

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

30

Optimizing The Performance Of HADOOP Using
Index-Based Join Operation

Anshul Shrivas

Dept. of Computer Science & Engineering

Global Engineering College

Jabalpur, Madhya Pradesh, India

Deepak Paranjpe
Asst. Professor, Dept. of Computer Science &

Engineering

Global Engineering College

Jabalpur, Madhya Pradesh, India

Abstract - Data refers to technologies and initiatives that

involve data that is too diverse, fast-changing or massive for
conventional technologies, skills and infra- structure to

address efficiently is called Big Data. Hive is a data

warehouse infrastructure tool, well suited for query
processing and data analysis. Hive is gaining popularity for

its SQL like query language HiveQL and for supporting

majority of the SQL operations in relational database

management systems (RDBMS). Being the expensive
operation in RDBMS, join has been the focus of many query

optimization techniques to improve performance of database

systems. We investigate such techniques for join operations
in Hive and develop a two-way join algorithm for queries in

HiveQL. When a query requires only a small subset of data

selected by a predicate in the WHERE clause, the brute-force
method which scans the entire tables results in poor

performance for redundant disk I/Os, and irrelevant maps

initiation in case the query is issued using the MapReduce.

In this work, we implement the proposed index-based join
technique and integrate it in Hive. To add our extension, we

obtain Hive architecture details by reverse engineering the

code and map our design to the conceptual optimization flow.
To evaluate the performance, after setting up the

environment, we run relevant test queries on datasets

generated using the industry standard benchmark, TPC-H.
Our results indicate significant performance gain over

relatively large data or highly selective queries.

KEYWORDS: Big Data, Hive, Hadoop, Indexing,

Join.

I. INTRODUCTION

Data is growing at a huge speed making it difficult to

handle such large amount of data (Giga-bytes).The main

difficulty in handling such large amount of data is

because that the volume is increasing rapidly in

comparison to the computing resources. The Big data

term which is being used now a days is kind of misnomer

as it points out only the size of the data not putting too

much of attention to its other existing properties [10]. The

characteristics of Big Data can be broadly divided into

three Vs i.e. Volume, Velocity and Varity and. Volume

refers to the size of the data. While Velocity tells about

the pace at which data is generated; Varity tells us about

the complexity and structure of data and different ways of

interpreting it [11].

 Join is an expensive operation in databases, which

depending on the predicate, data, etc., allows information

from various relations to be “combined”. It also provides

more data analysis and mining tasks important in the

context of business intelligence for finding interesting and

useful patterns in large amount of data. Therefore,

improving various join operations can result in significant

performance improvement. In relational databases,

efficient join operations are supported through indexing

without which the brute-force scan of the entire table is

hopeless for large data. This is more needed when a small

fraction of the tuple participate in a join operation. Two

major factors that influence the performance of index

based join operations in Hive includes very high data

volume and low index maintenance cost [1]. Though Hive

is expected to work well with vast amount of data,

indexing can further improve the performance by

reducing the amount of data accessed from the

contributing tables. Having infrequent updates, as a

characteristic of big data, makes the cost of index

maintenance of less importance or affordable.

Additionally, the index types proposed and developed in

Hive take up a pretty small space. This paper presents a

solution approach to perform join with Map-Reduce type

operations, over large sets of data stored in a Hadoop-

based cloud. We have experimentally evaluated the

performance of the proposed approach, which uses a

recent indexing feature of Hive to improve performance

over previous- indexed queries. affordable. Additionally,

the index types proposed and developed in Hive take up a

pretty small space.

II. HIVE

Hive is data warehouse software which is used for

facilitates querying and managing large data sets residing

in distributed storage. Hive language almost look like

SQL language called HiveQL [4]. Hive is designed to

enable easy data summarization. Hive also allows

traditional map reduce programs to customize mappers

and reducers when it is inconvenient or inefficient to

execute the logic in HiveQL.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

31

Figure 1: Hive Component

The first component is shell; Shell is the command line

interface. It allows interactive queries like My SQL shell

connected to database. Also supports web and JDBC

clients [5].Driver, compiler and execution engine take the

HiveQL scripts and run in Hadoop environment.

The second component driver, which receives the queries.

This component implements the notion of session handles

and provides execute and fetch APIs modeled on

JDBC/ODBC interfaces of the table and partition

metadata looked up from the metastore. The third

component in hive is Execution engine which executes

the execution plan created by the compiler. The plan is a

DAG of stages. The execution engine manages the

dependencies between these different stages of the plan

and executes these stages on the appropriate system

components. The last component is meta store that stores

all the structure information of the various table and

partitions in the warehouse including column and column

type information, the serializes and deserialize necessary

to read and write data and the corresponding HDFS files

where the data is stored.

III. RELATED WORK

We will present a few optimization techniques related to

indexes in Hive.HIVE-1644 [6] is the implementation of

processing the WHERE clause with the index. The new

query replaces the table with the index table and looks for

the address of the desired values. The relevant part of the

predicate is the part that can be processed by the indexes,

that is a conjunction of the binary expressions. The re-

written query is compiled and the produced root tasks are

added to the original query root tasks. Then the original

query is executed over the intermediate results produced

from the re-written query. All column references in

HIVE-1644 must refer to the same table (no joins or sub-

queries).

SELECT col_list

FROM tab_name

WHERE predicate;

and re-writes it into:

INSERT INTO intermediate

SELECT _BUCKETNAME, _OFFSETS

FROM tab_index

WHERE relevent_part_of_the_predicate;

Antony, S., Chakka,2010[1] proposed accelerates queries

with GROUP BY clauses here are a number of conditions

to be met in HIVE-1694: the FROM clause must have

only one table (no joins) in the query; there should be

only one COUNT (index_key) function in the SELECT

clause; and all column references must be in the index

key.

In another research, Wang et Al 2010 [7] integrated

indexing with a B+ tree structure into map-reduce

framework. In this work, given a query, the index is

accessed twice to locate the start point and the end point

in the leaves. The nodes between these two positions

satisfy the query. Map jobs are generated and attached to

blocks of data covered between the start point and the end

point. Each map first scans the index and then retrieves

the records using the offset. Gruenhe id, work proposed

storing column-level meta-data in Hive tables to benefit

from during query execution [8]. Column-level statistics

or more specifically, histograms that exhibit value

distribution within a table provide more accurate

information than just the table size to estimate the output

size. A new table is added to Hive meta-store that holds

the number of distinct values, number of null value, min

and max values and most frequent values as its fields. In

presence of column statistics, an index-based join can

determine whether it is an optimal approach before

execution.

IV. Index-based Join approach

Single tables are involved in existing indices in Hive. A

join index is a pre-computed access structure that

maintains pairs of identifiers of tuples from two or more

relations that would match in case of a join in RDBMS.

This approach would be a suitable optimization approach

in Hive where tables are updated infrequently. Index join

concept is based on the fact that is to keep unique

identifiers of the matched tuples in the same structure and

cluster them on either of the unique identifiers of both

tables. The current implementation of Hive does not

support the concept of primary keys [9] which are

considered the unique identifiers of tuples in RDBMSs.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

32

The aim of my work is to accelerate a two-way join query

created in HiveQL as shown below:

SELECT col_list

FROM table1 JOIN table2

ON (table1.col1 = table2.col1)

[WHERE ...]

[GROUP BY…];

In the above mentioned query “WHERE” and “GROUP

BY” clauses are optional. The same queries can be

applied for joining “n” number of tables.

A. Design

When we execute simple query in Hive, it reads the whole

dataset even if we have use „where „clause filter. This

becomes a bottleneck for running Map-Reduce jobs over

a huge table. We can overcome this problem by using

partitioning in Hive. By using automatic partition method

when the table is created. In Hive‟s implementation of

partitioning, data within a table is split across various

small partitions. When the query is executed, only the

required partitions of the table are execute, thereby

minimizing the I/O and time required by the query.

Because when external table is declared, default table

path is changed to specified location in hive metadata

which contains in meta store, but about partition, nothing

is changed, so, we must manually add those metadata.

The proposed research work can be demonstrated by the

following:

 A Search for a JoinOperator is done by

optimizer. If this step is omitted we can perform

optimization for any query. Now query is examined by

optimizer for a two-way join. Further we get operator

TableScanOperator that points to the table that has to be

manipulated and verify that the table contain an index and

check for its validity. The index is valid if it is compact

index and it includes all the partitions of the table .If all

the condition are fulfilled then the optimizer re-write the

query:

SELECT col_list

FROM index_table JOIN table2

ON (tab1.col1 = tab2.col1)

[WHERE]

[GROUP BY];

Figure: 2 Query Plan Generator Flow of Index-based

approach

Otherwise this flow ends which means query is not

executed successfully.

Any of the table (whichever that has the index) is replaced

by its corresponding index table. This means that table

must be removed from every internal data structure in the

operator DAG and the new table must be added instead.

 Hive query optimization is conforms by given flow show

in figure 2.

 B. Results

We used the standard benchmark TPC-H version 2.14.4 to

generate data used in our experiments [10]. We

considered only the supplier and nation tables.

C. Test Queries

 SELECT s_acctbal,s.s_name,s.s_suppkey from

supplier s JOIN nation n

ON(s.s_nationkey=n.n_nationkey) .

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

33

 SELECT s.s_acctbal,s.s_name,s.s_suppkey
from supplier s JOIN nation n

ON (s.s_nationkey=n.n_nationkey) group by

s.s_acctbal,s.s_name,s.s_suppkey

WHERE c.c_acctbal>1000.

 SELECT s.s_acctbal,s.s_name,s.s_suppkey from
supplier s JOIN nation

 ON (s.s_nationkey=n.n_nationkey) group by

s.s_acctbal,s.s_name,s.s_suppkey

 GROUPBY s.s_acctbal,s.s_name,s.s_suppkey .

 Without index approach

response time(s)

With index approach

response time(s)

Data

Size

1 GB 3 GB 5 GB 1 GB 3 GB 5 GB

 51.22 146.11 200.54 34.11 100.12 143.23

52.56 142.25 201.56 32.34 100.34 143.22

55.78 142.34 203.54 31.67 101.23 145.32

52.44 141.26 203.55 30.00 101.45 142.23

52.11 140.99 201.45 30.67 101.34 142.23

Avg. 52.82 142.59 202.128

31.758

100.896

143.246

Table 1: Query1 Response time without index based

approach /with index-based approach

 Without index approach

response time(s)

With index approach

response time(s)

Data

Size

1 GB 3 GB 5 GB 1 GB 3 GB 5 GB

 54.22 141.11 193.54 32.11 110.12 133.23

53.56 142.25 191.56 32.34 110.34 133.22

53.78 142.34 191.54 31.67 111.23 135.32

52.44 141.26 191.55 31.02 111.45 132.23

52.11 140.99 191.45 31.23 111.34 132.23

Avg. 53.11 141.59

191.928

31.674

110.896

133.246

Table 2: Query1 Response time without index based

approach /with index-based approach

 Without index approach

response time(s)

With index approach

response time(s)

Data

Size

1 GB 3 GB 5 GB 1 GB 3 GB 5 GB

 50.60 147.66 265.00 32.11 101.56 210.54

49.81 146.87 265.78 32.45 101.43 211.34

49.43 150.98 265.65 32.12 101.24 210.11

49.76 147.01 265.78 32.43 101.23 210.45

49.76 147.00 265.71 32.10 101.45 210.23

Avg. 49.87 147.90 265.58 32.24 101.38 210.53

Table 3: Query1 Response time without index based

approach /with index-based approach

Figure 3: Query1 response time without index based /with

index-based approach on single node setup

Figure 4: Query2 response time without index based /with

index-based approach on single node setup

0

50

100

150

200

250

1 GB
Data

3 GB
Data

5 GB
Data

Ex
ce

cu
ti

o
n

 t
im

e
in

 s
e

c
Query 1

 Without
Index-less

approach
response
time (in Sec.)

Index-based
approach

response
time (in sec.)

0

50

100

150

200

250

300

1 GB
Data

3 GB
Data

5GB
Data

Ex
ce

cu
ti

o
n

 t
im

e
in

 s
e

c

Query 2

 Without
Index-less

approach
response
time (in
Sec.)

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

34

Table 3: Query1 Response time without index based

approach /with index-based approach

V. CONCLUSION AND FUTURE WORK

The expensive operation in RDBMS, join has been the

focus of many query optimization techniques to improve

performance of database systems. In partitioning, we

create a partition for each unique value of the column. We

investigate such techniques for join operations in Hive

and develop an index-based join algorithm for queries in

HiveQL. Indexes have been around for long time and the

benefit of using them is obvious though index size

depends on the data distribution and the number of

attributes for indexing, our experiments showed the Hive

index space utilization is reasonable. With respect to

accessing the index, current Hive indexes do not provide

an instant access to values, which undoubtedly comes

with heavy space overhead. What they offer instead is,

scanning a huge amount of data is replaced with scanning

a drastically small set of it that holds the desired values

.Hive index maintenance cost is noticeably low,

considering the infrequent updates and batch-mode data

insertion as the characteristics of big data. The indexing

technique in Hive is rather new and the progress has been

limited to current index structure and also the query life

cycle. As future work, first we plan to work on hash based

indexing using bucket level because bucket is smallest

data model in hive .

REFERENCES

[1] Antony, S., Chakka, P., Jain, N., J., Liu, Murthy, R., Sarma,

J. S., Thusoo, A., Zhang, N “Hive – A Petabyte Scale Data

Warehouse Using Hadoop,” IEEE 26th Intl. Conf. Data

Engineering (ICDE), Long Beach, CA, 2010, pp. 996 – 1005.
[2] Apache Hadoop [Online]. Available:

http://hadoop.apache.org/

[3] Dean, J., Ghemawat, S. “MapReduce: Simplified Data

Processing on Large Clusters,” Mag. Commun. ACM
50thanniversary, vol. 51, issue 1, 2008, pp.107-113

[4] http://www.hadooptpoint.com/introduction-hive/

[5] Yue Liu1,6,7 , Songlin Hu1 “DGFIndex for Smart Grid:
Enhancing Hive with a Cost-Effective multidimensional

Range Index” 40th International Conference on Very Large

Data Bases, September 1st - 5th 2014, Hangzhou, China.
[6] ANTLR [Online]. Available: http://www.antlr.org/

[7] An, M., Wang, W., Wang, Y., “Using Index in the

MapReduce Framework, ”, 12th Intl. Asia Pacific Web Conf.

(APWEB),Beijing, China, 2010, pp. 52-58
[8] Dean, J., Ghemawat, S. “MapReduce: Simplified

DataProcessing on Large Clusters,” Mag. Commun. ACM

50th anniversary, vol. 51, issue 1, 2008, pp.107-113
[9]Capriolo, E., Rutherglen, J., Wampler, D. Programming

Hive: Data Warehouse and Query Language for Hadoop, 1st

ed, O'Reilly Media, 2012
[10] TPC-H[Online]. http://www.tpc.org/tpch/

[11]HIVE 1694[Online]. Available:

https://issues.apache.org/jira/browse/HIVE-1694
 [12] Hive index design doc [Online]. Available:

https://cwiki.apache.org/confluence/display/Hive/IndexDe

[13] Hive JIRA [Online]. Available:

https://issues.apache.org/jira/browse/HIVE
[14] HIVE-1644 [Online]. Available:

https://issues.apache.org/jira/browse/HIVE-1644

[15] N. Jain, L. Tang, “Join strategies in Hive”, Facebook,
Rep. Hadoop summit 2011, 2011 [Online].

[16] Li, Z., Ross, K. A. “Fast joins using join indices”, in The

International Journal on Very Large Data Bases, vol. 8, issue
1, 1999, pp.1–24

[17] Lou, W., Ren, K., Wang, C., Wang, Q. Privacy-Preserving

Public Auditing for Storage Security in Cloud Computing,

Proc. 30th IEEE Int'l Conf. Computer Communications
(INFOCOM 10), IEEE Press, San Diego, CA, 2010, pp. 525–

533.

[18] S. Madden: “From Databases to Big Data,” IEEE Internet
Computer., vol.16, issue 3, pp. 4-6, May-June, 2012

[19] MapReduce Tutorial [Online]. Available (date):

http://hadoop.apache.org/docs/mapreduce/r0.22.0/mapred_tut

orial.html

[20]MongoDB[Online]. Available: http://www.mongodb.org/

[21]Neo4j[Online]. Available(write date):
http://www.neo4j.org/

[22] Gruenheid, A., Mark, L., Omnecinski, E. “Query

 Optimization using column statistics in Hive,” in
 Proc. 15th Symp. Intl. Database Engineering &

 Applications (IDEAS), Lisbon, Portugal, 2011, pp.

 97-105, 2011

0

50

100

150

200

250

300

1 GB
Data

3 GB
Data

5GB
Data

Ex
ce

cu
ti

o
n

 t
im

e
in

 s
e

c

Query 3

 Without
Index-less
approach
response time
(in Sec.)

Index-based
approach
response time
(in sec.)

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

35

[23] Dean, J., Ghemawat, S. “MapReduce: Simplified Data
Processing on Large Clusters,” Mag. Commun. ACM 50th

anniversary, vol. 51, issue 1, 2008, pp.107-113

[24] Eaton, C., Deroos, D., Deutsch, T., Lapis, G., Zikopoulos,
P. Understanding Big data: Analytics for Enterprise Class

Hadoop and Streaming Data, 1st ed, McGraw, 2011

[25] Garcia-Molina, H., Ullman, J., Widom, J. Database

Systems: The Complete Book, 1st ed, Upper Saddle River,
NJ, Prentice Hall Inc., 2002

[26] Gilbert, S., Lynch, N. A. “Brewer's Conjecture and the

Feasibility of Consistent, Available, Partition-Tolerant Web
Servicsaes”, in Newslett. ACM SIGACT, vol. 33, issue 2, pp.

51-59, June 2002

[27] Grance, T., Mell, P. “The NIST Definition of Cloud
Computing,” NIST. Gaithersburg, MD, Rep.

Recommendations of the National Institute of Standards and

107 Technology, 2011
[28] Yin Huai, Ashutosh Chouhan “Major Technical

Advancements in Apache Hive”SIGMOD 2014,june .

[29] H. V. Jagadish : “Big Data & Science Myths and Reality”

 Science Direct june 2015.

