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Abstract— Deconvolution is an essential part of seismic 

data processing. The deconvolution algorithm is derived from 

the corresponding convolution model. Conventional 

deconvolution methods are developed based on the stationary 

convolution model, such as Wiener spiking deconvolution. 

However, the seismic trace is nonstationary due to attenuation 

during the propagation for various reasons such as 

attenuation and geometric spreading. Deconvolution 

algorithms usually assume that the reflectivity is a random 

series, meaning that reflectivity has a white amplitude 

spectrum. In practice, the reflectivity is colored, i.e., the 

magnitude of its Fourier amplitude spectrum demonstrates 

obvious frequency dependency. The white reflectivity 

assumption can lead to distortion of reflectivity estimation. 

The nonstationary characteristic of both seismic trace and 

true reflectivity can be corrected in a nonstationary way. This 

chapter gives a basic introduction to Gabor deconvolution, 

and presents the color correction method to white-reflectivity 

assumption for Gabor deconvolution. The influence of the 

time-variant reflectivity color is analyzed in detail, and 

synthetic data and field data are used to evaluate the color 

correction method.  
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I. GABOR DECONVOLUTION  

1.1 The Gabor transforms 

Gabor transform (GT) provides a manner of time-

frequency decomposition of a signal. In this section, we 

will follow Margrave and Lamoureux (2001), Margrave et 

al (2011) to give a brief introduction to the GT. The 

continuous GT of a signal can be defined as (Mertins, 

1999)  

, (1.1)  

Where the Gabor analysis window, and denotes the 

center of the analysis window. We can see that the 

continuous GT gives local spectrum of the signal by 

weighting the signal with a window function before the 

Fourier transform. By sliding the analysis window along 

the signal, GT produces a collection of local spectra. 

So, a time-frequency decomposition of the signal is 

obtained. Even if signal is nonstationary for the whole time 

range, can still be regarded to be approximately stationary 

within a specified time window. From this point of view, 

GT can give a better characterization of nonstationary 

signal compared with Fourier transform. Given, the signal 

can be reconstructed as   

, (1.2)   

Where is the Gabor synthesis window. To achieve a 

perfect reconstruction, the analysis window and synthesis 

window should satisfy the following condition  

. (1.3)  

When and, Gabor transform reduces to Fourier 

transform. So, Fourier transform can be viewed as a 

particular case of Gabor transform. For practical 

implementation, a discrete form of Gabor transform should 

be employed. Given a time spacing of and frequency 

spacing of , the discrete Gabor transform is given by  

(1.1) where is 

the Gabor frame defined as  

(1.5) If the Gabor 

frames are orthonormal to each other, the signal can be 

recovered from the Gabor frame operator defined by  

 (1.6) 

However, the Gabor frames in equation (1.5) do not form 

an orthonormal basis. For the DGT, the reconstruction of 

signal should involve the inversion of the Gabor frame 

operator. So, the recovery of can be formulated as  

,    (1.7) 
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Where is the dual Gabor frame. The Gabor frames are 

complete in on condition that (Margrave and Lamoureux, 

2001). We can exactly recover the signal by (1.7). 

However, it is hard to get an inversion of the Gabor frame. 

In practice, we can choose an approximate way to 

implement the discrete Gabor transform.  

 (1.13)  

Where is the Gaussian half-width. Margrave and 

Lamoureux (2001) gave a precise expression of the 

summation of the Gaussians, which is  

 (1.11)  

We can use the second term in (1.14) to estimate the 

approximate errors. So, the error can be made as small as 

we want by increasing the ratio . For geophysical 

applications, the error is negligible when (Margrave and 

Lamoureux, 2001).  

The inherent end effect of the approximate discrete 

Gabor transform can be further reduced by normalization 

using the summation curve. The Gabor transform given in 

equation (1.10) can be normalized as (Margrave and 

Lamoureux, 2001)  

, (1.15)  

Where is the actual summation curve of Gabor 

transform.  

II. THE GABOR DECONVOLUTION ALGORITHM  

Gabor deconvolution is based on a nonstatioanry 

convolution model of the seismic trace. Margrave and 

Lamoureux (2002) presented a seismic trace model 

addressing the seismic wavelet and the nonstationary effect 

of constant- attenuation. The nonstationary convolution 

model is introduced in chapter 1, and will be restated here 

for introducing Gabor deconvolution algorithm. The 

attenuated seismic trace can be modeled as  

,     (1.16) 

Where and are the Fourier spectra of the seismic trace 

and seismic source wavelet respectively; is the reflectivity, 

and is the constant- transfer function given by  

, (1.17)   

Where denotes the Hilbert transform. Then, the Gabor 

transform of the attenuated seismic trace can be 

approximated by (Margrave and Lamoureux, 2002; 

Margrave et al, 2011)  

, (1.18)   

With an assumption thatwith a 2-D boxcar over where is 

the Gabor transform of reflectivity. Based on equation 

(4.18), can be estimated by smoothing. The simplest 

smoothing can be achieved by convolving . Let be a proper 

smoothing of Q . With a minimum-phase assumption, the 

attenuated wavelet or propagating wavelet is estimated as  

, (1.19)   

Where the Hilbert gives the phase transform (over 

frequency),  

. (1.20)  

Therefore, an estimation of the reflectivity can be 

formulated in the Gabor spectral domain as  

(1.21) where is the 

deconvolution operator formulated as  

, (1.22) in 

which is the stability factor, and is the maximum value of 

.   

The magnitude of the Gabor spectrum of attenuated 

seismic trace is shown in Figure 4.8. We can see the 

amplitude decays with increasing frequency and travel- 

time. The magnitude of the Gabor spectra for the two-

deconvolution algorithms is shown in Figure 4.9 and 4.10. 

For the stationary deconvolution, the Gabor spectrum of the 

estimated reflectivity is obviously distorted compared to 

the one shown in Figure 4.7. For the Gabor deconvolution, 

the Gabor spectrum of the estimated result has magnitude 

of approximately the same level over all frequency (within 

the given frequency band) and travel time.  
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III. CONVENTIONAL GABOR DECONVOLUTION. 

When this assumption violated, the estimated result 

might be distorted as well.  
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IV. COLOR CORRECTION FOR GABOR DECONVOLUTION  

4.1 Theory of the color correction method  

If the assumption of white reflectivity is violated, i.e. 

deviates from unity significantly, which is usually true in 

practice. Then deconvolution algorithm discussed above 

should modify accordingly, since it always gives estimation 

result with white amplitude spectrum ( ), which may differ 

from the true nonwhite reflectivity apparently. If some 

relevant regional well log information is available, we can 

conduct color correction to the Gabor deconvolution.  

Suppose that is the Gabor transform of the nonwhite 

reflectivity calculated from a well log, and is the 

corresponding smoothed amplitude spectrum. The Gabor 

deconvolution operator with color correction can be 

formulated as (Cheng and Margrave, 2009a) where is the 

stability factor, is the maximum value of is given by the 

Hilbert transform (over frequency),  

(4.23) what we 

need is only a smoothed Gabor amplitude spectrum. 

Neither detail nor phase information is needed. It is quite 

likely that this required well information is a very slowly 

changing function of position so that wells that are quite 

distant can still be used for color correction to conventional 

Gabor deconvolution. The estimated result with the white 

reflectivity assumption can be viewed as a special case 

where is nearly constant.  

When the real has obvious amplitude fluctuations, a 

white-reflectivity estimation tends to enlarge some 

particular parts of reflectivity series, which correspond to 

the low amplitude areas of . In addition, the effect of color 

correction depends on how much departs from unity or a 

constant and how reliable the employed is, which, in turn, 

is subject to the available frequency band and completeness 

of well log information. The key point of the correction 

method is that how to obtain an appropriate . If sufficient 

well log information is available, and nearly have the same 

length in time, which can be denoted by a time interval . 

can be directly obtained from the Gabor spectrum of . For 

this case, color correction can improve the reflectivity 

estimation effectively. 

V. PRACTICAL CONSIDERATIONS FOR THE COLOR 

CORRECTION METHOD  

In practice, the well log is usually incomplete and 

limited to some depth range, which corresponds to only a 

part of the whole seismic trace recorded at the surface. On 

this occasion, we need to use the limited well log to 

estimate a complete , which should be of the same size with 

in time-frequency domain as indicated by equation (4.25). 

There may be different ways to achieve this. One way 

assumes that the color feature of nonwhite reflectivity is 

temporally stationary, i.e. only changes with frequency . 

Suppose that is the incomplete reflectivity series with a 

time interval ( ), and its’ Fourier spectrum is 

, (4.26) where , and are 

constants determined using a least-squares algorithm. So, 

can be modeled as  

. (4.27) As an 

alternative, another way derives the incomplete reflectivity,  

based on an assumption that the color feature of nonwhite 

reflectivity is slowly time-variant. First, is smoothed. When 

multiple well logs of the same region are available, we can 

take full advantage of all available information. First, the 

Gabor spectra of well-log reflectivities are smoothed using 

equation (4.28). So, we can get a set of coefficient curves. 

Then, is still modeled by equation (4.29), while is 

calculated by combining all the coefficient curves of each 

well log through interpolation and extrapolation. Through 

this approach, we can approximate the true very well if the 

well logs are well distributed in time and the color feature 

of nonwhite reflectivity is not drastically time-variant.  
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Application of the color correction method to field data. 

The field data used to test our color correction method is a 

2D seismic line with 159 shots and 151 receiver stations, 

which was acquired over Blackfoot field near Strathmore, 

Alberta in 1995. The reference well log is well 14-09 with 

a recorded depth range from to about , and which is about 

away from the seismic line and can be projected to the 

seismic line using the X-Y coordinates.  

 

The spectral color correction is probably more of our 

interest from the point view of deconvolution due to its 

connection with phase rotation of the estimation result. The 

spectral color can be regarded as normalized color 

correction. Since the spectral color is not sensitive to the 

alignment error of well log to field data, spectral color 

correction may be preferable for prestack deconvolution. 

The spectral and temporal color correction can be a choice 

for poststack deconvolution. For spectral color correction 

case, both prestack and poststack deconvolution was 

conducted using Gabor deconvolution with spectral color 

correction. For the full color correction case, Gabor 

deconvolution with spectral color correction and Gabor 

deconvolution with full color correction were used for 

prestack deconvolution and poststack deconvolution 

respectively.  
 

182 

 

Figure 4.37.  Migrated seismic data with spectral color correction applied. 

 

Figure 4.38. Migrated seismic section with full color correction applied. 

 

 

The phase rotation for the spectral color correction case 

and full color correction case is similar and comparable to 

the conventional Gabor deconvolution case. So, with color 

correction applied, seismic data has more high frequency 

components and roughly tie better to the well log data. In 

other words, color correction can improve the resolution of 

seismic data. 
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VI. CONCLUSION  

The Gabor transform decomposes a signal into time-

frequency domain by windowing the signal with a set of 

windows and then doing the Fourier transform, which 

provide a local spectrum of a signal. By this localization 

processing, Gabor transform can extend the Fourier 

transform to the nonstationary realm. The discrete Gabor 

transform can be easily realized using an approximate way, 

whose error can be well controlled by properly choosing of 

parameters. The Gabor deconvolution algorithm is 

developed based on a nonstationary convolution model. It 

can estimate the attenuated propagating wavelet, which can 

address the constant- attenuation inherently and is 

equivalent to applying an inverse- compensation to seismic 

trace when conducting the deconvolution. Therefore, Gabor 

deconvolution can be regarded as a combination of 

stationary deconvolution, inverse- filtering and gain 

correction. Testing on synthetic data shows that Gabor 

deconvolution can provide better estimation of reflectivity 

than conventional Wiener spiking deconvolution. 
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