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I. INTRODUCTION 

Fixed-point theory plays an important role in solving the 

existence and uniqueness of solutions of differential 

equation, in solving Eigen value Problems and Boundary 

Value problems. Fixed-point theory also contributes in 

characterization of the completeness of matric spaces. Due 

to its applications in various disciplines of mathematical 

sciences, the Banach contraction and fixed-point theorems 

have been established. The ideas have a much wider scope 

than might be suspected and can be applied to establish 

many other existence theorem in the theory of differential 

and integral equations. There are numerous extension of 

Banach’s fixed point theorem by generalization its 

hypothesis while retaining the convergence property of 

successive iterations the unique fixed point of mapping 

Probabilistic functional analysis has emerged as one of 

the important mathematical disciplines in view of its role in 

analyzing probabilistic models in the applied sciences. The 

study of fixed points of random operators forms a central 

topic in this area. The Prague school of probabilistic 

initiated its study in the 1950. However, the research in this 

area flourished after the publication of the survey article of 

Bharucha-Reid [4]. Since then many interesting random 

fixed point results and several applications have appeared 

in the literature; for example the work of Beg and Shahazad 

[3], Lin [10], O'Regan [11], Papageorgiou [12] Xu [17]. 

 In recent years, the study of random fixed points have 

attracted  much attention some of the recent literatures in 

random fixed points may be noted in [1,3,5,12,15].In 

particular ,random iteration schemes leading to random 

fixed point of random operators have been discussed in 

[5,6,7].  

Jungck introduced the concept of compatible mappings 

on metric spaces, as a generalization of weakly commuting 

mappings, which have been a useful tool for obtaining 

more comprehensive fixed point theorems .On the other 

hand, since Takahashi ([16]) introduced a notion of convex 

metric spaces, many authors have discussed the existence 

of fixed point and the convergence of iterative processes 

for nonexpansive mappings in this kind of spaces. 

Subsequently Guay et al., Talman
4
 among others, have 

studied fixed point theorems in convex metric spaces. In 

this paper we prove existence of fixed points for Kannan 

mappings in convex metric spaces.  

The purpose of this paper is to give existence of fixed 

points for Kannan mappings in convex metric spaces for 

random operator. The results are motivated by Beg and 

Azam[2]Choudhary[5],Guay et al [8]., Talman[15], 

II. PRELIMINARIES 

Before starting the main results we give some 

preliminaries notes 

Definition 2.1. The pair (   ) of self-mappings of a metric 

space (   ) is said to be compatible on   if whenever *  + 
is a sequence in   such that              then 

 (         )     

Definition 2.2. Let (   ) be a metric space and   ,   -. 
A mapping           is called a convex structure 

on   if for each (     )        and    , 

 (   (     ))    (   )  (   ) (   )  

A metric space   together with a convex structure   is 

called a convex metric space.  

Definition 2.3. A nonempty subset   of a convex metric 

space (   ) with a convex structure   is said to be convex 

if for all (     )       ,  (     )     

Definition 2.4. Let   be a nonempty subset of a convex 

metric space    A mapping       is said to be Kannan 

mapping if  

  (     )  
 (    )  (    )

 
      For all              
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Let   be a self mapping of a bounded subset   of a 

convex metric space    Then   is said to have property (B) 

on    if for every closed and convex subset   of    which 

has non zero diameter and is invariant under    there exists 

some     such that  

 (    )     
   

 (    ) 

Obviously, a Banach space, or any subset of a Banach 

space, is a convex metric space.  

Note 2.4 : A  convex metric space   is said to have 

property ( ) if every decreasing net of nonempty closed 

and convex subsets of   has nonempty intersection.  

Throughout this paper,  ,  denotes a measurable 

space, C is non empty subset of K 

Definition 2.5 Measurable function: A function

Cf :   is said to be measurable if 

 )(1 CBf foe every Borel subset B of X. 

Definition 2.6 Random operator: A function 

CCf :  is said to be random operator, if 

CXF :)(.,  is measurable for every X   C 

Definition 2.7 Continuous Random operator: A random 

operator cCf :  is said to be continuous if for 

fixed continuousisCCtft  :,.)(,  

Definition 2.8. Random fixed point: A measurable function 

Cg :  is said to be random fixed point of the 

random operator 

     ttgtgtfifCCf ),()(,,:  

Definition 2.9 : Let (X, d) be a metric space and  ,  is 

a measurable space, J= [0,1]. A mapping          
  ,is called a convex structure on X for random operator if 

for each  

( ( )  ( )  )        and u(t)    

 ( ( )  (  ( ( )  ( )  )) ≤    ( ( )  ( ))  

 (   ) ( ( )  ( )) 

A metric space X together with a convex structure w and 

random operator is called a convex random metric space 

Definition 2.10: A nonempty subset K of a convex random 

metric space (X,d) with a convex structure w is said to be 

convex if for all 

K  )] y(t), (x(t), [t,  wJ,KxxK  ) y(t), (x(t),    

Definition 2.11. Let   be a nonempty subset of a convex 

metric space    A mapping       is said to be Kannan 

mapping  for random operator if  

  ( (   ( ))  (   ( )))  
 ( ( )  (   ( )))  ( ( )  (   ( )))

 
     

For all  ( )  ( )           

Let   be a self mapping of a bounded subset   of a 

convex metric space    Then   is said to have property (B) 

on    if for every closed and convex subset   of    which 

has non zero diameter and is invariant under    there exists 

some      for random operator such that  

 ( ( )  (   ( )))     
   

 ( ( )  (   ( )) 

It is to be remembered that note2.4 is also true for 

random operator. 

III. MAIN RESULTS 

Throughout this section, (Ω, )             measurable 

spaces t    .We assume that (   ) is a complete convex 

metric space with a convex structure W and K is a 

nonempty closed convex subset of  .  

Theorem:-3.1 Let   be a Kannan mapping of a 

nonempty bounded closed and convex subset   of a convex 

metric space   having property ( ) into itself. 

(Ω, )             measurable spaces t    ,If 
   

 ( )   
 
  ( ( )  (   ( ))   ( ) * ( ) being the 

diameter of  + for every nonempty bounded closed and 

convex subset   of   which has non zero diameter and is 

mapped into itself by  , then   has a unique fixed point        

in     

PROOF:- Let   be family of all bounded closed and 

convex subsets of K,  mapped into itself by    Obviously   

is nonempty and has a minimal element      being minimal 

with respect to being nonempty bounded closed and convex 

and invariant under     If  ( )     then the point in   is a 

fixed point of    Suppose  ( )     For any  ( )  ( )  
   we have  

 ( (   ( ))  (   ( )))

 
 . ( )  (   ( ))/

 

 
 . ( )  (   ( ))/

 
 

    
   

 . ( )  (   ( ))/  
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Hence  ( ) is contained in the closed sphere    with 

 (   ( )) as centre and        . ( )  (   ( ))/ as 

radius. Also      is invariant under  . Therefore by the 

minimality of   it follows that     . 

Hence for any arbitrary but fixed  ( )     we have  

       ( (   ( ))  ( ))         . ( )  (   ( ))/     

   …….(3.1.1) 

Let  

   

[ ( )       
   

  ( ( )  ( ))     
   

  . ( )  (   ( ))/}   

Obviously     is nonempty.  

For any  ( )  ( )          ,   -, we have  

 * (   ( )  ( )  )  ( )+    ( ( )  ( ))  

(   ) ( ( )  ( ))   

                                                
   

  ( ( )  (   ( )).  

It follows that  (   ( )  ( )  )     for all 

 ( )  ( )     and   ,   -. Therefore    is convex.  

Next, suppose that  ( )    (  ), Closure of   . Then 

there exists a sequence   ( ) in    such that    ( )    ( ), 

and  

 (  ( )  ( ))     
   

  (  ( )  ( ))  

   
   

  . ( )  (   ( ))/  

For all  ( )   . Letting n tend to infinity, we have  

 ( ( )  ( ))     
   

  . ( )  (   ( ))/. 

It follows that  ( )    , and therefore    is closed.   

For all   ( )    , eqn. (3.1.1) implies that  

   
   

. (   ( )  ( ))/     
   

  . (   ( )  ( ))/. 

Using definition of   , we have  (   ( ))     for all 

 ( )    . Thus    is invariant under  . Also  (  )  

   
   

  . ( )  (   ( ))/   ( ), by hypothesis. Hence    is 

a proper closed and convex subset of  , which contradicts 

the minimality of  . 

Uniqueness- Suppose that   have two fixed points  ( ) 

and  ( ). Then  

 (  ( )  ( ))   ( .   ( )  (   ( ))/)

 
 . ( )  (   ( ))/   . ( )  (   ( ))/

 
    

It follows that  ( )   ( ).Hence fixed point is unique. 

Theorem 3. 2:- Let   be a convex metric space having 

property ( ) and   be a nonempty bounded closed and 

convex subset of  . Let       be a continuous Kannan 

mapping. (Ω, )             measurable spaces t    

.Suppose   has property ( ) over  . Then   has a unique 

fixed point in  .  

PROOF:- As in the previous theorem, let   be the 

minimalel ement in   with respect to being nonempty 

bounded closed and convex and invariant under  . If 

 ( )     the theorem is obvious. If  ( )   , by property 

( ), there exists  ( )    such that  

 . ( )  (   ( ))/       
   

  . ( )  (   ( ))/.       

 (3.2.1) 

Let   { ( )     . ( )  (   ( ))/   }  If 

 ( )   , then since  

 . (   ( ))   (   ( ))/  

 . ( )  (   ( ))/  ( .   ( )   (   ( ))/)

 
   

We have  ( .   ( )   (   ( ))/)     which implies 

 (   ( ))    for all  ( )   . Hence it follows that 

 ( )   . 

Let          (  ), the closed and convex hull of   . 

If  ( )    , then any one of the following three cases may 

arise:  

(i)  ( )     and since       hence 

 (   ( ))       . 

(ii)  ( )    (  )   
   

  ,  

Where  

    (      ,   -)   
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    (      ,   -),  

………………………………………….. 

………………………………………….. 

………………………………………….. 

It follows that there exists some     such that 

 ( )      Applying principle of mathematical induction, 

we get  

 . ( )  (   ( ))/  
 

 
 

 . (   ( )  ( ))/

 
  

For all  ( )      and  ( )   . Thus, 

 . ( )  (   ( ))/   , which implies  ( )    and 

hence  (   ( ))       .  

(iii)  ( ) is a limit point of   (  )  then there exists a 

sequence   ( ) in     (  ) such that   ( )   ( ). Since F 

is continuous, we have    ( )   (   ( )) and  

 . ( )  (   ( ))/         .  ( )  (    ( ))/   . 

It follows that  ( )    and  (   ( ))          

Thus    is closed and convex subset of   which is 

invariant under   and, for every element  ( ) of 

    . ( )  (   ( ))/   , which implies by equation 

((3.2.1)), that    is a proper subset of  . This contradicts 

the minimality of  . Hence  ( )   , and the point in   is 

a fixed point o  .  

Theorem 3.3- Let   be a convex metric space having 

property ( ) and   be a closed and convex subset of  . Let 

  be a nonempty bounded closed and convex subset of  . 

(Ω, )             measurable spaces t    .Let       

be a continuous Kannan map such that  

(i)   maps     the boundary of   relative to    into     

(ii) If   is any closed and convex subset of   which 

has non zero diameter and if   is a subset of   such 

that     , then there exists  ( )    such that 

 . ( )  (   ( ))/     
   

  . ( )  (   ( ))/    

Then   has a unique fixed point in  .  

PROOF:- Let   be the family of all closed and convex 

subsets   of   such that       and          
Obviously      Let *  + be a descending chain of subsets 

of     

 

Property ( ) implies that        where        . 

Because             for each   thus        . 

Hence by Zorn’s lemma there exists a minimal         

element   in     being minimal with respect to being 

nonempty closed and convex and such that       and 

          

If      , then     and          implies   

maps   into  . Condition (ii) implies that   has property 

(B). Now theorem 2 further implies that   has unique fixed 

point in     
If      , then         and condition (i) implies 

that   maps     into    Also   maps     into    Hence   

maps     into    . If  (   )   , then     contains 

only one element  ( ). Nonemptiness of         

implies that  ( )      and           further implies 

that  (   ( ))   ( )  which proves the theorem.  

If  (   )     we will show that we arrive at a 

contradiction. As     is a closed and convex subset of  , 

containing more than one element and            
Thus condition (ii) implies that there exists  ( )      such 

that  

 . ( )  (   ( ))/        
     

 . ( )  (   ( ))/       

(3.3.1) 

Let   { ( )       . ( )  (   ( ))/   } and let 

        (  )  Then         Indeed there exists 

 ( )       satisfying eqn. (3.3.1)which implies  ( )     
Therefore  

 . (   ( ))   (   ( ))/  

 . ( )  (   ( ))/  . (   ( ))   (   ( ))/

 
  

from which is follows that   . (   ( ))   (   ( ))/    , 

which implies  (   ( ))      . Also  ( )      implies 

that  (   ( ))      that is  (   ( ))    which further 

implies that       .  

Next we show that   maps      into   . If  ( )  
     *       +      then we have following three 

possibilities.  

(a)  ( )     and  ( )     Then there exists   ( )  

      such that  (    ( ))  Since          

therefore  ( )   (    ( ))     Hence  ( )        
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Therefore  

 . ( )  (   ( ))/  
 

 
 { ( (    ( )   ( ))  

 .  (    ( )  (    ( ))/}   

Therefore  . ( )  (   ( ))/    which implies 

 ( )    and  (   ( ))          

(b)  ( )    (  ) and  ( )     Then there exists 

    such that  ( )     and (as in theorem 2) 

 . ( )  (   ( ))/     Hence         For   

   ( )   (   (   ( ))  (   ( ))  ) for some 

 ( )  ( )        and   ,   -  Since   is convex 

and          therefore 

 ( )   ( (   ( ))  (   ( )) )     which implies 

 ( )       So by using principle of mathematical 

induction, it can be easily shown that  ( )       

implies  ( )      for any  . Hence  ( )    and 

 (   ( ))          

(c)  ( ) is a limit point of     (  ) and  ( )     Then 

there exists a sequence   ( ) in     (  ) such that 

  ( )   ( )  By case (b),   ( )     therefore   ( )  

    and  (  ( )  (   ( ) ))      Since     is 

closed, therefore  ( )       Moreover, continuity of   

implies that    ( )    ( ) and we get 

 ( ( ))  (   ( ))         (  ( ))  (    ( ))     

Thus,  ( )    and  (   ( )          

Hence we find that    is a closed and convex subset of   

such that  

       and            Also 

 . ( )  (   ( ))/       
     

 . ( )  (   ( ))/ for 

any  ( )         

That is      is a proper subset of      Hence    is a 

proper subset of   which is contradiction.  
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