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Abstract— now data in organizations is increasing very 

speedily. A technique is required for handling this data. So 

there are many techniques available in market that organizes 

this data. Some operations are applied on data like 

classification, clustering and association rule. One of the most 

popular algorithms is Apriori that is used to extract frequent 

item sets from large database and getting the association rule 

for discovering the knowledge. This paper represents review 

of algorithms that are used for association rule mining.   
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I. INTRODUCTION 

Many business enterprises accumulate large quantities of 

data from their daily operations. As in example, customer 

purchase data in huge amount are collected daily at the 

checkout counters of grocery stores. Table 1 describes such 

data example, commonly known as market transactions of 

basket. Transaction represents by each row in given table, 

which contains a unique identifier labeled T ID and a set of 

items bought by a customer. Data can be analyzed if 

retailers are interested to learn about the purchasing 

behavior of their customers. This important and valuable 

information can be used to support a variety of business-

related applications such as c-r relationship, inventory 

management, and customer relationship management. 

Table -1 

An Example Of Market Basket Transactions  

 

T ID 

 

Item 

1 {Bread, Milk} 

2 {Bread, Diapers, Beer, Eggs} 

3 {Milk, Diapers, Beer, Cola} 

4 {Bread, Milk, Diapers, Beer} 

5 {Bread, Milk, Diapers, Cola} 

For example, the following rule can be extracted from 

the data set shown in Table 1: 

{Diapers} −→ {Beer} 

The rule suggests that a strong relationship exists 

between the sale of diapers and beer because many 

customers who buy diapers may be buy beer.  

 

These types of rules use by retailers to help them 

identify new opportunities for cross selling their products 

to the customers. Besides market basket data, association 

analysis is also applicable to other application domains 

such as Web mining, and scientific data analysis. In the 

analysis of Earth science data, for example, the association 

patterns may reveal interesting connections around ocean, 

land, and process of atmosphere. Such information may 

help Earth scientists develop a better understanding of how 

the different elements of the Earth system interact with 

each other. Generally applicable to a wider variety of data 

sets technique is presented here, for illustrative purposes, 

our discussion will focus mainly on market basket data. 

There are two key issues that need to be addressed when 

applying association analysis to data of basket. First, a 

patter can be discovering from a large transaction data set 

that is computationally expensive. Second, as we discover 

pattern some of them are potentially best because they may 

happen simply by chance. 

II.  FREQUENT ITEM-SET GENERATION  

A lattice structure can be used to enumerate the list of all 

possible item sets. Figure 6.1 shows an item set lattice for 

I= {a, b, c, d, e}. In general, a data set that contains k items 

can potentially generate up to 2k − 1 frequent item sets, 

excluding the null set [1]. Because k can be very large in 

many practical applications, the search space of item sets 

that need to be explored is exponentially large 

 
Figure1. An item-set lattice 

A brute-force approach for finding frequent item sets is 

to determine the support count for every candidate item set 

in the lattice structure [2].  
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To do this, we need to compare each candidate against 

every transaction, an operation that is shown in Figure 2. If 

the candidate is contained in a transaction, its support count 

will be incremented. For example, the support for {Bread, 

Milk} is incremented three times because the item set is 

contained in transactions 1, 4, and 5. Such an approach can 

be very expensive because it requires O (N M w) 

comparisons, where N is the number of transactions, M = 

2k − 1 is the number of candidate item sets, and w is the 

maximum transaction width. 

 
Figure2. Counting the support of candidate item-sets 

Computational complexity can be reduced by several 

ways [3] of frequent item set generation. 

1. Reduce the number of candidate item-sets (M). The 

Apriori principle, described in the next section, is an           

effective way to eliminate some of the candidate item 

sets without counting their support values. 

2. Reduce the number of comparisons. Instead of 

matching each candidate item set against every 

transaction, we can reduce the number of comparisons 

by using more advanced data structures, either to store 

the candidate item sets or to compress the data set [4]. 

III. THE APRIORI PRINCIPLE  

This section describes how the support measure helps to 

reduce the number of candidate item-sets explored during 

frequent item-set generation. The use of support for 

pruning candidate item-sets is guided by the following 

principle. Theorem 1 (Apriori Principle) [5]. If an item-set 

is frequent, then all of its subsets must also be frequent. 

To illustrate the idea behind the Apriori principle, 

consider the item-set lattice shown in Figure 3. Suppose {c, 

d, e} is a frequent item-set. Clearly, any transaction that 

contains {c, d, e} must also contain its subsets, {c, d}, 

{c, e}, {d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} 

is frequent, then all subsets of {c, d, e} (i.e., the shaded 

item-sets in this figure) must also be frequent. 

 
Figure3. an illustration of the Apriori principle. If {c, d, e} is frequent, 

then all subsets of this Item-set are frequent. 

Conversely, if an item-set such as {a, b} is infrequent, 

then all of its supersets must be infrequent too. As 

illustrated in Figure 4, the entire sub-graph containing the 

supersets of {a, b} can be pruned immediately once {a, b} 

is found to be infrequent. This strategy of trimming the 

exponential search space based on the support measure is 

known as support-based pruning. 

Such a pruning strategy is made possible by a key 

property of the support measure, namely, that the support 

for an item-set never exceeds the support for its subsets. 

This property is also known as the anti-monotone property 

of the support measure.  

Definition 1 (Monotonicity Property): Let I be a set of 

items, and J = 2I be the power set of I. A measure f is 

monotone (or upward closed) if 

∀X, Y ∈ J: (X ⊆ Y) −→ f (X) ≤ f(Y), 

 
Figure4. An illustration of support-based pruning. If {a, b} is 

infrequent, then all supersets of {a, b} are infrequent. 
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Which means that if X is a subset of Y , then f (X) must 

not exceed f (Y ). On the other hand, f is anti-monotone 

(or downward closed) if 

∀X, Y ∈ J: (X ⊆ Y) −→ f (Y) ≤ f (X), 

This means that if X is a subset of Y, then f(Y) must not 

exceed f(X).  

IV. PSEUDOCODE FOR THE FREQUENT ITEMSET 

GENERATION 

The pseudo code for the frequent item-set generation 

part of the Apriori algorithm [6]. Let Ck denote the set of 

candidate k-item-sets and Fk-denote the set of frequent k-

item-sets: 

 The algorithm initially makes a single pass over the 

data set to determine the support of each item. Upon 

completion of this step, the set of all frequent 1-

itemsets, F1, will be known (steps 1 and 2). 

 Next, the algorithm will iteratively generate new 

candidate k-item-sets using the frequent (k − 1)-item-

sets found in the previous iteration (step5). Candidate 

generation is implemented using a function called 

apriorigen 

Algorithm 1 Frequent itemset generation of the Apriori 

algorithm. 

1: k = 1. 

2: Fk = { i | i ∈ I ∧ σ({i}) ≥ N × minsup}. {Find all 

frequent 1-itemsets} 

3: repeat 

4: k = k + 1. 

5: Ck = apriori-gen (Fk−1). {Generate candidate 

itemsets} 

6: for each transaction t ∈ T do 

7:            Ct = subset (Ck, t). {Identify all candidates that 

belong to t} 

8:    for each candidate itemset c ∈ Ct do 

9:  σ(c) = σ(c) + 1. {Increment support count} 

10: end for 

11: end for 

12: Fk = { c | c ∈ Ck ∧ σ(c) ≥ N × minsup}. {Extract 

the frequent k-itemsets} 

13: until Fk = ∅ 

14: Result = Fk. 

 To count the support of the candidates, an additional 

pass over the data set is required for this algorithm 

(steps 6–10). All the candidate item-sets in Ck are 

determined by subset function that is contained in 

each transaction t [7]. 

 After that the algorithm eliminates all candidate item-

sets whose support counts are less than minsup (step 

12). 

 The algorithm terminates when there are no new 

frequent item-sets generated, i.e., Fk= ∅ (step 13). 

The frequent item-set generation part of the Apriori 

algorithm has two important characteristics. First, it 

traverses the item-set lattice one level at a time, from 

frequent 1-itemsets to the maximum size of frequent item-

sets so it is level wise. Second, it employs a generate-and-

test strategy for finding frequent item-sets. At each 

iteration, new candidate item-sets are generated from the 

frequent item-sets found in the previous iteration. Support 

counted and tested against the minsup threshold for each 

candidate. The total number of iterations needed by the 

algorithm is kmax + 1, where kmaxis the maximum size of 

the frequent item-sets. 

V. CONCLUSION 

In this paper, we have studied about association rule in 

data mining. Our main focus on apriori algorithm that is 

technique of association rule. Implementation and code 

used for implementation is described in this paper in 

section II and III. Finally with study we have conclude that 

there is problem of FSC (Frequent Set Counting) is 

identified that can be solve by enhancement in apriori 

algorithm. This review paper is base for research in apriori 

algorithm in future.                             
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