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Abstract— Electrical energy production from ocean current
needs more computational research where we can easily
determine the capacity about wave currents by numerical
analysis. This is the reason why we have compared different
computational methods to have one similar methodology
about the determination of process control.

Extracting electrical energy from ocean currents could
yield in excess of 10 TWh/year (0.4 EJ/year) if major estuaries
with large tidal fluctuations could be tapped. Because the
density of water is more than 830 times that of air, an ocean
current of just 2.3 m/s can produce electricity at a rate
equivalent to a mean annual wind speed of 62 m/s. The best
sites in the world with currents about 10 m/s are located
mainly off of the west coasts.
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I. INTRODUCTION

Electrical energy production from ocean current needs
more computational research where we can easily
determine the capacity about wave currents by numerical
analysis. This is the reason why we have compared
different computational methods to have one similar
methodology about the determination of process control.

Extracting electrical energy from ocean currents could
yield in excess of 10 TWh/year (0.4 Ell/year) if major
estuaries with large tidal fluctuations could be tapped.
Because the density of water is more than 830 times that of
air, an ocean current of just 2.3 m/s can produce electricity
at a rate equivalent to a mean annual wind speed of 62 m/s.
The best sites in the world with currents about 10 m/s are
located mainly off of the west coasts.

Il. INTRODUCTION TO PDES

An easy way to comply with the conference paper forl.
Introduction to PDEs

A partial differential equation is simply an equation that
involves both a function and its partial derivatives. In these
lectures, we are mainly concerned with techniques to find a
solution to a given partial differential equation, and to
ensure good properties to that solution.
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That is, we are interested in the mathematical theory of
the existence, uniqueness, and stability of solutions to
certain PDEs, in particular the wave equation in its various
guises. Most of the equations of interest arise from physics,
and we will use X, y, z as the usual spatial variables, and t
for the the time variable. Various physical quantities will
be measured by some function u = u(x, vy, z, t) which could
depend on all three spatial variable and time, or some
subset. The partial derivatives of u will be denoted with the
following condensed notationmatting requirements is to use
this document as a template and simply type your text into
it.

u __du _ °u

du
Uu,-——u,, —— u, = U, . =
X dx, *X x ' dr T 6.&'63

The Laplace operator is the most physically important
differential operator, which is given by margins must be set
as follows:

a: | a'.. a'..

- L 5 T >
dx= dy- z*
2.1 Equations From Physics

Some typical partial differential equations that arise in
physics are as follows. Laplace’s

>

V-=

Viu =0

which is satisfied by the temperature u = u(x, y, z) in a
solid body that is in thermal equilibrium, or by the
electrostatic potential u = u(x, y, z) in a region without
electric charges. The heat equation

u, = kV-u

which is satisfied by the temperature u = u(x, y, z, t) ofa
physical object which conducts heat, where k is a
parameter depending on the conductivity of the object. The
wave equation

U, = c-Vu
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which models the vibrations of a string in one dimension
u = u(x, t), the vibrations of a thin membrane in two
dimensions u = u(x, y, t) or the pressure vibrations of an
acoustic wave in air u = u(x, y, z, t). The constant ¢ gives
the speed of propagation for the vibrations. Closely related
to the 1D wave equation is the fourth order PDE for a
vibrating beam,

Uee = TC Uppnx

where here the constant c2 is the ratio of the rigidity to
density of the beam. An interesting nonlinear version of the
wave equation is the Korteweg-de Vries equation

U, + cull, + Uy, = 0

which is a third order equation, and represents the
motion of waves in shallow water, as well as solitons in
fibre optic cables.

There are many more examples. It is worthwhile
pointing out that while these equations can be derived from
a careful understanding of the physics of each problem,
some intuitive ideas can help guide us. For instance, the
Laplacian.

2 *u *u *u
u=——t — +—
dx= dy- 0z-

can be understood as a measure of how much a function
u=u (x, y, z) differs at one point (x, y, z) from its
neighbouring points. So, if V2u is zero at some point (X, v,
2), then u(X, y, z) is equal to the average value of u at the
neighbouring points, say in a small disk around (x, y, z). If
V2u is positive at that point (x, y, z), then u(x, y, z) is
smaller than the average value of u at the neighbouring
points. And if V2u(x, y, z) is negative, then u(x, y, z) is
larger that the average value of u at the neighbouring
points.

Thus, Laplace’s equation

V-u=20

represents temperature equilibrium, because if the
temperature u = u(X, y, z) at a particular point (x, y, z) is
equal to the average temperature of the neighbouring
points, no heat will flow. The heat equation

u, = kVu
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is simply a statement of Newton’s law of cooling, that
the rate of change of temperature is proportional to the
temperature difference (in this case, the difference between
temperature at point (x, y, z) and the average of its
neighbours). The wave equation

U, =c-V-

is simply Newton’s second law (F = ma) and Hooke’s
law (F = kAx) combined, so that acceleration utt is
proportional to the relative displacement of u(x, y, z)
compared to its neighbours. The constant c2 comes from
mass density and elasticity, as expected in Newton’s and
Hooke’s laws [7].

2.2 Finite String And Separation Of Variables

Consider a finite piece of string, of length L, fixed at the
two ends [7].

Py _ 20 -
22 = ¢ 3= forx € (0,L)

with boundary conditions
u(0,t) =u(L,t) =0

Initial conditions are still,
(60 =RG@), Z(x0) =50
u(x,0) = R(x), 3t (x,0) = {.1)|

Could solve using d’Alembert’s formula but it is
diffucult to include the boundary conditions using this
approach.

Better to try a, separation of variables

u(x,t) = X(x) T(t)
Important: T should not be confused with the earlier
tension [7].
%u
o =

Hence the wave equation becomes [7]

y J-u ,
X'T, — = XT'

-

XT" = 2X"'T

-

k4

Dividing by gives
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where a is a constant. The solution of

X'=—a*Xis
X = a.cos(ax) + b.sin(ax)

and the boundary condition [7],
X(0) =X(L)=0givea =0and al = nn

Where n is a positive integer. Similarly the solution of
TFH _
T = a cos(act) + b sin(act)

giving the solution for u as

(:1RCE)+B ) (nn'cr)
L sin 7 )

where and this is a solution for any positive integer
and as the equation is linear then any linear combination of
such solutions is also a solution. This gives the final form
of the solution [7]

_ N . onmx_ nmety . (nmct
u(x,t)=Zsm(T_) (A,,.cos( L )-r-B,,.sm( 1 ))

n=1

—a-c-T is

i (R?TX) (A
u=sm|\—— cos
L

The set of constants and are determined by initial

conditions [7].
nn'r
u(x,0) =R(x) = Z A, sm )
n=1
nme (mrx)

—(x 0)=S(x)= Z B, .—sm 7

An expansion of the form
R(x) = T3, A, .sin ()

is called a half-sine Fourier series, and there is an
integral formula for the coefficients L

A

L

2 nmwx
n = 7 f R(x) sin (T) dx
0
Proof: It is easy to prove that for positive integers m and

Where anm equals 1 if n=m and zero otherwise.

X

) and integrating gives

Z b = A,

Multiplying beth sides of (*) by —5111 (m

2 nm‘x
Jd —z.ﬂ. EIS(?? — ir

n=1 0

L
jR(x)sm(

nme

Similarly, B, » - are the coefficient of S(x) hence

niw C

mit.
B,— j S5(x) sm

= &{1 +(-1)"- 2(‘05(2—“)}

r) dx:%[ Zcos( )+!.+cos(n‘r)}

Now cos (;) equals 0 ifn is odd and equals (—1)= if n is even . henc
Az =0

A, =0

o 8 4
2T (@ —2)w (2r—m

E\/‘wv\v\mv\l\l\)i,
u(x,t) = z sin ((4:- _Lz)nx) = :l l)ﬂms ((4;- _Lz)n'ct)

r=1

4{ . (Zn:r) (Z.rrct) 1 (GHI) (6.rrct)
= —{sin (—— | cos +=sin|——cos
T L L 3 L L

1 10mx 10mct
-!-—sin( )cos( )-l-}
5 L L

Eg. A string is pulled aside and realised from rest so that
u(x,0) = sm( ) u.(x,0)=0

Find the series solution.

Now, as before B,, = 0 and R(x) = £7_, 4, sin (“LL)

However. as
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R(x) = sin (?)

We see that only A; # 0. and is, in fact. 1 so the series consists of only one term and

we have.
2nx 2met
u(x,t) = sin (f)cos (7)
L/ L

We can also consider o string that is pulled aside and released from rest so that

u(x,0) = kx(L - x) and u.(x,0) = 0

about x = é Hence 4,,,, = 0.

Also for n = odd:

L z
2k _max _ 4k . gmmxy  BkL
A, —TJJ(L_U sm(—r_ )d.x —TJ’“L_])SIH( T )d,\ = ()
0 0

Thus

skLvr 1 WEEE r+1
u(x,t) = Fzm sm( n .'n') ms( L
=0

I1l. A. CLASSICAL METHOD OF WAVE THEORY

The sea wave is a motion of wave tops and wave
bottoms on the sea surface in unregular series. In
engineering practice for calculate of the wave influence on
the structure used one extremum wave. Therefore, may use
different wave theory. There are three main wave theory:
Airy, Stokes and knoidal theory.

The Airy wave theory is avery approximately theory.
This theory may be used for wave with small height as
compared with wave length and deep of water. For more
detailed calculate may be used Stokes theory, if wave
length equally to 0.1 of the deep water. For long wave may
be used knoidal theory. In the fig.1 may to see application
different wave theory in dependence deep of water —H,
wave length -7 and deep of water —h.

o'!'L't)

1

1 02 03 04 05

06 0,7h/A

Fig.1. Diagram of the wave theory application: 1-Airy theory: 2 —Stokes theory: 3
—knoidal theory.
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IV. AIRY WAVE THEORY

This theory was investigate in 1842 by G.B.Airyl. This
theory based on the sinusoidal profile of wave and small
height of wave —H as compared with length -7 and deepth
of sea—h (Fig.1).

If ordinates x,v have dimension as on the fig.1, then deflection wave
surface from sea level may be to write in view:

1;=[g}cos[h‘—(m) (1)
Then the horizontal and vertical components may be find:
[ @H coshky i \
v, =——— cosl{lx—ar)
2 sinh kh ! 2
l" _ o sinhky
"2 sinhkh
Where &k —wave number: e -cyrcular frequency
k=27 s 3)
A @ T
From Airy theory we have that
@ = gk tanh kh 4)
Where g —gravity acceleration.
So as
Joe—aor = k(x+ Ax) - oft + Ar) (5)
From here
@ A
CRT ®
Then we have formula for velocity of the Airy wave
1

c:[%tanhkh] (7)

acceleration of water particles will be:

_ @*H coshky .

a. > wah b sm[kx—(at) (8)
& H sinh ky i \
a, = . coslhkx —cart)
2 sinhkh ’

The superfluous pressure as difference between pressure in force and
atmospheric pressure in the poin with coordinates (X.y) in moment of
time —, according to Airy theory is:

%zz::g cos(lor — )+ pglh—v) 9)

Where p -density of water.

P=pg

Stokes theory

The theory of wave with finish amplitude was investigate in 1847 by
G.G.Stokes!. The main idea of the Stokes method is distribution of the
wave equation in series and define coefficients of disfributions. In
according fifth order Stocks theory the deflection of sea surface from

;;:%zj:Fq cosnl(for— ot ) (10)

n=l
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F =a:

F,=a’F,, +a'F,:
F, =a5F;3 +.95F;5:
F,=a‘F,:

Fy = asts

Moreover parameters Fa2, Fos, had dependence from k% and @ may be
find from relation:

(11)

kH=2la+aF, +a'(F,, +F, ) (12)

The horizontal and vertical components of velocity with x,v coordinates
in f —time moment may be find:

[vx =2 n M cosnlk — (:Jt)
k= " sinhnkh (13)
1\; _oy G, sinh nky sin (kv — et )
Y k& U sinhnky
Where
G, =aG, +HSGI; +55G15:
G, =2a*G, +a°G,, |
G, =3(a°G, +a’G,, } (14)
G, =4a°G,,:
G. =5a"G,,

In this G11,Grs... —wave velocity parameters have dependence from k7.
The approximately values of parameters in table 1 and 2.

Table 1
TaGnuua 3.5. DHAYCHHA NAPAMETPOB NPUPHAR BLIneL | TV}

h/\ Fa Fa Fas Fas Fa Fys
,892 -28,61 13,09 -138,6 44,99 163,8

8'{(5’ ?,239 1,344 2,381 6,935 4,147 7.93:

0,20 0,927 1,398 0,996 3,679 1,259 1,73

0,25 0,699 1,064 0,630 2,244 0,676 0,797

0,30 0,599 0,893 0,495 1,685 0,484 05 3%

0,35 0,551 0,804 0,435 1,438 0,407 (!.4;3

0,40 0,527 0,759 0410 1,330 0,371 0,3

0,50 0,507 0,722 0,384 1,230 0,344 0.3‘3,9

0.60 0,502 0,712 0,377 1,205 0,337 0,329

h/x Gy, G,y Gy Gy G,
7394 12,73 2,996 -48,14
01s /000 2,320 4,364 0,860 ~0,907
0.20 1,000 ~1.263 ~2,266 0326 0,680
0,25 1,000 ~0911 ~1,415 0,154 0,673
0.30 1,000 0,765 1,077 0,076 0,601
035 1,000 ~0,696 0,925 0,038 0,556
0,40 1,000 0,662 0,850 0,020 0,528
0,50 1,000 ~0,635 ~0,790 0,006 0,503
0,60 1,000 -0,628 0,771 0,002 0,502
h/x\ Gy Gy G Gy
5,942 —1217 7,671 0,892
g:}(s’ 0,310 2,843 ~0,167 0,257
0,20 0,017 1,093 ~0,044 0,006
0.25 ~0,030 0,440 0,005 0,005
030 0,020 0,231 0,002 0,001
0,35 0,012 0,152 0,002 0,000
0,40 ~0,006 0,117 0,001 0,000
0,50 0,002 0,092 0,000 0,000
0,60 ~0,001 0,086 0,000 0,000

The relation between cyrcular frequency and wave number have view:
o’ =gk(1+azC1 +a'c, )tanhkh (15)

Where C; and C> —wave frequency parameters. The values of their

parameters in table 3.
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Table 3
TaGnuua 3.7. SHAYCHNA NAPAMCIPUD %aviuvio: oummm m pymseviamn § 1)

h/x C C, s C
8,791 383,7 ~0,310 -0,060

o1s 2,646 19,82 0,155 0,257

0,20 1,549 5,044 -0,082 0,077

0,25 1,229 2,568 -0,043 0,028

0,30 1,107 1,833 0,023 0,010

0,35 1,055 1,532 0,012 0.00':

0,40 1,027 1,393 -0,007 0,002

0,50 1,008 1,283 ~0,001 ~0

0,60 1,002 1,240 -0,001 ~0

The velocity of distributed wave c in fifth order Stocks theory find from
equation:

g

c= [I (1+a’c, +a'c, }tanhkh} (16)

After definition of the velocity componets parameters vy and 1y may be

find acceleration components:

o +u - +Vv & H

N (17)

=——+u—+v—
& & éy

The superfluous pressure as difference between pressure in force and

atmospheric pressure in the poin with coordinates (x,») in moment of
time —, according to Stokes theory is:

a, =

pzp%uf%p(vi +vf]—%(ﬂlcs+a"c4+l’gv’] (18)
Where »'=y-h, and C; and Cs —pressure parameters, which had

dependence from k% or A/A. The value of their parameters in table 4.

Knoidal wave theory

The Stokes theory give satisfactory results then h/A -depth of
aquatorium is_more then 0.1. For shallow water may to applied knoidal
theory of wave. This method was investigate by Korteweg and de Vries
in 1895. The parameters in knoidal wave theory writing over eleptic

function. The knoidal waves are periodic and their profile may to write
as:

7 = Tin + Hen' (ko — ot . m) (19)
Where » —deflection of wave surface from sea level in the point with x —
coordinates in f —time moment; #; —deflection corresponding to wave
bottom : A —height of wave: cn —Jacobi eleptic function with m —
modulus (0=m=1). The modul —m have relation with wave height —H,
wave length -4 and deep of water —/:
. 3 HE
16 B
Where K —parameterwhich have dependence from m (full eleptic
integral). The values m K and HA%/}* in table 4.

(20)

Tablo 4. Parameters in Knoidal Wave Theory|

m HAm? K E

0 0 1.571 1.571
0.100 1.38 1.612 1.531
0.200 2.94 1.660 1.489
0.300 4.71 1.714 1.445
0.400 6.74 1.778 1.399
0.500 9.16 1.854 1.351
0.600 12.17 1.950 1.298
0.700 16.09 2.075 1.242
0.800 21.74 2.257 1.178
0.900 31.90 2.578 1.105
0.950 42.85 2.908 1.060
0.990 72.13 3.696 1.016
1.000 ® » @
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The wave number £, cyrcular frequency o have relations with wave length

A and period 7 in following form:
7K 2K

k==—— o= (21)
A T

Moreover, the frequency have relation with wave number, as:

o° =ghfcl|:1+£[l—£\:|ﬂ (22)

mhl2 K)
Where g —gravity acceleration: £ —second order full elleptic integral, which
have dependence from modulus m. The values of £ in table 4, too. The
value s, may to write over wave height

r,i,,__m:K(l—m:]—E (23)
H mK

From (20) equation we have
% =cn*(6.m) (24)

Where 6 = jx — er . The numerical of this correlation for different #and min
table 5.

Tablo 5. % biiyiikliigiiniin yaklagik sonuclary

4 m=0 m=0.2 m=0.4 m=0.6 m=0.8 m=1.0
0 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.960 0.960 0.960 0.960 0.960 0.960
0.4 0.848 0.850 0.852 0.852 0.854 0.856
0.6 0.681 0.687 0.694 0.699 0.706 0.712
0.8 0.487 0.500 0.516 0.530 0.545 0.560
1.0 0.292 0.317 0.342 0.368 0.394 0.420
1.2 0.131 0.162 0.194 0.229 0.266 0.305
1.4 0.029 0.053 0.085 0.123 0.166 0.216
1.6 0.001 0.003 0.019 0.049 0.094 0.151
1.8 0.052 0.016 0.000 0.009 0.044 0.104
2.0 0.175 0.062 0.028 0.001 0.013 0.071

For shallow water, whe may to used knoidal theory the horizontal
velocity components is:

1
gz

== 25

VYA @5)
Then the acceleration components for shallow water will to:
1
a, = o +v, & = a, =£2kH(e —v, :(5\.1_4 (26)
ot oy h)

o]

Where c=— is velocity of wave circulation and 4 find over following

formula:

1
|1 e [l_ff—ffﬂ \,[1—m+m NN |
H H ) H )

The positive @y may to used by 0<¢ <X and negative in the K <@ <2K

case.

The pressure on the v —level from bottom may to find from formula:
p=pelh+n—y)

At the m= =1 tlme we have en(@)=sche and groﬁl of wave Wlll to

wav é.

V. B.Comparison of Dynamical Wave Theory with
Classical Method
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%_ :E C?Sh”ky cosnfkx — r)
| "% &7 snhnkh )
1 , :%Zl s th :; sin ”UO.'—E'X:]

We will compare the classical method of longitudinal wave equation

= u(x,t) with the dynamical non-linear wave equation

A. Example Solution for Dynamical Method

With Computation

L=50m
¢ =100
x=20m
k=380
r=1

t=10s

h—OS H—OO”

2 -
v=h x=A
k_er _2m
- w=

wH cosh ky
cos(kx — wt)

X o

sinh.kh...
2m 0,024 cosh 27/,0,52 LI
VS cos(—A——
¥ 2T  sinh 2'7//i 0,51 A 74
70,024
x,t) =
u(x,t) T

V. RESULT

The different two methods about the determination of
current energy as renewable energy source is compared in
scope with sensitivity analysis. As a result two different
conclusions can be seen from determination of horizontal
current propagation. It means that the dynamical and
claasical wave theory methods have different conditions in
scope of current energy potential determination.
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