

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

100

Review of Association Rule in Data Mining Algorithm
Kavita

1
, Trilok Gabba

2

1
M. Tech Scholar,

2
Head of Department, BITS, Bhiwani

Abstract— now data in organizations is increasing very

speedily. A technique is required for handling this data. So

there are many techniques available in market that organizes

this data. Some operations are applied on data like

classification, clustering and association rule. One of the most

popular algorithms is Apriori that is used to extract frequent

item sets from large database and getting the association rule

for discovering the knowledge. This paper represents review

of algorithms that are used for association rule mining.

Keywords— Data Mining, Association Rule, Apriori

Algorithm, Item set generation, Railway traffic.

I. INTRODUCTION

Many business enterprises accumulate large quantities of

data from their daily operations. As in example, customer

purchase data in huge amount are collected daily at the

checkout counters of grocery stores. Table 1 describes such

data example, commonly known as market transactions of

basket. Transaction represents by each row in given table,

which contains a unique identifier labeled T ID and a set of

items bought by a customer. Data can be analyzed if

retailers are interested to learn about the purchasing

behavior of their customers. This important and valuable

information can be used to support a variety of business-

related applications such as c-r relationship, inventory

management, and customer relationship management.

Table -1

An Example Of Market Basket Transactions

T ID

Item

1 {Bread, Milk}

2 {Bread, Diapers, Beer, Eggs}

3 {Milk, Diapers, Beer, Cola}

4 {Bread, Milk, Diapers, Beer}

5 {Bread, Milk, Diapers, Cola}

For example, the following rule can be extracted from

the data set shown in Table 1:

{Diapers} −→ {Beer}

The rule suggests that a strong relationship exists

between the sale of diapers and beer because many

customers who buy diapers may be buy beer.

These types of rules use by retailers to help them

identify new opportunities for cross selling their products

to the customers. Besides market basket data, association

analysis is also applicable to other application domains

such as Web mining, and scientific data analysis. In the

analysis of Earth science data, for example, the association

patterns may reveal interesting connections around ocean,

land, and process of atmosphere. Such information may

help Earth scientists develop a better understanding of how

the different elements of the Earth system interact with

each other. Generally applicable to a wider variety of data

sets technique is presented here, for illustrative purposes,

our discussion will focus mainly on market basket data.

There are two key issues that need to be addressed when

applying association analysis to data of basket. First, a

patter can be discovering from a large transaction data set

that is computationally expensive. Second, as we discover

pattern some of them are potentially best because they may

happen simply by chance.

II. FREQUENT ITEM-SET GENERATION

A lattice structure can be used to enumerate the list of all

possible item sets. Figure 6.1 shows an item set lattice for

I= {a, b, c, d, e}. In general, a data set that contains k items

can potentially generate up to 2k − 1 frequent item sets,

excluding the null set [1]. Because k can be very large in

many practical applications, the search space of item sets

that need to be explored is exponentially large

Figure1. An item-set lattice

A brute-force approach for finding frequent item sets is

to determine the support count for every candidate item set

in the lattice structure [2].

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

101

To do this, we need to compare each candidate against

every transaction, an operation that is shown in Figure 2. If

the candidate is contained in a transaction, its support count

will be incremented. For example, the support for {Bread,

Milk} is incremented three times because the item set is

contained in transactions 1, 4, and 5. Such an approach can

be very expensive because it requires O (N M w)

comparisons, where N is the number of transactions, M =

2k − 1 is the number of candidate item sets, and w is the

maximum transaction width.

Figure2. Counting the support of candidate item-sets

Computational complexity can be reduced by several

ways [3] of frequent item set generation.

1. Reduce the number of candidate item-sets (M). The

Apriori principle, described in the next section, is an

effective way to eliminate some of the candidate item

sets without counting their support values.

2. Reduce the number of comparisons. Instead of

matching each candidate item set against every

transaction, we can reduce the number of comparisons

by using more advanced data structures, either to store

the candidate item sets or to compress the data set [4].

III. THE APRIORI PRINCIPLE

This section describes how the support measure helps to

reduce the number of candidate item-sets explored during

frequent item-set generation. The use of support for

pruning candidate item-sets is guided by the following

principle. Theorem 1 (Apriori Principle) [5]. If an item-set

is frequent, then all of its subsets must also be frequent.

To illustrate the idea behind the Apriori principle,

consider the item-set lattice shown in Figure 3. Suppose {c,

d, e} is a frequent item-set. Clearly, any transaction that

contains {c, d, e} must also contain its subsets, {c, d},

{c, e}, {d, e}, {c}, {d}, and {e}. As a result, if {c, d, e}

is frequent, then all subsets of {c, d, e} (i.e., the shaded

item-sets in this figure) must also be frequent.

Figure3. an illustration of the Apriori principle. If {c, d, e} is frequent,

then all subsets of this Item-set are frequent.

Conversely, if an item-set such as {a, b} is infrequent,

then all of its supersets must be infrequent too. As

illustrated in Figure 4, the entire sub-graph containing the

supersets of {a, b} can be pruned immediately once {a, b}

is found to be infrequent. This strategy of trimming the

exponential search space based on the support measure is

known as support-based pruning.

Such a pruning strategy is made possible by a key

property of the support measure, namely, that the support

for an item-set never exceeds the support for its subsets.

This property is also known as the anti-monotone property

of the support measure.

Definition 1 (Monotonicity Property): Let I be a set of

items, and J = 2I be the power set of I. A measure f is

monotone (or upward closed) if

∀X, Y ∈ J: (X ⊆ Y) −→ f (X) ≤ f(Y),

Figure4. An illustration of support-based pruning. If {a, b} is

infrequent, then all supersets of {a, b} are infrequent.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

102

Which means that if X is a subset of Y , then f (X) must

not exceed f (Y). On the other hand, f is anti-monotone

(or downward closed) if

∀X, Y ∈ J: (X ⊆ Y) −→ f (Y) ≤ f (X),

This means that if X is a subset of Y, then f(Y) must not

exceed f(X).

IV. PSEUDOCODE FOR THE FREQUENT ITEMSET

GENERATION

The pseudo code for the frequent item-set generation

part of the Apriori algorithm [6]. Let Ck denote the set of

candidate k-item-sets and Fk-denote the set of frequent k-

item-sets:

 The algorithm initially makes a single pass over the

data set to determine the support of each item. Upon

completion of this step, the set of all frequent 1-

itemsets, F1, will be known (steps 1 and 2).

 Next, the algorithm will iteratively generate new

candidate k-item-sets using the frequent (k − 1)-item-

sets found in the previous iteration (step5). Candidate

generation is implemented using a function called

apriorigen

Algorithm 1 Frequent itemset generation of the Apriori

algorithm.

1: k = 1.

2: Fk = { i | i ∈ I ∧ σ({i}) ≥ N × minsup}. {Find all

frequent 1-itemsets}

3: repeat

4: k = k + 1.

5: Ck = apriori-gen (Fk−1). {Generate candidate

itemsets}

6: for each transaction t ∈ T do

7: Ct = subset (Ck, t). {Identify all candidates that

belong to t}

8: for each candidate itemset c ∈ Ct do

9: σ(c) = σ(c) + 1. {Increment support count}

10: end for

11: end for

12: Fk = { c | c ∈ Ck ∧ σ(c) ≥ N × minsup}. {Extract

the frequent k-itemsets}

13: until Fk = ∅

14: Result = Fk.

 To count the support of the candidates, an additional

pass over the data set is required for this algorithm

(steps 6–10). All the candidate item-sets in Ck are

determined by subset function that is contained in

each transaction t [7].

 After that the algorithm eliminates all candidate item-

sets whose support counts are less than minsup (step

12).

 The algorithm terminates when there are no new

frequent item-sets generated, i.e., Fk= ∅ (step 13).

The frequent item-set generation part of the Apriori

algorithm has two important characteristics. First, it

traverses the item-set lattice one level at a time, from

frequent 1-itemsets to the maximum size of frequent item-

sets so it is level wise. Second, it employs a generate-and-

test strategy for finding frequent item-sets. At each

iteration, new candidate item-sets are generated from the

frequent item-sets found in the previous iteration. Support

counted and tested against the minsup threshold for each

candidate. The total number of iterations needed by the

algorithm is kmax + 1, where kmaxis the maximum size of

the frequent item-sets.

V. CONCLUSION

In this paper, we have studied about association rule in

data mining. Our main focus on apriori algorithm that is

technique of association rule. Implementation and code

used for implementation is described in this paper in

section II and III. Finally with study we have conclude that

there is problem of FSC (Frequent Set Counting) is

identified that can be solve by enhancement in apriori

algorithm. This review paper is base for research in apriori

algorithm in future.

REFERENCES

[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. “A Tree
Projection Algorithm for Generation of Frequent Itemsets”. Journal

of Parallel and Distributed Computing (Special Issue on High

Performance Data Mining), 61(3):350–371, 2001.

[2] R. C. Agarwal and J. C. Shafer. “Parallel Mining of Association

Rules”. IEEE Transactions on Knowledge and Data Engineering,

8(6):962–969, March 1998..

[3] C. C. Aggarwal and P. S. Yu. “Mining Large Itemsets for

Association Rules”. Data Engineering Bulletin, 21(1):23–31, March
1998.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

103

[4] C. C. Aggarwal and P. S. Yu. “Mining Associations with the

Collective Strength Approach”. IEEE Trans. on Knowledge and

Data Engineering, 13(6):863–873, January/February 2001..

[5] R. Bayardo and R. Agrawal. Mining the Most Interesting Rules. In

Proc. of the 5th Intl. Conf. on Knowledge Discovery and Data
Mining, pages 145–153, San Diego, CA, August 1999.

[6] E.-H. Han, G. Karypis, and V. Kumar. “Min-Apriori: An Algorithm

for Finding Association Rules in Data with Continuous Attributes”.

http://www.cs.umn.edu/˜han, 1997.

[7] G. Dong and J. Li. Efficient Mining of Emerging Patterns:

Discovering Trends and Differences. In Proc. of the 5th Intl. Conf.
on Knowledge Discovery and Data Mining, pages 43–52, San Diego,

CA, August 1999.

