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Abstract— The biggest challenges faced in processing the
digital signal is overcome by the adaptive signal processing .In
adaptive signal processing the signal is processed through
large number of adaptive filter which overcomes the slope
overload error and granular noise witnessed in delta
modulation approach. The adaptive signal processing is a
advance method which find it’s application to the stationary
signals or the parameters to be established are time varying .
Few examples

e application in echo cancellation

e equalization of data communication channel in
mobile communication.

e Time varying systems identification

This paper discusses the various methods to implement the
adaptive signal processing in time domain . The factors taken
into consideration for discussion are design,analysis and
implementation of system  whose structure changes in
response to the incoming data .

Keywords— LMS Least Mean Method, FIR Finite Impulse
Response, IIR Infinite Impulse Responce

I. INTRODUCTION

Adaptive signal processing is concerned with design
analysis and implementation of system whose structure
changes in response to incoming data. An adaptive filter is
a time variant filter whose coefficients are adjusted in away
to optimise a cost function or to satisfy predetermined
optimization criteria .the characteristics of adaptive filters
are 1] they can automatically adapt in face of changing
environments and changing systems requirement.

2] they can be trained to perform specific filtering and
decision making tasks according to some updating
equations.

49

X(k)
Adaptive
. — «—
Filters
{(h(k)}
v .| Adaptive P y
Algorithm e(k)

Figurel. Block diagram of adaptive filter .

In figurel x(k) is the input signal,y(k) is the output
signal ,d(k) is the desired response, h(k) is the impulse
response of the adaptive filter. The relation between x(k)
and d(k) can vary with time . In such situation the adaptive
filter attempts to alter its value to follow the changes in
this relationship as encoded by the two sequences x(k) and
d(k).This behaviour is commonly referred to as tracking.

The adaptive filter can be classified in two types —FIR
Filter and IIR filters .
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Figure2. structure of an FIR filter.
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The Figure 2 represents the direct form of Finite impulse
response filter where z* represents the unit delay elements
and w;(k) is a multiplicative gain within the system and in
this case it corresponds to the impulse response values of
the filter at time k. Output signal y(k) is given as

L-1
y(®) = ) w ()x(k — 1)
i=0

1.1
= wl(k)Xxk)
where X(k) =[x(k)x(k -1)................ x(k-L+1)]"

denotes the input signal vector and t denotes vector
transpose . The system requires L Multiplies and L-1
adders to implement , and these computations are easily
performed by a processor or circuit so long as L is large
and the sampling period for the signals is not too short . It
also requires a total of 2L memory locations to store the |
input signals samples and the coefficients values ,
respectively.
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Figure3. Structure of IR filter.
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Firure3 represents the Infinite Impulse response structure
. the system output is given by

N
N
y®)= ) a(0yk -1+ ). b (xk-))
i=1 1= 1.2
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For the purpose of computing the output signals y(k), the
IR structures involves a fixed number of multiplers, adders
and memory location.

This document is template. We ask that authors follow
some simple guidelines. In essence, we ask you to make
your paper look exactly like this document. The easiest
way to do this is simply to download the template, and
replace(copy-paste) the content with your own material.

Il. METHOD
2.1Design considerations
2.1.1 cost consideration

Choice of cost function depends on the approach used
and the application of interest. The commonly used cost
function- mean square error criterion minimizes

E {EZ(K )} where E denotes expectation operation
e(k)=d(k) — y(k) is the estimation error d(kO is the desired
response and y(k)is the actual filter output.
Exponentially weighted least square criterion minimizes
factor
k=N—1
AV e2 (1)

k=0 where N is the total number of
samples L denotes the exponentially weighting factor
whose value is positively close to 1.

2.2Algorithm

Depends on cost function used ,convergence of
algorithm, rate of convergence, misadjustments( the
performance measure for algorithm that uses minimum
MSE criterion),tracking capability-refers to the ability of
the algorithm to track statistical variation in a non
stationary environment ,computational requirement which
considers the factors like number of operation ,memory
size, investment required to program the algorithm on
computers.

2.3 Structures

Structures and algorithm are interrelated .Choice of
structure is based on quantization error ,ease of
implementation and computational complexity.The
commonly used structures are direct form, cascade form,
parallel form and lattice structure include simple test for
filter stability modular structure and low sensitivity to
quantization effect.
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Methods for minimizing MSE 1. Newton method
The adaptive filter assumed here is causal FIR type for 55‘{32@1)
simplicity and implemented in direct form. The system Aw(k) = ,uR;,}.— AW ()
block diagram is given in figure 4. () 2.7
P M is the step size .1t is the positive number that controls
— 71 ! z the convergence rate and stability of the algorithm. The
adaptive algorithm becomes

~ . (8ELe?(k)

w(k +1) = (1 —2uww(k) + 2uWMSE 54

w(k) = wyyss + (01— 2)"(W(0) —wyymss) 2.10
Where pisO<p<l.
2. Steepest Descent Method

S§E{e*(n)
awle) = _#{ dW(n) } 2.11
Figure 4. Causal adaptive FIR filter. Wk +1) = w(k) — {55{32@’1)}
The error signal at time n is given by dW(n) 212
e(k) = d(k) —y(k) 2.1 w(k +1) = (I = 2uR )W (n) — Wyyss) + Wymse 2,13
L1 Where 1 is the identity matrix.
y(k) = Z;; wy (k)x(k —1) . 2.3 Widrow’s Least Mean Square(LMS) Algorithm
i= :

2.3.1 Optimization Criterion is to minimize mean square
W(K)=[wo Wy Wi, W] 2.3 error .

X(K)=[x(k) x(k-1) x(k -L+2) x(k-L+1)]"2.4

Minimizing E{e?(k)} will give the Wiener solution in
optimal filtering

2
Mean square error =MSE=E{€ (K)}

2.3.2 Adaptation Procedure
It is an approximation of steepest decent methods where

lim (1) = Wypgse = (R )™ - R S e?
= 25 the expectation operator is replaced by the factor SW
In adaptive filtering, the Wiener solution is found through 2.3.3 Performance analysis
an iterative procedure Two important performance measure in LMS algorithm
W — W W are rate of convergence and misadjustment (relates to
—(” 1) —{”J + ﬁi“” 2.6 steady state filter weight variance).
AW (n) Convergence Analysis

Where is an incrementing vector.
Two common gradient searching  approaches for E{W(K + 1)} = E{W(k) + 2uE{e(k) X (k)} 2.14

obtaining Wiener flter are EQW(k+ ) = EOV(R) + BN - X(). X OW) .15
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E(W(k+ 1)} = E{W(K)} + 2uR,,E{W(k)} 2.16

E{W('I‘: + 1)} = U - ZJHR.A.A)E{W('!‘:)} + 2uR,, Wamse

The above analysis shows that convergence analysis is
almost similar to steepest Decent method.

For the above discussion the W(k) will converge to
Wiener filter weights if

Ai_al’goﬁl —2uly )" 0
0  lim (- 2ud,)" 217
[1-2pd] <1 i=12,....,L 218
0= u< !
Amas
Define the geometric ratio of the p™ path
p=1- Z,u.lp p=12.... L 219

Each term in the main diagonal forms a geometric series

(L. ntl

n—1 T
. Tp ,Tp ,Tp . 220

The exponential can be fitted to each geometric series
-1
Ty ew 221
7,is called the p™ time constant for slow adaptation
1
T, & ———
P 2%

The smaller the time constant the faster is the
convergence rate. The overall convergence is limited by the
slowest mode of convergence which in terms appears from
the smallest eigen value R,, and Amin.

In general the rate of convergence depends on step size
pand the eigenvalue spread of Ry, and y(Ryx).

2.22

Misadjustment

On convergence if limy,_.., W(k) = Wysgthemn
minimun MSE will be equal to

Emin = E {d2 (k)} — Ry:Wyse 293

This does not occur due to random noise in the weight
vectors
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W(k).the MSE of LMS is given by
E{e*(l)} = E{(d(k) — W () x (k)

2.24
E{e? ()} = epyn + E{W(K) — Wyppyse)™. (X (k). X(OT). (W(K) = Wygyse)) 2,25
E{e?(K)} = emn + EQ(W(K) — Wypqs)" Ryx (W (K) — Wypyse)) 2.26
Excess MSE is given by

excess MSE = 1im E{W(k) ~ Winse) Rex (W(K) ~ Wigusse)) 297
excess MSE = ?lti_,rrc}o V()T .R,,V(K)} 298
excess MSE = ii_'rrolo{U[k)T. R, AUk} 229

L-1
excess MSE = Uepin 2 A = HEmintT[R o]

i=0 2.30

Where t7[Rxx] is the trace of Ry, which is equal to sum
of all diagonal elements

tT[R.r.x] = LRA‘.,‘;‘(O) = LE{XZ G‘:)}
The Misadjustment M is given by

M= }(1_,12 E{ez U‘:)} ~ Emin

Emin 231
_.ugminL'E{xz(k)}
S 2.32

M = u L.E{x*(k)} 2.33

Which is proportional to step size, filter length and
signal power.

3. LMS Variant

3.1Normalized LMS algorithm

Stepl. The product vector e(k)X(k) is modified with respect
to the squared Euclidian norm of the tap input vector X(K).

2p

Wk +1) =w(k) +m

e(k)X (k)
Where ¢ is a small positive constant to avoid division
by 0.

Step2. Represents an LMS algorithm by varying the step
size
2p

D e ()

2.35
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Substituting c¢=0 the normalized LMS algorithm
converges if O<u<0.5,selection of step size is much easier
than that of LMS algorithm.

3-2 Sign Algorithm

In high speed algorithm the time is critical ,thus the
faster adaptation process is needed.

Sgn(a)={1;a>0
{0; a=0
{-1;a<1

3.2.1 Pilot LMS

The weighted coefficient are found using the following
relation

Wk + 1) = W(k) + 2usgnle(k)]1X (k)

3.2.2 Clipped LMS
The weighted coefficient are found using the relation

Wik + 1) = W(k) + 2ue(k)sgn[X(k)]

2.36

2.37
3.2.3Zero forcing LMS
The weighted elements are represented using the
following relation
W(k +1) =w(k) + 2usgn[e(k)sgn[X(n)] 2.38

I1l. RESULTS
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Figure 5 Convergence of filter weights

Figure 5 shows that the filter weight wO(k) and wi(k)
converge at same speed and eigen values of R,, are same.
The square error signal e(k) is shown .
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Figure 6 Convergence of filter weights .

Figure 6 shows that the filter weight w1(k) will
converge at faster speed with that of filter weight wO(K).
The eigen values A yin=0.5 and Znyx=1.8
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Figure 7 shows that the filter weights wO(k) and
wl(k)converges at the slower speed though the wi(k) is
faster which shows that the eigen values 1 ,,=0.2 and

Jra=18 .
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Figure 7 Convergence of Filter weights
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IV. CONCLUSION

The various algorithm for Least Mean Square Error are
discussed and analysed. The analysis of the signal
considered is in time domain.

REFERENCES

[1] B. Widrow and M.E.Hoff , “Adaptive Switching circuits”,Proc . of
WESCON Conv. Rec, part 4,pp96-140,1960.

[2] B.widrow and S.D.Stearns “Adaptive Signal Processing”,Prentice —
Hall 1985.

[3] O Macchi ,Adaptive Processing :The Least Mean Square Approach
with application in transmission, Wiley ,1995.

[4] P.M. Clarkson, “Optimal and Adaptive Signal Processing”,CRC
Press 1993.

[5] S. Haykin, “Adaptive filter Theory”,Prentice —Hall,2002.

[6] D.F.Marshal,W.K.Jenkins and J.J.Murphy, “The Use of Orthogonal
transformfor ~improving performance of adaptive filtes”,
IEEECircuits and Systems ,Vol36 April1989, pp 474-483.

[7] T.Claasen and W.Mecklenbranker, “Comparision of the convergence
of two algorithm for adaptive FIR filters” IEEE Transaction on
Circuits and Systems,Vol.28,n0.6,pp510-518,1997.

[8] B.E.Jun , D.J.Parkand Y.W.Kim, “Convergence analysis of Sign-
Sign LMS Algorithm for adaptive filterswith correlated Gaussian

data ,”In IEEE International Conference on Acoustics Speech and
Signal Processing (ICASSP’95)Vol.2,pp1380-1383 .May1995.



