

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

23

Improving the Performance of Hive by Parallel Processing of

Massive Data

Ankul Barman
Dept. of Computer Science & Engineering

Global Engineering College

Jabalpur, Madhya Pradesh, India

Deepak Paranjpe
Asst. Professor Dept. of Computer Science &

Engineering

Global Engineering College

Jabalpur, Madhya Pradesh, India

Abstract- Data refers to technologies and initiatives that

involve data that is too diverse, fast-changing or massive for

conventional technologies, skills and infra- structure to address

efficiently is called Big data. Hive is a data warehouse

infrastructure tool, well suited for query processing and data

analysis. Hive is gaining popularity for its SQL like query

language HiveQL and for supporting majority of the SQL

operations in relational database management systems

(RDBMS). Being the expensive operation in RDBMS, join has

been the focus of many query optimization techniques to

improve performance of database systems. This work proposes

the use of Numerous Query Optimization (NQO) techniques to

improve the overall performance of Hive. During parallel

execution of numerous queries, many opportunities can arise for

conjoint scan and/or computation tasks. Executing frequent jobs

only once can reduce the total execution time of all queries

remarkably. Our framework, transforms a set of interrelated

HiveQL queries into new global queries that can produce the

same results in remarkably smaller total execution times. It is

experimentally shown that ConjointHive outperforms the

conventional Hive by 30-60% reduction, depending on the

number of queries and percentage of conjoint tasks, in the total

execution time of correlated TPC-H queries.

Keywords: Big Data, Hive, HiveQL, Numerous Query

Optimization, ConjointHive

1. INTRODUCTION

Processing large-scale data in the amounts of hundreds of

terabytes is a very difficult task. Solving the problems

associated with high volume data requires can be achieved by

dividing the data and work to many computers that will all

work together in parallel to complete the task in a reasonable

time. Map-Reduce [6] and Hadoop [1] have gained popularity

in Parallel dataflow systems. These systems are extensively

used for analytics and data warehousing, either directly or

through the use of a high-level query language that is

compiled down to a parallel dataflow graph for execution [1,

7].

 Data warehousing is accompanied with batch

oriented query workload that is relatively static. While ad-hoc

queries must also be processed, much of the system's activity

can be predicted in advance. Non-interactive nature of

applications of data warehouses provides considerable

freedom to reorder and optimize queries to improve overall

performance.

The current parallel dataflow systems do not take

advantage of these opportunities. Since Map-Reduce

operations are expressed as user-defined functions therefore

Hadoop performs no global analysis or optimization. Instead,

a single Hadoop job is divided into smaller chunks of work

called tasks, and each worker node is assigned one or more

tasks and after the accomplishment of a particular task,

another task is assigned by the Hadoop to execute, using some

simple heuristics that try to place computations close" to their

input data. However, no global analysis is performed to share

work between similar jobs and to attempt to collocate data

and computation, so as to predict the optimal schedule for

jobs and tasks.

 If we use Hive or Pig as a declarative query language

for the execution platform of Map-Reduce there are more

opportunities for optimization [8]. Only simple, conservative

optimizations are deployed by the Current systems: for

example, Pig can push distributive or algebraic aggregate

evaluation beneath joins [9], and Hive applies projection and

selection pushdown [4].

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

24

 When users want to benefit from both MapReduce

and SQL interface, then Mapping SQL statements to

MapReduce tasks can become a very difficult job [9]. Hive is

used to translate queries to MapReduce jobs, thereby

exploiting the scalability of Hadoop, while presenting a

familiar SQL abstraction [10]. These characteristics of Hive

make it a suitable tool for data warehouse applications where

data is not updated frequently, large scale data is analyzed,

fast response times are not required [4].

 The barrier of moving the applications to Hadoop is

lowered by Hive which helps people who already know SQL

to use Hive easily as most data warehouse applications are

implemented using SQL based RDBMSs,. Similarly, Hive

makes it easier for developers to port SQL-based applications

to Hadoop. Since Hive processes each query independently

and is based on query-at-a-time model , issuing numerous

queries in close time interval decreases performance of Hive

due to its execution model. From this perspective, it is

important that there has not been any study that incorporates

the Numerous Query Optimization (NQO) technique [10, 11]

for Hive to reduce the total execution time of the queries.

2. RELATED WORKS

The concept of Numerous Query Optimization (NQO)

problem was introduced in 1980’s and finding an optimal

global query plan by using NQO was shown to be an NP-

Hard problem [15]. A large number of works was done

RDBMS since then 21]. The problem of identifying common

subexpressions is an NP-hard problem [15]. Therefore,

M.Jarke indicates that multirelation subexpressions can only

be addressed heuristically [15]. The improvement of ad hoc

query by comparing an incoming query with materialized

results was shown by Finkel (intermediate results and final

answer) produced from earlier queries. He deals only with

equivalent expressions. M.Jarke discusses the common

subexpression isolation in relational algebra, domain

relational calculus, and tuple relational calculus. Chakravarthy

and Minker identify the equivalence and subsumption of two

expressions at the logical level, using heuristics [13].

An and/or graph is used to represent queries and detect

subsumption by comparing each pair of operator nodes from

distinct queries by Rosenthal and Chakravarthy [11]. Another

issue in MQP is that the multigraph is proposed for

representing numerous Select-Project-Join type queries in

[13]. This multigraph can facilitate query processing by using

Ingres' instantiation and substitution [13]. 8 In [14], the

multigraph was modified for representing the initial state of

numerous queries.

 CPU utilization, memory usage, and I/O load

variables in a study during planning numerous queries to

determine the degree of intra-operator parallelism in parallel

databases to minimize the total execution time of declustered

join methods which was illustrated by DeWitt [13]. A proxy-

based infrastructure for handling data intensive applications is

proposed by Beynon [14]. This infrastructure was not as

scalable as a collection of distributed cache servers available

at multiple back-ends. Chen et al. considered the network

layer of a data integration system and reduced the

communication costs by a multiple query reconstruction

algorithm [16]. In recent years, a significant amount of

research and commercial activity has focused on integrating

MapReduce and structured databases technologies.

Mainly there are two approaches: Either adding MapReduce

features to parallel database or adding databases technology to

MapReduce. The second approach is more attractive because

there exists no widely available open source parallel database

system whereas MapReduce is available as an open source

project. Furthermore, MapReduce is accompanied by a

plethora of free tools as well as cluster availability and

support. Hive [5], Pig [5], and HadoopDB are the projects that

provide SQL abstractions (SQL-to-MapReduce translators) on

top of MapReduce platform to familiarize the programmers

with complex queries. Recently, there are interesting studies

to apply NQO to MapReduce frameworks for unstructured

data. In spite of some initial NQO studies to reduce the

execution time of MapReducebased single queries, to the best

of our knowledge there is no study like ours that is related to

optimize the execution time of multi-queries on SQL-to-

MapReduce translator tools.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

25

3. HIVE

Hive, an open source SQL-based distributed warehouse

system is proposed to solve problems mentioned above by

providing SQL like abstraction on top of Hadoop framework.

Hive is a SQL-to-MapReduce translator and has an SQL

dialect, HiveQL, for querying data stored in a cluster . In

terms of storage Hive can use any file system supported by

Hadoop, although HDFS is by far the most common. Hive

provides its own query language HiveQL (similar to SQL) for

querying data on a Hadoop cluster. It can manage data in

HDFS and run jobs in MapReduce without translating the

queries into Java. When MapReduce jobs are required, Hive

doesn't generate Java MapReduce programs. Instead, it uses

built-in, generic Mapper and Reducer modules that are driven

by an XML file representing the "job plan". In other words,

these generic modules function like mini language interpreters

and the "language" to drive the computation is encoded in

XML. Hive Queries are translated to a graph of Hadoop

MapReduce jobs that get executed on your Hadoop grid. Hive

Query Language (HQL) is based on SQL, and there are many

of the familiar constructs such as "SHOW", "DESCRIBE",

"SELECT", "USE" and "JOIN". Similar to an RDBMS in

Hive there are "Databases" that contain one or more "Tables"

that contain some data defined by a "Schema".

Figure 1: Hive Architecture.

3.1 HiveQL

Hive defines a simple SQL-like query language to querying

and managing large datasets called Hive-QL (HQL). It’s easy

to use if you’re familiar with SQL Language. Hive allows

programmers who are familiar with the language to write

the custom MapReduce framework to perform more

sophisticated analysis. In the current version, HiveQL makes

it possible to CREATE and DROP tables and partitions, a

table split into numerous parts on a specified portion key, as

well as query them with SELECT statements. Not yet

supported are UPDATE and DELETE functionalities. The

most important functionalities that are supported through the

SELECT statements in HiveQL are

 The possibility to join tables on a common key,

 To filter data using row selection techniques

 And to project columns.

 These functionalities are similar to functionality

provided to the user in a relational database system. A typical

SELECT statement in HiveQL would for example look like

this:

SELECT o_order, o_cust, c_cust

FROM customer c JOIN

 orders o ON c.c_cust = o.o_cust JOIN

 lineitem ON o.o_order = l.l_order;

 In this specific example, a simple join between the

tables customer, order and lineitem is initiated on their

respective join keys, which are cust and order. The

projections in the first part of the statement are pushed down

to the table scan level by the framework. Hive also supports

the execution of numerous HiveQL statements during one

operation, parallelizing as many tasks as possible.

 The example also shows that HiveQL statements

with numerous tables require specific columns on which those

tables are joined. In general, there are no cross products

possible in Hive as commonly supported in database

management systems such as DB2 or Oracle, SQL server.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

26

4. CONJOINTHIVE SYSTEM ARCHITECTURE

In this section, we give brief information about architecture of

ConjointHive which is the modified version of Hadoop Hive

with new NQO component as shown in Figure 2. Inputs to

compiler-optimizer-executer are pre-processed by a

Numerous Query Optimizer component which examines

incoming queries and produces a single global HiveQL

command to execute a group of interrelated queries. System

catalog and relational database structure (relations, attributes,

partitions, etc.) are stored and maintained by Metastore. Once

a HiveQL statement is submitted, it is maintained by Driver

which controls the execution of tasks to answer the query.

First, a directed acyclic graph is produced by HiveQL to

define the MapReduce tasks to be executed. Next, the tasks

are executed.

4.1. Query Processing for Numerous Query

Optimizations

Hive Queries are submitted through the Command Line

Interface (CLI) or the Web User Interface. In the architecture

we proposed, before going to driver component NQO

component receives the incoming queries. The set of the

incoming queries are inspected, their common tasks

(redundant join processes) are detected, and merged with a

global HiveQL query that answers all the incoming queries.

The driver component passes the global query to the Hive

compiler that produces a logical plan using information in

Metastore and optimizes this plan using a single rule-based

optimizer. The execution engine receives a directed acyclic

graph of MapReduce tasks and associated HDFS tasks and

executes it in accordance with the dependencies of the tasks.

4.2 The ConjointHive Layer

ConjointHive is a layer before Hive "query optimizer". It

takes numerous Hive queries and builds their execution plan

by using Hive "query parser". This parser generates query

planin a tree structure. Then ConjointHive sends numerous

query plans from numerous Hive queries to ConjointHive

“optimization" layer. Conjoint Hive “optimization" layer is a

plug-in based layer. New optimization rules can be added as

new plugin to this layer and they are used for optimization of

queries. After "optimization" layer processed query plans,

there are global query plans less than original query plans.

Suppose there are "q" original query plans, there will be a “p"

global query plans after optimization with "q>=p" condition.

Unfortunately, Hive doesn't support executing numerous

queries at same time. For this reason, all optimized global

queries are executed as sequential. For executing an

optimized global query, its query plan is sent to Hive's

"'semantic analyzer"' sub-layer of "'compiler"' layer directly

by bypassing "parser" sub-layer. Figure2 depicts the

architecture of Conjoint Hive with new NQO component as

given below.

Figure 2: ConjointHive, Hadoop system architecture with

NQO support.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

27

5. NUMEROUS QUERY OPTIMIZATION ON

HIVEQL

To evaluate how ConjointHive affects performance, we

performed an experiment comparing a hand-optimized

parallel schedule with a sequential schedule. We selected

some queries from TPC-H (queries 1, 3, 6, 14, 19, 18), and

arranged them into three groups. Within a group, queries were

run in sequential; we then compared the performance of

running groups in sequence or in parallel. We run the serial

and parallel schedules, and report the total runtime for both

variants in Table 1

Number of Queries
Execution time (sec)

Data 1GB 3GB 5GB

Q14 151.21 163.68 177.62

Q19 68.91 74.12 78.63

Q11+Q19 (with

NQO)
127.63 138.92 143.09

Table 1: Q14+Q19 Execution Results.

Figure 3: Performance Graph of TCP-H Queries

Execution Time

 Figure3 depicts performance graph of three TCP-H

queries numbered as Q14, Q19 & Q14+Q19. Here the

comparison has been focused between the Data size and

execution time of the given queries.

 ConjointHive yields approx 30% to 60%

performance improvement for this test case. This is because

parallel scheduling increases the utilization of the cluster: the

sequential schedule leaves resources idle because the Hadoop

job scheduler can only choose to schedule jobs from a single

parallel-executing query. However, the magnitude of the

performance advantage offered by ConjointHive is

noteworthy, and suggests that single-user environments

should consider using parallel scheduling when possible.

6. CONCLUSION

In this study, we proposed a numerous query optimization

(NQO) based framework, ConjointHive, to improve the

performance of conventional Hadoop Hive. In ConjointHive,

we detected and categorized sets of correlated HiveQL

queries and merged them into optimized HiveQL statements

to run on Hadoop. With this approach, we showed that

significant performance improvements can be achieved.

 In this proposed work, it is possible to process only

those queries that have exactly the same datasources, not

partially similar datasources. If we can detect similar common

tasks (such as similar FROM statements), we can merge and

optimize more TPC-H queries, increasing the potential

benefits that can be achieved by ConjointHive. As future

work, first we plan to work on detecting correlated queries

having similar datasources (FROM statements) which need

not match exactly and merging them into optimized global

queries.

REFERENCES

[1] Hadoop project. http://hadoop.apache.org/.

[2] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.

Anthony, H. Liu, P. Wycko_, and R. Murthy. Hive A

Warehousing Solution Over a MapReduce Framework.

VLDB, 2009.

0

50

100

150

200

1GB 3GB 5GB

Ex
ec

u
ti

o
n

 T
im

e(
se

c)

Data Size

Performance Chart

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

28

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N.

Jain, S. Anthony, H. Liu, and R. Murthy. Hive A

Petabyte Scale Data Warehouse Using Hadoop. IEEE,

2010.

[4] The Hive Project. Hive website, 2009. http:

//hadoop.apache.org/hive/.

[5] R. Stewart. Performance and Programmability of High

Level Data Parallel Processing Languages: Pig, Hive,

JAQL & Java-MapReduce, 2010. Heriot-Watt

University.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. In OSDI '04, pages 137{150,

2004.

[7] IBM Research. Jacl website. http://www.jaql.org.

[8] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.

Automatic optimization of parallel dataow programs. In

USENIX 2008 Annual Technical Conference, pages

267{273, 2008.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.

Tomkins. Pig latin: a not-so-foreign language for data

processing. In SIGMOD '08, pages 1099{1110, 2008.

[10] Sellis, T.K. (1988). Multiple-query optimization. ACM

Transactions on Database Systems (TODS), 13(1),

23-52.

[11] Bayir, M. A., Toroslu, I. H., and Cosar, A. (2007).

Genetic algorithm for the multiplequery optimization

problem. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, 37(1),

147-153.

[12] Y. Jia and Z. Shao. A Benchmark for Hive, PIG and

Hadoop,2009

https://issues.apache.org/jira/browse/HIVE.

[13] Mehta, M. and DeWitt, D.J. (1995). Managing intra-

operator parallelism in parallel database systems.

VLDB (382-394).

[14] Beynon, M., et al. (2002). Processing large-scale multi-

dimensional data in parallel and distributed

environments. Parallel Computing, 28(5), 827-859.

[15] Jarke, M. (1985). Common subexpression isolation in

multiple query optimization. In Query Processing in

Database Systems (pp. 191-205). Springer Berlin

Heidelberg.

[16] Chen, G., et al. (2011). Optimization of sub-query

processing in distributed data integration systems.

Journal of Network and Computer Applications, 34(4),

1035-1042.

[17] S. Cluet and G. Moerkotte. On the Complexity of

Generating Optimal Left-Deep Processing Trees with

 Cross Products. International Conference on

DatabaseTheory, 1995.

[18] J. Dean and S. Ghemawat. MapReduce: Simpli_ed

Data Processing on Large Clusters. Operating Systems

 Design and Implementation, 2004.

[19] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and

D. Patterson. Statistics-Driven Workload Modeling for

the Cloud. SMDB 2010, 2010.

[20] G. Graefe. Query Evaluation Techniques for Large

 Databases. ACM Computing Surveys 25:2, p. 73-170,

 1993.

[21] M. Jarke and J. Koch. Query Optimization in

 Database Systems. ACM Computing Surveys, 1984.

[22] Y. Jia and Z. Shao. A Benchmark for Hive, PIG and

Hadoop, 2009.

https://issues.apache.org/jira/browse/HIVE-396.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018)

29

[23] B. J. Oommen and M. Thiyagarajah. Rectangular

Attribute Cardinality Map: A New Histogram-like

Technique for Query Optimization. Proceedings of the

International Database Engineering and Applications

Symposium , IDEAS'99, Montreal, Canada, 1999.

[24] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.

Improved Histograms for Selectivity Estimation of

Range Predicates. Proceedings of the ACM SIGMOD

International Conference on Management of Data, 1996.

