

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

86

Implementation of Apriori Algorithm on Traffic Data
Kavita

1
, Trilok Gabba

2

1
M. Tech schacolr,

2
HOD, BITS, Bhiwani

Abstract— Data is increasing very rapidly now days. Due to

this reason it is difficult to manage and search in data is a

challenge. Our researchers are going to work on management

of data and make it easy to access to any one. So association

rule is technique that is used in data mining for make it easy

to access. In this paper we are going to represent

implementation of Apriori algorithm on data of train traffic.

This implementation identify that how much chance of

accident occur in which condition.

Keywords— Data Mining, Association Rule, Apriori

Algorithm, Item set generation, Railway traffic.

I. INTRODUCTION

One of the most popular data mining approaches is to

find frequent item-sets from a transaction dataset and

derive association rules. Finding frequent item-sets (item-

sets with frequency larger than or equal to a user specified

minimum support) is not trivial because of its

combinatorial explosion. Once frequent item-sets are

obtained, Association rules are generated straight forward

with confidence larger than or equal to a user specified

minimum confidence. Apriori is an algorithm for finding

frequent item-sets using candidate generation [1]. It is

characterized as a level-wise complete search algorithm

using anti-monotonicity of item-sets, ―if an item-set is not

frequent, then no one superset can be frequent‖. By

convention, items assume by Apriori within a transaction or

item-set are sorted in lexicographic order. Size k be Fk for

frequent item-set and their candidates be Ck. Apriori first

scans the database and searches for frequent item-sets of

size 1 by accumulating the count for each item and

collecting those that satisfy the minimum support

requirement. Following three steps are iterates and extracts

all the frequent item-sets.

1. Generate Ck+1, candidates of frequent item-sets of size k

+1, from the frequent item-sets of size k.

2. Scan the database and calculate the support of each

candidate of frequent item-sets.

3. Add those item-sets that satisfy the minimum support

requirement to Fk+1.

The Apriori algorithm is shown in Fig. 3. Line 3

generates Ck+1 function for Apriori from Fk in the

following two step process:

a. Join step: Generate RK+1, the initial candidates of

frequent item-sets of size k + 1 by taking the

union of the two frequent item-sets of size k, Pk

and Qk that have the first k−1 elements in

common.

 RK+1 = Pk ∪ Qk = {i teml, . . . , i temk−1, i temk

, i temk}

 Pk = {i teml , i tem2, . . . , i temk−1, i temk }

 Qk = {i teml , i tem2, . . . , i temk−1, i temk}

 Where, i teml < i tem2 < • • • < i temk < i temk.

b. Prune step: Check if all the item-sets of size k in

Rk+1 are frequent and generate Ck+1 by

removing those that do not pass this requirement

from Rk+1. This is because any subset of size k of

Ck+1 that is not frequent cannot be a subset of a

frequent item-set of size k + 1.

Function subset in line 5 finds all the candidates of the

frequent item-sets included in transaction t. Then,

frequency calculates by Aprioti algorithm only for those

candidates generated this way by scanning the database.

Mostly kmax+1 times an Apriori algorithm scan database

when the maximum size of frequent item-sets is set at

kmax.

II. APRIORI ALGORITHM

A. Apriori Algorith–

Following pass can be used to generate all frequent item-

set

Pass 1

1. Generate the candidate item-sets in C1

2. Save the frequent item-sets in L1

Pass k

1. Generate the candidate item-sets in Ck from the

frequent item-sets in Lk-1

i. Join Lk-1 p with Lk-1q, as follows:

 Insert into Ck

 Select p.item1, p.item2 . . . p.itemk-1, q.itemk-1

 From Lk-1 p, Lk-1q

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

87

Where p.item1 = q.item1, p.itemk-2 = q.itemk-2,

p.itemk-1 < q.itemk-1

ii. Generate all (k-1)-subsets from the candidate item-

sets in Ck

iii. Prune all candidate item-sets from Ck where some

(k-1)-subset of the candidate item-set is not in the

frequent item-set Lk-1

2. Scan the transaction database to determine the

support for each candidate item-set in Ck

3. Save the frequent item-sets in Lk

B. Example of algorithm –

Minimum support is 50% from user specified its assume.

• Given: Database of transaction shown below

Table- 1

Database

 The Candidate Item-Sets In C2 Are Shown Below

TABLE- 2

ITEM-SET IN C2

 The frequent item-sets in L2 are shown below

Table – 3

Item-set in L2

III. RELATED WORK

Since Apriori algorithm was first introduced and as

experience was accumulated, frequent item-set mining can

be devise using efficient algorithm. Many of them share the

same idea with Apriori in that they generate candidates.

The size of candidate item-sets can be reduced using Hash-

based technique. Each item-set is hashed into a

corresponding bucket by using an appropriate hash

function. Since a bucket can contain different item-sets, if

its count is less than a minimum support, these item-sets in

the bucket can be removed from the candidate sets. The

entire mining problem divided into n smaller problems

using partitioning. There are n non-overlapping partitions

used to divide dataset such that each partition fits into main

memory and each partition is mined separately. Since any

item-set that is potentially frequent with respect to the

entire dataset must occur as a frequent item-set in at least

one of the partitions, all the frequent item-sets found this

way are candidates. A random sampled small subset of the

entire data is simply to mine by using sampling. We can

find all the frequent item-sets there is no guarantee for this,

normal practice is to use a lower support threshold.

Between accuracy and efficiency a trade-off has generated.

A horizontal data format is used in Apriori, i.e. frequent

item-sets are associated with each transaction. In

transaction IDs (TIDs) different format is used for vertical

data are associated with each item-set. With this format,

Intersection of TIDs is taken to perform mining process.

The support count is simply the length of the TID set for

the item-set. There is no need to scan the database because

TID set carries the complete information required for

computing support. FP-growth (frequent pattern growth)

method is an improvement in Apriori algorithm that

succeeded in eliminating candidate generation [2]. It adopts

a divide and conquer strategy by (1) compressing the

database representing frequent items into a structure called

FP-tree (frequent pattern tree) that retains all the essential

information and (2) dividing the compressed database into

a set of conditional databases, each associated with one

frequent item-set and mining each one separately. It scans

the database two times. At first scan, all the frequent items

and their support counts (frequencies) are derived and they

are sorted in the order of descending support count in each

transaction. When come to second scan item belongs to

each transaction is merged into a prefix tree and items

(nodes) that appear in common in different transactions are

counted. An item is associated with each node and its

count.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

88

Since descending order of frequency to short items, Near

to root of prefix tree some nodes closer are shared by more

transactions, Very compact representation is resulting that

stores all the necessary information. By choosing an item in

the order of increasing frequency, pattern growth algorithm

works on FP-tree and extracting frequent item-sets that

contain the chosen item by recursively calling itself on the

conditional FP-tree. Original Apriori algorithm is slower

than FP-algorithm in order of magnitude.

There are several other dimensions regarding the

extensions of frequent mining for pattern. Mostly The

following included: (1) incorporating taxonomy in items

[3]: Use of taxonomy makes it possible to extract frequent

item-sets that are expressed by higher concepts even when

use of the base level concepts produces only infrequent

item-sets. (2) Incremental mining: Database is not

stationary that is assumed and a new instance of transaction

keeps added. The algorithm in [4] updates the frequent

item-sets without restarting from scratch. (3) For item we

use numeric value: When the item corresponds to a

continuous numeric value, current frequent item-set mining

algorithm is not applicable unless the values are discretised.

Subspace method of clustering can be used to obtain an

optimal value interval for each item in each item-set [5]. (4)

Information gain or χ2 value is also use for measure like

frequency: These measures are useful in finding

discriminative patterns but unfortunately do not satisfy

anti-monotonicity property. However, these measures have

a nice property of being convex with respect to their

arguments and it is possible to estimate their upper bound

for supersets of a pattern and thus prune unpromising

patterns efficiently. Apriori SMP uses this principle [6]. (5)

Using richer expressions than item-set: To enable mining

from more complex data structure enable by tree, sequence

etc [7, 8]. (6) Closed item-sets: A frequent item-set is

closed if it is not included in any other frequent item-sets.

Thus, once the closed item-sets are found, all the frequent

item-sets can be derived from them. To find the closed

item-sets we use LCM is most efficient algorithm [9].

IV. IMPLEMENTATION RESULTS

As we have choose Train traffic data for implementation

of apriori algorithm. step by step process shown in figures

as following:

Figure 1 Form to fill personal detail of passangers

Figure 2 Detail of road category

Figure 3 Form of accident detail

Figure 4 Accident Summary

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5, May 2014)

89

Figure 5 List of accident on basis of apriori algorithm

V. CONCLUSION

This implementation is focused on how to solve the

efficient problems of Apriori algorithm and raise another

association rules mining algorithm. This has certain

reference value to research and solve the issues of data

expiation and information lacking. It hopes to dig out more

useful information. So data managed in proper way that is

easy for anyone to access related data.

REFERENCES

[1] Agrawal R, Srikant R (1994) Fast algorithms for mining association

rules. In: Proceedings of the 20th VLDB conference, pp 487–499.

[2] Han J, Pei J, Yin Y (2000) Mining frequent patterns without

candidate generation. In: Proceedings of ACM SIGMOD

international conference on management of data, pp 1–12

[3] Srikant R, Agrawal R (1995) Mining generalized association rules.

In: Proceedings of the 21st VLDB conference. pp. 407–419.

[4] CheungDW,Han J,NgV,WongCY(1996) Maintenance of discovered

association rules in large databases: an incremental updating

technique. In: Proceedings of the ACM SIGMOD international
conference on management of data, pp. 13–23

[5] Washio T, Nakanishi K, Motoda H (2005) Association rules based
on levelwise subspace clustering. In: Proceedings. of 9th European

conference on principles and practice of knowledge discovery in

databases. LNAI, vol 3721, pp. 692–700 Springer, Heidelberg.

[6] Morishita S, Sese J (2000) Traversing lattice itemset with statistical

metric pruning. In: Proceedings of PODS’00, pp 226–236.

[7] Yan X, Han J (2002) gSpan: Graph-based substructure pattern

mining. In: Proceedings of ICDM’02, pp 721–724.

[8] Inokuchi A,Washio T, Motoda H (2005) General framework for
mining frequent subgraphs from labeled graphs. Fundament Inform

66(1-2):53–82.

[9] Uno T, Asai T, Uchida Y, Arimura H (2004) An efficient algorithm

for enumerating frequent closed patterns in transaction databases. In:

Proc. of the 7th international conference on discovery science. LNAI
vol 3245, Springe, Heidelberg, pp 16–30.

