(X, V)-g(X, Z) g(Y, V)] \\
& +d r(\psi)\left[c_{1} g(Y, Z) g(X, V)+c_{2} g(X, Z) g(Y, V)+c_{3} g(X, Y) g(Z, V)+c_{4} g(Y, Z)\right. \\
& \left.g(X, V)+c_{5} g(X, Z) g(Y, V)+c_{6} g(X, Y) g(Z, V)\right]=\eta\left(\left(\nabla_{P} R\right)(X, Y, Z)\right) \eta(V) \\
& +c_{1}\left(\nabla_{P} S\right)(Y, Z) \eta(X) \eta(V)+c_{2}\left(\nabla_{P} S\right)(X, Z) \eta(Y) \eta(V)+c_{3}\left(\nabla_{P} S\right)(X, Y) \tag{4.9}\\
& \eta(Z) \eta(V)+c_{4} g(Y, Z) \eta\left(\left(\nabla_{P} Q\right)\right) \eta(X) \eta(V)+c_{5} g(X, Z) \eta\left(\left(\nabla_{P} Q\right)\right) \eta(Y) \eta(V) \\
& +c_{6} g(X, Y) \eta\left(\left(\nabla_{P} Q\right)\right) \eta(Z) \eta(V)+d r(P) c_{7}[g(Y, Z) \eta(X) \eta(V)-g(X, Z) \\
& \eta(Y) \eta(V)]+d r(\psi)\left[c_{1} g(Y, Z) \eta(X) \eta(V)+c_{2} g(X, Z) \eta(Y) \eta(V)\right. \\
& +c_{3} g(X, Y) \eta(Z) \eta(V)+c_{4} g(Y, Z) \eta(X) \eta(V)+c_{5} g(X, Z) \eta(Y) \eta(V) \\
& \left.+c_{6} g(X, Y) \eta(Z) \eta(V)\right]
\end{align*}
$$

Putting $X=V=e_{i}$ and taking summation over i, we obtaion

$$
\begin{align*}
& \left.\left[c_{0}+n c_{1}+c_{2}+c_{3}\right]\left(\nabla_{P} S\right)(Y, Z)+c_{4} g(Y, Z) g\left(\left(\nabla_{P} Q\right) e_{i}, e_{i}\right)\right) \\
& +c_{5} g\left(\left(\nabla_{P} Q\right) Y, Z\right)+c_{6} g\left(\left(\nabla_{P} Q\right) Z, Y\right)+d r(P) c_{7}[n g(Y, Z)-\eta(Y) \eta(Z)] \\
& +d r(\psi)\left[n\left(c_{1}+c_{4}\right) g(Y, Z)+\left(c_{2}+c_{3}+c_{5}+c_{6}\right) \eta(Y) \eta(Z)\right] \\
& -\eta\left(\left(\nabla_{P} R\right)\left(e_{i}, Y, Z\right)\right) \eta\left(e_{i}\right)-c_{1}\left(\nabla_{P} S\right)(Y, Z)-c_{2}\left(\nabla_{P} S\right)\left(e_{i}, Z\right) \eta(Y) \tag{4.10}\\
& -c_{3}\left(\nabla_{P} S\right)\left(e_{i}, Y\right) \eta(Z)-c_{4} g(Y, Z) \eta\left(\left(\nabla_{P} Q\right)\right)-c_{5} \eta(Y) \eta(Z) \eta\left(\left(\nabla_{P} Q\right)\right) \\
& -c_{6} \eta(Y) \eta(Z) \eta\left(\left(\nabla_{P} Q\right)\right)-d r(P) c_{7}[g(Y, Z)-\eta(Y) \eta(Z)] \\
& -d r(\psi)\left[\left(c_{1}+c_{4}\right) g(Y, Z)+\left(c_{2}+c_{3}+c_{5}+c_{6}\right) \eta(Y) \eta(Z)\right]=0,
\end{align*}
$$

Taking $Z=\xi$ in the above equation, we have

$$
\begin{align*}
& \left.\left[(n-1) c_{1}+c_{3}+c_{2}+c_{0}\right]\left(\nabla_{P} S\right)(Y, \xi)+c_{4} g\left(\left(\nabla_{P} Q\right) e_{i}, e_{i}\right)\right) \eta(Y) \\
& +c_{5} \eta\left(\left(\nabla_{P} Q\right) Y\right)+c_{6} \eta\left(\left(\nabla_{P} Q\right) Y\right)+d r(P) c_{7}(n-1) \eta(Y) \\
& +d r(\psi) \eta(Y)\left[n\left(c_{1}+c_{4}\right)\right]-\eta\left(\left(\nabla_{P} R\right)\left(e_{i}, Y, \xi\right)\right) \eta\left(e_{i}\right) \tag{4.11}\\
& -c_{2}\left(\nabla_{P} S\right)\left(e_{i}, \xi\right) \eta(Y)-c_{3}\left(\nabla_{P} S\right)\left(e_{i}, Y\right) \\
& -c_{4} \eta\left(\left(\nabla_{P} Q\right)\right) \eta(Y)-c_{5} \eta\left(\left(\nabla_{P} Q\right)\right) \eta(Y)-c_{6} \eta\left(\left(\nabla_{P} Q\right)\right) \eta(Y) \\
& -d r(\psi) \eta(Y)\left(c_{1}+c_{4}\right)=0 .
\end{align*}
$$

Now

$$
\begin{equation*}
\eta\left(\left(\nabla_{P} R\right)\left(e_{i}, Y, \xi\right) \eta\left(e_{i}\right)=g\left(\left(\nabla_{P} R\right)\left(e_{i}, Y, \xi\right), \xi\right) g\left(e_{i}, \xi\right)\right. \tag{4.12}
\end{equation*}
$$

Also

$$
\begin{align*}
g\left(\left(\nabla_{P} R\right)\left(e_{i}, Y, \xi\right), \xi\right) & =g\left(\nabla_{P} R\left(e_{i}, Y, \xi\right), \xi\right)-g\left(R\left(\nabla_{P} e_{i}, Y, \xi\right), \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{P} Y, \xi\right), \xi\right)-g\left(R\left(e_{i}, Y, \nabla_{P} \xi\right), \xi\right) \tag{4.13}
\end{align*}
$$

Since $\left\{e_{i}\right\}$ is an orthonormal basis, so $\nabla_{X} e_{i}=0$ and using equation (2.11), we get

$$
g\left(R\left(e_{i}, \nabla_{P} Y, \xi\right), \xi\right)=0
$$

As

We have

$$
g\left(R\left(e_{i}, Y, \xi\right), \xi\right)+g\left(R(\xi, \xi, Y), e_{i}\right)=0
$$

$$
g\left(\nabla_{P} R\left(e_{i}, Y, \xi\right), \xi\right)+g\left(R\left(e_{i}, Y, \xi\right), \nabla_{P} \xi\right)=0
$$

Using this fact, we get

$$
\begin{equation*}
g\left(\left(\nabla_{P} R\right)\left(e_{i}, Y, \xi\right), \xi\right)=0 \tag{4.14}
\end{equation*}
$$

Using equation (4.14) in (4.11), we have

$$
\begin{align*}
{\left[(n-1) c_{1}+c_{3}+c_{2}+c_{0}\right]\left(\nabla_{P} S\right)(Y, \xi)=} & (1-n) c_{7} d r(P) \eta(Y) \tag{4.15}\\
& -(1-n)\left(c_{1}+c_{4}\right) d r(\psi) \eta(Y)
\end{align*}
$$

International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 9, Issue 11, November 2020)

Taking $Y=\xi$ in above equation and using equations (2.4) and (2.14), we get

$$
\begin{equation*}
d r(\psi)=\left[\frac{c_{7}}{c_{1}+c_{4}}\right] d r(P) \tag{4.16}
\end{equation*}
$$

which shows that r is constant. Now we have

$$
\left(\nabla_{P} S\right)(Y, \xi)=\nabla_{P} S(Y, \xi)-S\left(\nabla_{P} Y, \xi\right)-S\left(Y, \nabla_{P} \xi\right)
$$

Then by using (2.8), (2.9), (2.14) in the above equation, it follows that

$$
\begin{equation*}
\left(\nabla_{P} S\right)(Y, \xi)=-S(Y, P)-(n-1) g(Y, P) \tag{4.17}
\end{equation*}
$$

So from equation (4.15), (4.16) and (4.17), This shows that

$$
S(Y, P)=-(n-1) g(Y, P)
$$

if $\left[(n-1) c_{1}+c_{3}+c_{2}+c_{0}\right] \neq 0$, which shows that M^{n} is an Einstein manifold.

REFERENCES

[1] Adati, T. and Miyazava, T. (1977),On Para-Contact Riemannian manifolds, Tru Math., 13(2), 27-39.
[2] Blaga, A.M. (2015), η - Ricci Solitions on para- Kenmotsu manifolds, Balkan J. Geom. Appl., 20, 1-13.
[3] Cappelletti-Montano, B., Kupeli Erken, I. and Murathan, C. (2012),Nullity conditions in paracontact geometry, Differ. Geom. Appl. , 30, 665-693.
[4] Kaneyuki, S. and Williams, F. L. (1985),Almost paracontact and parahodge structure on manifolds, Nagoya Math. J., 99, 173-187.
[5] Kupeli Erken, I.,Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Periodica Math. Hungarica, DOI:10.1007/s10998-019-00303-3.
[6] Kupeli Erken, I. and Murathan, C. (2017),A complete study of three-dimensional paracontact (k, μ, v)-spaces, Int. J. Geom. Methods Mod. Phys., https://doi.org/10.1142/S0219887817501067.
[7] Mantica, C. A., Suh, Y.J. (2012),Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys. 9(1), 1250004, 21 pages.
[8] Raghuwanshi, T., Pandey, S. K., Pandey, M. K. and Goyal, A. (2022), On generalized W_{2}-curvature tensor of para-Kenmotsu manifolds, filomat, 36 no. 3, 741-752.
[9] Sato, I. (1976), On a structure similar to the almost contact structure, Tensor, (N.S.), 30, 219-224.
[10] Sardar Arpan and De, Uday Chand (2020), η - Ricci Solitions on para- Kenmotsu manifolds, Differential Geometry Dynamical Systems, Vol. 22, 218-228.
[11] Takahashi, Toshio (1969),Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 2(21), no. 2, 271-290.
[12] Takahashi, T. (1977),Sasakian ϕ-symmetric spaces, Tohoku Math. J., (2) 29(1), 91-113.
[13] Tripathi, M. M. and Gupta, P. (2011), \mathcal{T}-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies, 4, 117-129.
[14] Zamkovoy, S. (2009),Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36, 37-60.

