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Abstract— The Fractional Fourier Transform (FrFT) 

provides significant interference suppression over the Fast 

Fourier Transform (FFT) when the signal-of-interest (SOI) or 

interference is non-stationary. Its main limitation is 

estimating the optimum rotational parameter ‘a’. Current 

techniques choose ‘a’ that gives the minimum mean-square 

error (MMSE) between an SOI and its estimate. Such 

techniques are computational, and they do not provide good 

estimates when signal-to-noise ratio (SNR) or sample support 

is kept low, as is required in nonstationary environments. In 

this paper, we propose to estimate ‘a’ using Fractional 

Fourier domain decomposition (FFDD). We project the 

interference onto the FFDD basis vectors and choose ‘a’ that 

maximizes the projection. We show by simulation, using a 

non-stationary chirp channel function, that we estimate ‘a’ 

better than MMSE methods with just N = 4 samples down to 

Eb/N0 = 3 dB. Averaging over M = 10 trials improves accuracy 

to Eb/N0 = 0 dB.   

Keywords—Fractional Fourier Transform, Domain 

Decomposition, Singular Valued Decomposition. 

I. INTRODUCTION 

The Fractional Fourier Transform (FrFT) has a wide 

range of applications in fields such as optics, quantum 

mechanics, image processing, and communications. It is a 

very useful method for separating a signal-of-interest (SOI) 

from interference and/or noise when the statistics of either 

are nonstationary [6]. The FrFT enables us to translate the 

received signal to an axis in the time-frequency plane 

where the SOI and interference may be separable [1], when 

they are not separable in the frequency domain, as 

produced by the conventional Fast Fourier transform 

(FFT), or in the time domain. The FrFT of a function f(x) 

of order a is defined as [6] 

 

Where the kernel is (x, x′) is defined as 

 

 = aπ/2, and . This applies to the range 

0 < || < π, or 0 < |a| < 2. In discrete time, we can model the 

N × 1 FrFT of an N × 1 vector x as 

 
Where F

a
 is an N × N matrix whose elements are given 

by ([3] and [6]) 

 

and where uk[m] and uk[n] are the eigenvectors of the 

matrix S defined by [3] 

 

and 

 

Numerous methods are presented in the literature for 

implementing the FrFT efficiently (see for example [2] and 

[3]). 

When applying the FrFT to perform interference 

suppression, we must first estimate the rotational parameter 

„a‟. Conventional methods rely on choosing the value of 

„a‟, 0 ≤ a ≤ 2, which produces the MMSE between a 

desired (training) signal and its estimate. Of course, when 

the environment is non-stationary, it is necessary to 

perform this estimation with very few samples, i.e. before 

the statistics of the received signal change. When this is not 

done, large estimation errors, which result in poor 

interference suppression, can occur. MMSE-based 

algorithms, however, are known to require a large number 

of samples in practice [7]; hence, their performance will be 

suboptimal in non-stationary environments.  
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Here, we propose to apply a technique based on the 

Fractional Fourier Domain Decomposition (FFDD) 

proposed in [9]. The technique is based on modeling the 

interference and noise environments using a decomposition 

similar to singular valued decomposition (SVD) except that 

the columns of the N × N matrix F
a
 are used in place of 

eigenvectors. The value of ak for which the eigenvalue Λk 

is the largest is chosen to be the optimum value. 

An outline of the paper is as follows: Section II 

describes the FFDD presented in [9]. Section III describes 

the proposed method for estimating the optimum value of 

„a‟ using an approach based upon the FFDD. Section IV 

has simulation results showing the improvement of the 

proposed method over MMSE-based methods. Finally, 

conclusions and remarks on future work are given in 

Section V. 

II. BACKGROUND:  FRACTIONAL FOURIER DOMAIN 

DECOMPOSITION (FFDD) 

We follow the discussion presented in [9], but we 

assume, without loss of generality, that we have an N ×N 

matrix HN which is the discrete time model of a non-

stationary channel whose elements may be real or complex. 

Note that HN could also be the kernel of a one dimensional 

interfering signal [9]. Let h represent a complex, time-

varyingL×1 channel vector, written as 

 

So that in matrix form, we can write HN as  

 
For reference, we can write the singular value 

decomposition (SVD) of HN as [9] 

 
Where UN and VN are unitary N × N matrices whose 

columns are the eigenvectors of HNH
H

N, and ΣN is an N×N 

diagonal matrix whose elements are the positive square 

roots of the eigenvalues of HNH
H

N.  

Here, (·)
H
 denotes Hermitian (i.e. complex conjugate) 

transpose of the matrix (·).  

The Fractional Fourier Domain Decomposition (FFDD) 

of HN, presented in [9], uses the FrFT matrix F
a
 to perform 

the decomposition. This is defined as [9] 

 
Where the Λk‟s are matrices whose diagonal elements 

contain the weighting coefficients similar to the weights 

contained in ΣN in Eq. (9). Here, ak=1 = 0, ak=K = 2, and we 

step k from 1,2,...,K, which results in stepping ak from 0 to 

2 using an appropriate step size. The step size will typically 

be between 0.01 and 0.1 and will determine the value of K. 

Expanding Eq. (10), we can also write 

 

Where ckj is the j
th

 diagonal element of Λk. Also, 

 

Where [F
−a

k]j denotes the jth column of the N × N matrix 

[F
−a

k]. 

III. PROPOSED METHOD FOR ESTIMATING „A‟ USING THE 

FFDD 

Note that the key difference between Eqs. (9) and (10) 

(or (11)) is that in Eq. (9) the basis functions for HN are the 

columns of UN and VN whereas in Eqs. (10) or (11) the 

basis functions for HN are the columns of F
−a

k, which are 

also basis functions for the ak
th

 FrFT domain [9]. Hence, in 

Eqs. (10) and (11) we are projecting HN onto subspaces 

given by the ak
th

 FrFT domain. 

Figure 1 shows the Wigner distribution (WD) of a 

desired signal s(t) and a corrupting channel h(t) and the 

optimum FrFT axis tak where the channel can best be 

filtered out, corresponding to the axis where the projection 

of the Wigner distribution of h(t) is maximum. The Wigner 

distribution is a time-frequency representation of a signal, 

and may be viewed as a generalization of the Fourier 

Transform, which is solely the frequency representation. 

The WD of a signal h(t) can be written as 
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Fig. 1. Wigner Distribution of Signal s(t) and Channel h(t); optimum 

rotation axis tak 

It is well-known that the projection of the WD of a 

signal h(t) onto an axis tak gives the energy in the FrFT, 

|Hak(t)|
2
 (see e.g. [4] or [5]). Letting αk = akπ/2, this is 

written as 

 
So this is the quantity to be maximized. Now, examining 

Eq. (10), we observe that the amount of energy contained 

in HN in the domain given by ak is given by the coefficient 

Λk. Based upon the above, we argue that by choosing the 

value of ak where we obtain the maximum value of Λk in 

Eq. (10) gives us the FrFT domain in which the energy of 

the time-varying channel vector is maximum, so by rotating 

to this domain we can best filter it out. Thus, the problem is 

to determine the maximum Λk in Eq. (10). The solution is a 

maximization problem in which we compute  

 

So that the value of ak which produces the largest Λk is 

the optimum FrFT rotational parameter. 

The solution in Eq. (15) can be traded for performance 

or complexity. If K is kept small, this means that the step 

size used to compute the ak‟s is large, so we reduce 

complexity by computing fewer Λk‟s; however, this can 

result in lower estimation accuracy of the correct rotational 

value ak and the rotational axis tak.  

Alternately, if K is large, we obtain a better estimate of 

ak by computing more values of Λk from Eq. (15) at the 

expense of more computations. 

Note that the proposed solution requires estimation of 

the channel matrix HN just as the MMSE-based method 

relies on a known training sequence [8]. Also, note that to 

compute the best „a‟, the proposed method still requires a 

search over all values of „a‟, and it still requires a matrix 

inversion similar to MMSE solutions, in this case inversion 

of the product of two FrFT matrices, as seen in Eq. (15). 

So, we do not expect there to be a computational 

complexity reduction with the proposed solution. However, 

because the proposed technique uses subspace projections, 

i.e. rank reduction similar to the SVD method, we expect 

that it will outperform the conventional MMSE methods, 

especially when the sample support is low. The proposed 

method also operates on the interference alone; therefore, 

we again expect improved performance over the MMSE 

method, which operates on both the SOI and interference. 

The performance improvement will be demonstrated by 

simulations in the next section. 

IV. SIMULATIONS 

We present simulation examples to illustrate the 

proposed method for calculating the optimum FrFT 

rotational parameter „a‟ as summarized by Eq. (15). 

Without loss of generality, we let the signal-of-interest 

(SOI) be a digital binary sequence whose elements are in 

(−1,+1) that we would like to estimate in the presence of a 

non-stationary channel. We further assume the channel 

estimate is noisy, by corrupting it with additive white 

Gaussian noise (AWGN). Here, we ignore the carrier, and 

hence model the SOI as a baseband binary phase shift 

keying (BPSK) signal, denoted s(t). The number of bits per 

block is denoted N1, and if we oversample each bit by a 

factor of SPB (samples per bit), the number of samples per 

block in the BPSK signal is N = N1SPB. 

We let the channel be modeled as time-varying, 

bandpass signal whose center frequency is changing with 

time, t, written as [4] 

 

This particular type of channel is chosen because it is a 

good example of a non-stationary channel [4]. We let the 

received signal be written as 

 
Where „∗‟ denotes convolution, and  
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is a noisy channel. The channel matrix HN is computed 

from h(t) alone, without assuming any knowledge of n(t), 

so that we can include the effects of channel estimation 

errors. We let ak be between 0 and 2 with a step size of 

0.05. This implies that a1 = 0, a2 = 0.05, ..., a41 = 2 (so for 

this example K = 41). We adjust the noise variance to 

achieve a certain Eb/N0 so that we can plot Eb/N0 vs. the 

predicted optimum ak, and we obtain the estimate by 

running M trials at each Eb/N0 and computing the average 

over the M trials. We compare the predicted value of „a‟ to 

that obtained using the MMSE method proposed in [8] in 

which we choose that value of „a‟ for which the mean-

square error between the true bit and its estimate is 

minimized. 

Figures 2 to 5 show the results for M = 1, 10, 100, and 

1000 trials, respectively. Note that the MMSE-based 

method fails at low Eb/N0 for all values of M. The proposed 

technique continues to work down to Eb/N0 = 0 dB until the 

number of trials reduces to M = 1, for which it then 

becomes subject to error, but only when Eb/N0 ≤ 3 dB. 

When M = 10 or more, the proposed method works over the 

range of Eb/N0 from 0 to 20 dB. When the number of trials 

M is small but Eb/N0 is high, the proposed technique 

produces more accurate estimates of the best „a‟. When 

Eb/N0 and M are both large, i.e. greater than 8 dB and 100 
respectively, both methods produce very accurate 

estimates, converging with very little error to the true value 

of a = 0.85. The true value is taken to be the value at which 

„a‟ converges as M increases indefinitely and is also shown 

in the plots for reference. 

For completeness, we modeled other non-stationary 

channels and saw similar performance improvements of the 

proposed FFDD method over the MMSE method. Two 

other channels that were studied are the Gaussian channel 

[8] 

 
Where A and s are uniformly distributed random 

variables, and a chirp channel given by [8] 

 
We tested the proposed method using variations of h(t) 

given in Eq. (20), where time delays and frequency shifts 

were applied, with very similar results.  

 

 

Note that we can also apply our technique to stationary 

channels, and it continued to outperform the MMSE 

method, but in that case conventional time (a = 0) or 

frequency (a = 1) based filtering methods could be used, 

and there is no benefit to the FrFT. 

V. CONCLUSION 

In this paper, we present a method for obtaining the best 

estimate of the rotational parameter „a‟ when computing a 

Fractional Fourier Transform to suppress non-stationary 

interference, due for example to a time-varying channel, 

from a signal-of-interest (SOI). The approach is to perform 

a Fractional Fourier Domain Decomposition (FFDD) of the 

channel matrix using the columns of the FrFT matrix as the 

basis functions of the decomposition. Hence, the channel 

matrix is projected onto each rotational axis and we choose 

the one for which the projection is maximum, similar to a 

singular value decomposition. We compare the proposed 

method to an existing MMSE-based method and show that 

the proposed technique provides a much more robust 

estimate of „a‟ at lower Eb/N0, with fewer samples per trial, 

and with fewer trials. Future work includes expanding our 

prediction algorithm to study other forms of non-stationary 

interference, as well as a non-stationary SOI. We further 

seek to develop methods for predicting the optimum FrFT 

rotational parameter „a‟ by analytical or numerical means 

without requiring a search over all possible values or 

requiring computationally expensive matrix inversions. We 

also seek to apply the newly developed algorithms to image 

processing applications. 
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Fig. 2 Eb/N0 [dB] vs. Best ‘a’; M = 1 Trial 

 
Fig. 3 Eb/N0 [dB] vs. Best ‘a’; M = 10 Trials 

 
Fig. 4 Eb/N0 [dB] vs. Best ‘a’; M = 100 Trials 
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Fig. 5 Eb/N0 [dB] vs. Best ‘a’; M = 1000 Trials 

 


