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Abstract- Data refers to technologies and initiatives that 

involve data that is too diverse, fast-changing or massive for 

conventional technologies, skills and infra- structure to address 

efficiently is called Big data. Hive is a data warehouse 

infrastructure tool, well suited for query processing and data 

analysis. Hive is gaining popularity for its SQL like query 

language HiveQL and for supporting majority of the SQL 

operations in relational database management systems 

(RDBMS). Being the expensive operation in RDBMS, join has 

been the focus of many query optimization techniques to 

improve performance of database systems. This work proposes 

the use of Numerous Query Optimization (NQO) techniques to 

improve the overall performance of Hive. During parallel 

execution of numerous queries, many opportunities can arise for 

conjoint scan and/or computation tasks. Executing frequent jobs 

only once can reduce the total execution time of all queries 

remarkably. Our framework, transforms a set of interrelated 

HiveQL queries into new global queries that can produce the 

same results in remarkably smaller total execution times. It is 

experimentally shown that ConjointHive outperforms the 

conventional Hive by 30-60% reduction, depending on the 

number of queries and percentage of conjoint tasks, in the total 

execution time of correlated TPC-H queries.  
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1. INTRODUCTION 

Processing large-scale data in the amounts of hundreds of 

terabytes is a very difficult  task. Solving the problems 

associated with high volume data requires can be achieved by 

dividing the data and work to many computers that will all 

work together in parallel to complete the task in a reasonable 

time. Map-Reduce [6] and Hadoop [1] have gained popularity 

in Parallel dataflow systems. These systems are extensively 

used for analytics and data warehousing, either directly or 

through the use of a high-level query language that is 

compiled down to a parallel dataflow graph for execution [1, 

7]. 

 Data warehousing is accompanied with batch 

oriented query workload that is relatively static. While ad-hoc 

queries must also be processed, much of the system's activity 

can be predicted in advance. Non-interactive nature of 

applications of data warehouses provides considerable 

freedom to reorder and optimize queries to improve overall 

performance.       

The current parallel dataflow systems do not take 

advantage of these opportunities. Since Map-Reduce 

operations are expressed as user-defined functions therefore 

Hadoop performs no global analysis or optimization. Instead, 

a single Hadoop job is divided into smaller chunks of work 

called tasks, and each worker node is assigned one or more 

tasks and after the accomplishment of a particular task, 

another task is assigned by the Hadoop to execute, using some 

simple heuristics that try to place computations close" to their 

input data. However, no global analysis is performed to share 

work between similar jobs and to attempt to collocate data 

and computation, so as to predict the optimal schedule for 

jobs and tasks. 

 If we use Hive or Pig as a declarative query language 

for the execution platform of Map-Reduce there are more 

opportunities for optimization [8]. Only simple, conservative 

optimizations are deployed by the Current systems: for 

example, Pig can push distributive or algebraic aggregate 

evaluation beneath joins [9], and Hive applies projection and 

selection pushdown [4].  
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 When users want to benefit from both MapReduce 

and SQL interface, then Mapping SQL statements to 

MapReduce tasks can become a very difficult job [9]. Hive is 

used to translate queries to MapReduce jobs, thereby 

exploiting the scalability of Hadoop, while presenting a 

familiar SQL abstraction [10]. These characteristics of Hive 

make it a suitable tool for data warehouse applications where 

data is not updated frequently, large scale data is analyzed, 

fast response times are not required [4].  

 The barrier of moving the applications to Hadoop is 

lowered by Hive which helps  people who already know SQL 

to use Hive easily as most data warehouse applications are 

implemented using SQL based RDBMSs,. Similarly, Hive 

makes it easier for developers to port SQL-based applications 

to Hadoop. Since Hive processes each query independently 

and  is based on query-at-a-time model , issuing numerous 

queries in close time interval decreases performance of Hive 

due to its execution model. From this perspective, it is 

important that there has not been any study that incorporates 

the Numerous Query Optimization (NQO) technique [10, 11] 

for Hive to reduce the total execution time of the queries. 

2. RELATED WORKS 

 

The concept of Numerous Query Optimization (NQO) 

problem was introduced in 1980’s and finding an optimal 

global query plan by using NQO was shown to be an NP-

Hard problem [15]. A large number of works was done 

RDBMS since then 21]. The problem of identifying common 

subexpressions is an NP-hard problem [15]. Therefore, 

M.Jarke indicates that multirelation subexpressions can only 

be addressed heuristically [15]. The improvement of ad hoc 

query by comparing an incoming query with materialized 

results was shown by Finkel (intermediate results and final 

answer) produced from earlier queries. He deals only with 

equivalent expressions. M.Jarke discusses the common 

subexpression isolation in relational algebra, domain 

relational calculus, and tuple relational calculus. Chakravarthy 

and Minker identify the equivalence and subsumption of two 

expressions at the logical level, using heuristics [13].  

 

 

An and/or graph is used to represent queries and detect 

subsumption by comparing each pair of operator nodes from 

distinct queries by Rosenthal and Chakravarthy [11]. Another 

issue in MQP is that the multigraph is proposed for 

representing numerous Select-Project-Join type queries in 

[13]. This multigraph can facilitate query processing by using 

Ingres' instantiation and substitution [13]. 8 In [14], the 

multigraph was modified for representing the initial state of 

numerous queries.  

 CPU utilization, memory usage, and I/O load 

variables in a study during planning numerous queries to 

determine the degree of intra-operator parallelism in parallel 

databases to minimize the total execution time of declustered 

join methods which was illustrated by DeWitt [13]. A proxy-

based infrastructure for handling data intensive applications is 

proposed by Beynon [14]. This infrastructure was not as 

scalable as a collection of distributed cache servers available 

at multiple back-ends. Chen et al. considered the network 

layer of a data integration system and reduced the 

communication costs by a multiple query reconstruction 

algorithm [16]. In recent years, a significant amount of 

research and commercial activity has focused on integrating 

MapReduce and structured databases technologies.  

Mainly there are two approaches: Either adding MapReduce 

features to parallel database or adding databases technology to 

MapReduce. The second approach is more attractive because 

there exists no widely available open source parallel database 

system whereas MapReduce is available as an open source 

project. Furthermore, MapReduce is accompanied by a 

plethora of free tools as well as cluster availability and 

support. Hive [5], Pig [5], and HadoopDB are the projects that 

provide SQL abstractions (SQL-to-MapReduce translators) on 

top of MapReduce platform to familiarize the programmers 

with complex queries. Recently, there are interesting studies 

to apply NQO to MapReduce frameworks for unstructured 

data. In spite of some initial NQO studies to reduce the 

execution time of MapReducebased single queries, to the best 

of our knowledge there is no study like ours that is related to 

optimize the execution time of multi-queries on SQL-to-

MapReduce translator tools. 
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3. HIVE 

 

Hive, an open source SQL-based distributed warehouse 

system is proposed to solve problems mentioned above by 

providing SQL like abstraction on top of Hadoop framework. 

Hive is a SQL-to-MapReduce translator and has an SQL 

dialect, HiveQL, for querying data stored in a cluster . In 

terms of storage Hive can use any file system supported by 

Hadoop, although HDFS is by far the most common. Hive 

provides its own query language HiveQL (similar to SQL) for 

querying data on a Hadoop cluster. It can manage data in 

HDFS and run jobs in MapReduce without translating the 

queries into Java. When MapReduce jobs are required, Hive 

doesn't generate Java MapReduce programs. Instead, it uses 

built-in, generic Mapper and Reducer modules that are driven 

by an XML file representing the "job plan". In other words, 

these generic modules function like mini language interpreters 

and the "language" to drive the computation is encoded in 

XML. Hive Queries are translated to a graph of Hadoop 

MapReduce jobs that get executed on your Hadoop grid. Hive 

Query Language (HQL) is based on SQL, and there are many 

of the familiar constructs such as "SHOW", "DESCRIBE", 

"SELECT", "USE" and "JOIN". Similar to an RDBMS in 

Hive there are "Databases" that contain one or more "Tables" 

that contain some data defined by a "Schema". 

 

 
 

Figure 1: Hive Architecture. 

 

3.1 HiveQL 

 

Hive defines a simple SQL-like query language to querying 

and managing large datasets called Hive-QL (HQL ). It’s easy 

to use if you’re familiar with SQL Language. Hive allows 

programmers who are familiar with the language to write 

the custom MapReduce framework to perform more 

sophisticated analysis. In the current version, HiveQL makes 

it possible to CREATE and DROP tables and partitions, a 

table split into numerous parts on a specified portion key, as 

well as query them with SELECT statements. Not yet 

supported are UPDATE and DELETE functionalities. The 

most important functionalities that are supported through the 

SELECT statements in HiveQL are   

 The possibility to join tables on a common key, 

 To filter data using row selection techniques  

 And to project columns.  

 These functionalities are similar to functionality 

provided to the user in a relational database system. A typical 

SELECT statement in HiveQL would for example look like 

this:  

SELECT o_order, o_cust, c_cust  

FROM customer c JOIN  

 orders o ON c.c_cust = o.o_cust JOIN  

 lineitem ON o.o_order = l.l_order; 

  In this specific example, a simple join between the 

tables customer, order and lineitem is initiated on their 

respective join keys, which are cust and order. The 

projections in the first part of the statement are pushed down 

to the table scan level by the framework. Hive also supports 

the execution of numerous HiveQL statements during one 

operation, parallelizing as many tasks as possible. 

 The example also shows that HiveQL statements 

with numerous tables require specific columns on which those 

tables are joined. In general, there are no cross products 

possible in Hive as commonly supported in database 

management systems such as DB2 or Oracle, SQL server. 
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4. CONJOINTHIVE SYSTEM ARCHITECTURE 

 

In this section, we give brief information about architecture of 

ConjointHive which is the modified version of Hadoop Hive 

with new NQO component as shown in Figure 2. Inputs to 

compiler-optimizer-executer are pre-processed by a 

Numerous Query Optimizer component which examines 

incoming queries and produces a single global HiveQL 

command to execute a group of interrelated queries. System 

catalog and relational database structure (relations, attributes, 

partitions, etc.) are stored and maintained by Metastore. Once 

a HiveQL statement is submitted, it is maintained by Driver 

which controls the execution of tasks to answer the query. 

First, a directed acyclic graph is produced by HiveQL to 

define the MapReduce tasks to be executed. Next, the tasks 

are executed.  

 

4.1. Query Processing for Numerous Query 

Optimizations 

 

Hive Queries are submitted through the Command Line 

Interface (CLI) or the Web User Interface. In the architecture 

we proposed, before going to driver component NQO 

component receives the incoming queries. The set of the 

incoming queries are inspected, their common tasks 

(redundant join processes) are detected, and merged with a 

global HiveQL query that answers all the incoming queries.  

The driver component passes the global query to the Hive 

compiler that produces a logical plan using information in 

Metastore and optimizes this plan using a single rule-based 

optimizer. The execution engine receives a directed acyclic 

graph of MapReduce tasks and associated HDFS tasks and 

executes it in accordance with the dependencies of the tasks.  

 

4.2 The ConjointHive Layer 

 

ConjointHive is a layer before Hive "query optimizer". It 

takes numerous Hive queries and builds their execution plan 

by using Hive "query parser". This parser generates query 

planin a tree structure. Then ConjointHive sends numerous 

query plans from numerous Hive queries to ConjointHive 

“optimization" layer. Conjoint Hive “optimization" layer is a 

plug-in based layer. New optimization rules can be added as 

new plugin to this layer and they are used for optimization of 

queries. After "optimization" layer processed query plans, 

there are global query plans less than original query plans. 

Suppose there are "q" original query plans, there will be a “p" 

global query plans after optimization with "q>=p" condition. 

Unfortunately, Hive doesn't support executing numerous 

queries at same time. For this reason, all optimized global 

queries are executed as sequential. For executing an 

optimized global query, its query plan is sent to Hive's 

"'semantic analyzer"' sub-layer of "'compiler"' layer directly 

by bypassing "parser" sub-layer. Figure2 depicts the 

architecture of Conjoint Hive with new NQO component as 

given below. 

 

 

 
 

Figure 2: ConjointHive, Hadoop system architecture with 

NQO support. 
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5. NUMEROUS QUERY OPTIMIZATION ON 

HIVEQL 

To evaluate how ConjointHive affects performance, we 

performed an experiment comparing a hand-optimized 

parallel schedule with a sequential schedule. We selected 

some queries from TPC-H (queries 1, 3, 6, 14, 19, 18), and 

arranged them into three groups. Within a group, queries were 

run in sequential; we then compared the performance of 

running groups in sequence or in parallel. We run the serial 

and parallel schedules, and report the total runtime for both 

variants in Table 1 

 

Number of Queries 
Execution time (sec) 

Data 1GB 3GB 5GB 

Q14 151.21 163.68 177.62 

Q19 68.91 74.12 78.63 

Q11+Q19 (with 

NQO) 
127.63 138.92 143.09 

Table 1: Q14+Q19 Execution Results. 

 

 
 

Figure 3: Performance Graph of TCP-H Queries 

Execution Time  

 

 Figure3 depicts performance graph of three TCP-H 

queries numbered as Q14, Q19 & Q14+Q19. Here the 

comparison has been focused between the Data size and 

execution time of the given queries. 

  ConjointHive yields approx 30% to 60% 

performance improvement for this test case. This is because 

parallel scheduling increases the utilization of the cluster: the 

sequential schedule leaves resources idle because the Hadoop 

job scheduler can only choose to schedule jobs from a single 

parallel-executing query. However, the magnitude of the 

performance advantage offered by ConjointHive is 

noteworthy, and suggests that single-user environments 

should consider using parallel scheduling when possible. 

 

6. CONCLUSION 

In this study, we proposed a numerous query optimization 

(NQO) based framework, ConjointHive, to improve the 

performance of conventional Hadoop Hive. In ConjointHive, 

we detected and categorized sets of correlated HiveQL 

queries and merged them into optimized HiveQL statements 

to run on Hadoop. With this approach, we showed that 

significant performance improvements can be achieved.  

 In this proposed work, it is possible to process only 

those queries that have exactly the same datasources, not 

partially similar datasources. If we can detect similar common 

tasks (such as similar FROM statements), we can merge and 

optimize more TPC-H queries, increasing the potential 

benefits that can be achieved by ConjointHive. As future 

work, first we plan to work on detecting correlated queries 

having similar datasources (FROM statements) which need 

not match exactly and merging them into optimized global 

queries. 

 

REFERENCES 

 

[1]  Hadoop project. http://hadoop.apache.org/. 

 

[2] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.           

Anthony, H. Liu, P. Wycko_, and R. Murthy.  Hive A 

Warehousing Solution Over a MapReduce Framework. 

VLDB, 2009. 

0

50

100

150

200

1GB 3GB 5GB

Ex
ec

u
ti

o
n

 T
im

e(
se

c)
 

Data Size 

Performance Chart 



 

International Journal of Recent Development in Engineering and Technology 
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018) 

28 
 

 

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. 

Jain, S. Anthony, H. Liu, and R. Murthy.  Hive  A 

Petabyte Scale Data Warehouse Using Hadoop. IEEE, 

2010. 

  

[4] The Hive Project. Hive website, 2009. http:  

//hadoop.apache.org/hive/. 

 

[5] R. Stewart. Performance and Programmability of High 

Level Data Parallel Processing Languages: Pig,  Hive, 

JAQL & Java-MapReduce, 2010. Heriot-Watt 

University. 

 

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data 

processing on large clusters. In OSDI '04, pages 137{150, 

2004. 

 

[7]  IBM Research. Jacl website. http://www.jaql.org. 

 

[8] C. Olston, B. Reed, A. Silberstein, and U. Srivastava. 

Automatic optimization of parallel dataow  programs. In 

USENIX 2008 Annual Technical Conference, pages 

267{273, 2008. 

 

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. 

Tomkins. Pig latin: a not-so-foreign language for data 

processing. In SIGMOD '08, pages 1099{1110, 2008. 

 

[10] Sellis, T.K. (1988). Multiple-query optimization. ACM  

Transactions on Database Systems (TODS),  13(1), 

23-52. 

 

[11] Bayir, M. A., Toroslu, I. H., and Cosar, A. (2007). 

Genetic algorithm for the multiplequery optimization 

problem. IEEE Transactions on Systems, Man, and 

Cybernetics, Part C: Applications and  Reviews, 37(1), 

147-153. 

 

[12] Y. Jia and Z. Shao. A Benchmark for Hive, PIG and 

Hadoop,2009 

https://issues.apache.org/jira/browse/HIVE. 

 

 

[13] Mehta, M. and DeWitt, D.J. (1995). Managing intra-

operator parallelism in parallel database  systems. 

VLDB (382-394). 

 

[14] Beynon, M., et al. (2002). Processing large-scale multi-

dimensional data in parallel and distributed 

environments. Parallel Computing, 28(5), 827-859. 

 

[15] Jarke, M. (1985). Common subexpression isolation in 

multiple query optimization. In Query  Processing in 

Database Systems (pp. 191-205). Springer Berlin 

Heidelberg. 

 

[16] Chen, G., et al. (2011). Optimization of sub-query 

processing in distributed data integration systems. 

Journal of Network and Computer Applications, 34(4), 

1035-1042. 

 

[17] S. Cluet and G. Moerkotte. On the Complexity of 

Generating Optimal Left-Deep Processing Trees with 

          Cross Products. International Conference on 

DatabaseTheory, 1995. 

 

[18]   J. Dean and S. Ghemawat. MapReduce: Simpli_ed 

Data Processing on Large Clusters. Operating Systems 

         Design and Implementation, 2004. 

 

[19]   A. Ganapathi, Y. Chen, A. Fox, R. Katz, and 

D. Patterson. Statistics-Driven Workload Modeling for 

the Cloud. SMDB 2010, 2010. 

 

[20]  G. Graefe. Query Evaluation Techniques for Large 

         Databases. ACM Computing Surveys 25:2, p. 73-170, 

         1993. 

 

[21]   M. Jarke and J. Koch. Query Optimization in 

         Database Systems. ACM Computing Surveys, 1984. 

 

[22]   Y. Jia and Z. Shao. A Benchmark for Hive, PIG and 

Hadoop, 2009. 

https://issues.apache.org/jira/browse/HIVE-396. 

 



 

International Journal of Recent Development in Engineering and Technology 
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 4, April 2018) 

29 
 

[23] B. J. Oommen and M. Thiyagarajah. Rectangular   

Attribute Cardinality Map: A New Histogram-like 

Technique for Query Optimization. Proceedings of the  

International Database Engineering and Applications  

Symposium , IDEAS'99, Montreal, Canada, 1999. 

 

[24]  V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. 

Improved Histograms for Selectivity Estimation of 

Range Predicates. Proceedings of the ACM SIGMOD 

International Conference on Management of Data, 1996. 


