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Abstract—This paper presents application of Differential 

Evolution (DE) Algorithm for solution of optimal power 

flow. As conventionally we use gradient based methods for 

optimal power flow. But conventional methods sometimes 

give local optimum values. And if problem is non-linear 

mix-integer type then it is very difficult to get the optimum 

solution. Therefore evolutionary techniques are applied for 

such problems. In this paper a IEEE-30 bus system is used 

for testing of effectiveness of the algorithm. 

Keywords—Optimal Power Flow, Differential Evolution.  

I. INTRODUCTION 

The field of optimization has been the focus of much 

attention nowadays. Optimization techniques and 

concepts are not limited to any particular discipline and 

are playing an increasingly important role in the solution 

and modeling of engineering, economic, design and 

scientific systems. Optimization is the process through 

which the best possible values of decision variables are 

obtained under the given set of constraints and in 

accordance to a selected optimization objective function. 

The best value would give the smallest objective function 

value for a minimization problem or the largest objective 

function value for a maximization problem. In terms of 

real world applications, the objective function is often a 

representation of some physically significant measure 

such as profit, loss, utility, risk or error. Hence 

optimizing the system or design to make it as effective or 

functional as possible is an important part of the overall 

application.  

In recent years, optimization algorithms have received 

increasing attention by the research community in the 

Power System. Scientifically, the field of optimization 

algorithms is a highly relevant research area, because 

these algorithms can find approximate solutions to 

problems where no analytic method exists, e.g. for 

solving non-linear differential equations or problems 

where finding even an approximate solution is tedious. 

Optimization algorithms have a very broad range of 

application, since many problems in power system can be 

formulated as an optimization task where the objective is 

to minimize or maximize a given objective function. For 

example, such algorithms can often be used to improve 

the quality of generation, to lower the product cost, or 

increase efficiency in transmission and scheduling – 

related problems.  

In this context, even a few percent improvement of 

existing solution may give the system engineers great bit 

of advantage. Hence, optimization techniques can be an 

important key to success. In contrast to the algorithmic 

approach, the manual search of a solution with a slight 

improvement is often tedious, if not impossible, because 

manual optimization requires a great deal of insight and 

patience.  

Furthermore, manual optimization often limits the 

scope of the search process to what the human expert is 

trained to consider as a good solution. Conversely, 

optimization algorithms automate the search and are not 

biased in scope regarding the solutions. The wide range 

of real-world optimization problems and the importance 

of finding good approximate solution have lead to a great 

variety of optimization techniques. 

The Optimal Power Flow (OPF) has been frequently 

solved using classical optimization methods. The OPF 

has been usually considered as the minimization of an 

objective function representing the general cost and/or 

the transmission loss. The constraints involved are the 

physical laws governing the power generation-

transmission systems and the operating limitations of the 

equipments. Effective optimal power flow is limited by 

(i) the high dimensionality of power systems and (ii) the 

incomplete domain dependent knowledge of power 

system engineers. The first limitation is addressed by 

numerical optimization procedures based on successive 

linearization using the first and the second derivatives of 

objective functions and their constraints as the search 

directions or by linear programming solutions to 

imprecise models [1-4]. The advantages of such methods 

are in their mathematical underpinnings, but 

disadvantages exist also in the sensitivity to problem 

formulation, algorithm selection and usually converge to 

a local minimum [5]. The second limitation, incomplete 

domain knowledge, preludes also the reliable use of 

expert systems, where rule completeness is not possible. 

The OPF problem has been solved via many traditional 

optimization methods, including: Gradient-based 

techniques, Newton methods, Linear Programming and 

Quadratic Programming. Most of these techniques are 

not capable of solving effectively, Optimization 

Problems with a non-convex, non-continuous and highly 

nonlinear solution space.  
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In recent years, new optimization techniques based on 

the principles of natural evolution, and with the ability to 

solve extremely complex optimization problems, have 

been developed. 

Optimal Power Flow (OPF) was firstly introduced by 

Carpentiers as a network constrained economic dispatch 

[Carpentiers, 1962] and formulated by Dommel and 

Tinny as optimal power flow [Dommel and Tinny, 1968]. 

The main purpose of OPF is to operate the system at the 

most economic state while satisfying specified security 

constraints. OPF has great meaning for power system 

operation and development especially in the modern 

society where human beings depend much more on 

electricity. Power system security analysis is composed 

of both static and dynamic security analysis. However, 

most previous research works concern only about 

maintaining static security in the OPF problem; few can 

effectively deal with dynamic security constraints despite 

the recognition of its great importance.  

Due to the rapid increase of electricity demand and the 

deregulation of electricity markets, power systems tend 

to operate more closely to stability boundaries and as a 

consequence, many instability problems occurred in 

many countries recently. Huge losses and expensive costs 

in these events give good evidence that dynamic stability 

under large disturbances is still the most serious threat for 

the development of modern power systems. Among 

various dynamic security analyses, transient stability is 

one of the most essential and important assessments. 

Huge attentions have been paid on power system 

transient stability analysis by engineers and researchers 

all these years.  

There are two possible approaches to solving 

optimization problems, namely: deterministic and 

stochastic. Deterministic methods exploit the underlying 

mathematical structure of the problem for solving 

specific problem types. These methods are 

mathematically concrete and extremely effective within 

their scope. The majority of deterministic methods are 

focused on local optimization and those deals specifically 

with global optimization problems are fairly limited. 

Following are the deterministic optimization methods 

Linear Programming (LP) Method, Newton-Raphson 

(NR) Method, Quadratic Programming (QP) Method, 

Nonlinear Programming (NLP) Method, and Interior 

Point (IP) Method.  

Search methods or heuristic methods or stochastic 

methods represent a broad class of computational global 

optimization strategies that use novel approaches to 

intelligent search for optimal values. They are often 

inspired by physical processes, natural evolution and 

stochastic events.  

 

 

Even though these methods are unorthodox and have a 

minimal mathematical basis or convergence guarantee, 

they have nonetheless proven themselves as effective and 

practical global optimization strategies. Most of these 

methods are aimed at solving global optimization 

problems.  

Some of these methods are Genetic Algorithms (GA), 

Evolutionary Programming (EP), Evolutionary Strategies 

(ES), Simulated Annealing Algorithm, Ant Colony 

Optimization (ACO), Particle Swarm Optimization 

(PSO), Tabu Search Algorithms and Differential 

Evolution Algorithm (DEA). 

II.  DIFFERENTIAL EVOLUTION ALGORITHM 

A differential evolution algorithm (DEA) is an 

evolutionary computation method that was originally 

introduced by Storn and Price in 1995. Furthermore, they 

developed DEA to be a reliable and versatile function 

optimizer that is also readily applicable to a wide range 

of optimization problems. DE is a simple population 

based, stochastic search evolutionary algorithm for 

optimization and is capable of handling non-

differentiable, non-linear and multi-model objective 

functions. Differential evolution improves a population 

of candidate solution over several generations using the 

mutation, crossover and selection operators in order to 

reach an optimal solution. Differential evolution presents 

great convergence characteristics and requires few 

control parameters, which remain fixed throughout the 

optimization process and need minimum tuning [9, 10]. 

Differential evolution solves real valued problems based 

on the principles of natural evolution [11-15]. 

DE uses a population of floating point encoded 

individuals and mutation, crossover and selection 

operators to explore the solution space in search of global 

optima. DE is a novel evolution algorithm as it employs 

real-coded variables, instead of a binary or a gray 

representation. DE typically relies on mutation as the 

search operator and uses selection to direct the search 

towards the prospective regions in the feasible region. 

The optimization process is carried by means of three 

main operations:  

 Mutation,  

 Crossover and  

 Selection.  

 In each generation, each parameter vector or 

individual of the current population becomes a 

target vector.  

 For each target vector, the mutation operation 

produces a new parameter vector (called mutant 

vector), by adding the weighted difference between 

two randomly chosen vectors to a third (also 

randomly chosen) vector. 
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 The crossover operation generates a new vector 

(called trial vector), by mixing the parameters of the 

mutant vector with those of the target vector. 

 If the trial vector obtains a better fitness value than 

the target vector, then the trial vector replaces the 

target vector in the next generation. 

Initialisation Mutation Crossover Selection

Target Vector

Current Population
of size Np

Next Generation
 Population
of size NpTrial VectorMutant Vector

Xi
(G)

Ui
(G)Vi

(G)

 

Figure – 1 Steps of Differential Evolution Algorithm 

General Optimization Process of DE Algorithm  

The general scheme of DE method is quite similar to 

other evolutionary algorithms. At every generation G, DE 

maintains a population P
(G)

 of size Np vectors consisted 

of floating point encoded individuals or candidate 

solutions to the problem, which evolves throughout the 

optimization process  to find global solutions as shown in 

equation (1). 

P
(G)

 = [ X1
(G)

  ……… Xi 
(G) 

,……….. XNp 
(G)

 ] 

………….. (1) 

Each individual or candidate solution Xi, is a D-

dimensional vector that contains as many parameters as 

the problem decision parameters, D, to be optimized. 

Xi
(G)

 = [ X1, i 
(G)

  ……… Xj, i 
(G)

  ,…XD, i 
(G)

 ] 

…..………. (2)   

Where  i = 1, 2, 3, …. Np;    j = 1, 2, 3, ….…. D;  

G = generation or iteration number. 

The Differential Evolution optimization process is 

conducted by means of the following operations: 

I. Initialization 

The first step in the DE optimization process is to 

create an initial population of candidate solutions by 

assigning random values to each decisions parameter of 

each individual of the population.  

Such values must lie inside the feasible bounds of the 

decision variable and can be generated by equation (3). 

In case a preliminary solution is available, adding 

normally distributed random deviations to the nominal 

solution often generates the initial population. 

 X j,i 
(G=0)

 = X j
min

 +  j (X j
max 

  X j
min 

 ) 

…..…. .. (3) 

Where i = 1,2, …...  Np; j = 1,2, …..  D; 

Xj
min

  &  Xj
max

 = Lower & Upper Bound of the jth 

decision parameter respectively.  

j  =  Uniformly Distributed Random Number within 

[0,1] generated a new for each value of j. 

X ji 
(G=0) 

 = Initial value (G=0) of the jth parameter of 

the ith individual vector. 

Once every vector of the population has been 

initialized, its corresponding fitness value is calculated 

and stored for future reference. 

II. Mutation 

After the population is initialized, the operators of 

mutation, crossover and selection create the population of 

the next generation P
(G+1)

 by using the current population 

P
(G)

. At every generation G, each vector in the population 

has to serve once as a target vector Xi
(G)

. For each target 

vector, a mutant vector Vi
(G)

 = [ V1, i 
(G)

  …... VD, i 
(G)

 ] 

is generated by perturbing a randomly selected vector 

(Xa) with difference of two other randomly selected 

vectors (Xb & Xc). 

 Vi
(G)

 = Xa
(G)

  +  F (Xb
(G)

  Xc
(G)

 ) ………….…… (4) 

Where Xa
(G)

 ,  Xb
(G)

 and  Xc
(G)

  are randomly chosen 

vectors from the set {1,2, …… Np} and subjected to the 

condition that a  b  c  i. Xa
(G)

 ,  Xb
(G)

 and  Xc
(G)

  are 

selected anew for each parent vector. F is a user-defined 

constant known as the “scaling mutation factor”, which is 

typically chosen from within the range [0, 2]. 

III. Crossover 

In order to increase the diversity of the perturbed 

parameter vectors, the crossover operation is used. The 

crossover operation generates trial vectors (Ui
(G)

) by 

mixing the parameters of mutant vectors (Vi
(G)

) with the 

target vectors (Xi
(G)

) according to selected probability 

distribution like binomial or exponential. 

U
(G)

j,i
X

V

(G)

(G)

j,i

j,i
 jif

otherwise

CR   or  j = q

 ……….. (5) 

Where j is a uniformly distributed random number 

within the range [0,1] generated anew for each value of j. 

CR is known as the Crossover Rate Constant and is a 

user-defined parameter within the range [0, 1]. The index 

q is randomly chosen from the interval [1,….. D], which 

ensures that the trial vector (Ui
(G)

) gets at least one 

parameter from the mutant vector (Vi
(G)

). When CR=1, 

for example, every trial vector parameter comes from 

Vi
(G)

. On the other hand, if CR=0, all but one trial vector 

parameter comes from the target vector to ensure that 

Xi
(G)

 differs from Xi
(G+1)

 by at least one parameter. 

IV. Selection 

Finally, the selection operator is applied in the last 

stage of the DEA procedure. The selection operator 

chooses the vectors that are going to compose the 

population in the next generation.  
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This operator compares the fitness of the trial vector 

and the corresponding target vector and selects the one 

that provides the best solution. The fitter of the two is 

then allowed to advance into the next generation 

according to equation (6). 

X
(G+1)

j,i
X

XU U f (f ( ))

(G)

(G)(G) (G)

j,i

j,ij,i j,iif

otherwise

…………. (6) 

This optimization process is repeated for several 

generations, allowing individuals to improve their fitness 

as they explore the solution space in search for optimal 

value. The overall optimization process is stooped 

whenever maximum number of generation is reached or 

other predetermined convergence criterion is satisfied. 

V. Stopping Criteria 

An important aspect for a stochastic algorithm is 

deciding when to stop the algorithm. We know that 

stochastic methods converge with a probability of 1 to an 

optional value as time goes to infinity. However 

upholding such a convergence guarantee is impractical. 

Therefore the user will need to decide on some preset 

conditions that will terminate the algorithm. Deciding on 

what stopping criteria to use is dependent on many 

factors such as the application of the algorithm, accuracy 

required, cost and time constraints. Some of the most 

common stopping criteria used for the DE algorithm 

include: 

 A preset number of maximum generations 

 The difference between the best & worst function 

values in the population is very small. 

 The best function value has not improved beyond 

some tolerance value for a predefined number of 

generations. 

 The distance between solution vectors in the 

population is small. 

Selection of Control Parameters 

DE has three essential control parameters: the 

population size Np, the weight applied to the random 

differential or the scaling factor F and the crossover 

constant CR. Proper selection of control parameters is 

very important for algorithm success and performance. 

The optimal control parameters are problem specific. 

Therefore, the set of control parameters that best fit each 

problem have to be chosen carefully. The most common 

method used to select control parameters is parameter 

tuning. Parameter tuning adjusts the control parameters 

through testing until the best settings are determined. 

The population size determines the number of 

individuals in the population and provides the algorithm 

enough diversity to search the solution space.  

Originally suggested value for the scaling factor F was 

in the range [0, 2]. However, empirical testing has shown 

that for most problems the optimal value for F is in the 

range [0.4, 1]. Scaling factor F controls the amount of 

perturbation in the mutation process. The crossover 

constant, CR, is a value in the range [0, 1] and is used to 

control the diversity of the population.  

In order to avoid premature convergence, F or Np 

should be increased, or CR should be decreased. Larger 

values of F result in larger perturbations and better 

probabilities to escape from local optima, while lower Cr 

preserves more diversity in the population thus avoiding 

local optima. 

III. OPTIMAL POWER FLOW 

The set of optimization problems in electrical power 

system engineering is known collectively as optimal 

power flow (OPF). In 1962, Carpentier introduced OPF 

as an extension to the problem of economic dispatch 

(ED) of generation in electrical power systems. 

Carpentier’s key contribution was the inclusion of the 

electrical power flow equations in the ED formulation. 

Today, the defining feature of OPF remains the presence 

of power flow equations in the set of equality constraints. 

In general, OPF includes any optimization problem 

which seeks to optimize the operation of an electric 

system (specifically, the generation and transmission if 

electricity) subject to the physical constraints imposed by 

electrical laws and engineering limits on the decision 

variables.  

The objective of an Optimal Power Flow (OPF) 

algorithm is to find steady state operation point which 

minimizes generation cost, loss etc. while maintaining an 

acceptable system performance in terms of limits on 

generators real and reactive powers, line flow limits, 

output of various compensating devices etc. 

The optimal power flow is a power flow problem in 

which certain controllable variables are adjusted to 

minimize an objective function such as the cost of active 

power generation or the losses, while satisfying physical 

and operating limits on various controls, dependent 

variables and function of variables. The types of controls 

that an optimal power flow must be able to accommodate 

are active and reactive power injections, generator 

voltages, transformer tap ratios and phase shift angles. In 

other words, the optimal power flow problem seeks to 

find an optimal profile of active and reactive power 

generations along with voltage magnitudes in such a 

manner as to minimize the total operating costs of a 

thermal electric power system, while satisfying network 

security constraints.  
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F (P ) = gii 
2



NG 

i=1


NG 

i=1
(a b )i + i gi + i giP c PMinimize F =r

P = 0gi   P PD L   

NG 

i=1

An Optimal Power Flow (OPF) function schedules the 

power system controls to optimize an objective function 

while satisfying a set of nonlinear equality and inequality 

constraints. The equality constraints are the conventional 

power flow equations; the inequality constraints are the 

limits on the control and operating variables of the system. 

Mathematically, the OPF can be formulated as a 

constrained nonlinear optimization problem. 

System Variables 

In OPF, the decision variables are often partitioned 

into a set of control (independent) variables “u” and a set 

of state (independent) variables “x”. At each search step, 

the OPF algorithm fixes “u” and derives “x” by solving a 

conventional PF. To analyze the power system network, 

there is a need of knowing the system variables. They 

are: 

I. Control variables “u” (Pg & Qg): The real and 

reactive power generations are called control 

variables since they are used to control the state of 

the system. 

II. Disturbance variables “p” (Pd & Qd): The real and 

reactive power demands are called demand variables 

since they are beyond the system control and hence 

considered as uncontrolled or disturbance variables. 

III. State variables “x” (*V*& ): The bus voltage 

magnitude *V*& its phase angle  dispatch the state 

of the system. These are dependent variables that are 

being controlled by control variables. 

IV. PROBLEM FORMULATION 

The OPF problem is an optimization problem that 

determines the power output of each online generator that 

will result in a least cost system operating state. In 

general, OPF problem can be formulated in the following 

form:  

Minimize f (u, x) ……………………............… (7) 

subject to  g (u, x) = 0 

    h (u, x)  0 

where,  u is the set of controllable variables in the 

system; 

 x is the set of state variables; 

 f (u, x) is the objective finction; 

 g (u, x) & h (u, x) are respectively the set of 

equality and inequality constraints. 

Cost Function: The objective of the OPF is to minimize 

the total system cost by adjusting the power output of 

each of the generators connected to the grid. The total 

system cost is modeled as the sum of the cost function of 

each generator. The generator cost curves are modeled 

with smooth quadratic functions, given by: 

 

 

    

…..…..(8) 

Where, Fr  = Fuel cost of the system; 

Fi   = Fuel cost of the ith generating unit of the system; 

Pgi  = Real power generated in the ith generating unit; 

NG = Number of generators; 

ai, bi, ci = Cost coefficients of the ith generator. 

Equality Constraints: The equality constraint is 

represented by the power balance equation that reduces 

the power system to a basic principle of equilibrium 

between total system generation and total system loads. 

Equilibrium is only met when the total system generation 

equals the total system load demand (PD) plus system 

losses (PL). 

 

………………….…..…… (9) 

 

Where, Pgi = Real power generated at ith bus; 

NG = Number of generator buses. 

Inequality Constraints: For static load flow equations 

solution to have practical significance, all the state and 

control variables must be within the specified limits. 

These limits are represented by specifications of power 

system hardware and operating constraints, and are 

described as follows: 

 Limits on real power generation 

Pgi
min

    Pgi    Pgi
max   

( i = 1, 2, …… NG ) 

 Limits on reactive power  

Qgi
min

    Qgi    Qgi
max   

( i = 1, 2, …… NG ) 

 Limits on voltage magnitudes 

*Vi*
min

    *Vi*    *Vi*
max   

( i = 1, 2, …… 

NB ) 

The limit arises due to the fact that power system 

equipments are designed to operate at fixed voltage 

within the allowable variations of + (5 – 10) % of rated 

values. 

V.   SYSTEM INVESTIGATED (IEEE – 30 BUS SYSTEM) 

The IEEE 30 Bus Test case represents a portion of the 

American Electric Power System (in the Midwestern US) 

as of December, 1961, which is made available to the 

electric utility industry as a standard test case for 

evaluating various analytical methods and computer 

programs for the solution of power system problems. 

The IEEE - 30 bus power system model as shown in 

Figure 2. We have considered a modal system of IEEE – 

30 bus system for simulation of the suggested method. 

The specification of the IEEE-30 Bus system is described 

in the table -1 & table – 2 [14].  
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The proposed algorithm has been implemented on 

IEEE-30 bus power system model. We have tested the 

performance of the proposed algorithm with 

effectiveness under different load conditions. For 

consideration we had vary the load from 100% to 140% 

for the base load.  

Table – 1  

 System Description Of Case Study 

 
Table – 2 

Generator Operating Limts & Fuel Cost Coeefifients 

S. 

No. 

Generation 

at bus # 

Pgi
min 

(MW) 

Pgi
max 

(MW) 

ai  

(Rs/h) 

bi  

(Rs/MWh) 

ci  

(Rs/MWh) 

1 1 50 200 0 2.00 0.00375 

2 2 20 80 0 1.75 0.01750 

3 5 15 50 0 1.00 0.06250 

4 8 10 35 0 3.25 0.00830 

5 11 10 30 0 3.00 0.02500 

6 13 12 40 0 3.00 0.02500 

 

TABLE – 3 

 Bus Load Data Of The IEEE – Bus System 

Bus Load (MW) Bus Load (MW) Bus Load(MW) 

01 0.0 11 0.0 21 17.5 

02 21.7 12 11.2 22 0.0 

03 2.4 13 0.0 23 3.2 

04 7.6 14 6.2 24 8.7 

05 94.2 15 8.2 25 0,0 

06 0.0 16 3.5 26 3.5 

07 22.8 17 9.0 27 0.0 

08 30.0 18 3.2 28 0.0 

09 0.0 19 9.2 29 2.4 

10 5.8 20 2.2 30 10.6 

 

 

 
 

 

 

 

 

 
 

Table – 4 

 Parameter Values Of DE Algorithm 

Poplation Size, Np 20 Mutation Probablity, F 0.8 

Maximum no. of 

Generations, itermax 

100 Crossover Probabilty 

Constant, CR 

0.8 

 

 
 

Figure - 2  Single line diagram of the IEEE 30-bus test system 

VI. SIMULATION AND RESULTS 

Optimal Power flow (OPF) is allocating loads to plants 

for minimum cost while meeting the network constraints. 

It is formulated as an optimization problem of 

minimizing the total fuel cost of all committed plant 

while meeting the network (power flow) constraints. The 

simulations were performed using MATLAB software.  

We have considered the variation of the product cost 

with respect to the number of iterations for two cases, 

one with 100% load and other with 140% load. In both 

the cases, as number of iterations increases the optimal 

value of cost function converges and settles at a constant 

minimum value after a certain number of iterations. 

Under normal conditions it settles to the minimum in 

lesser number of iterations, whereas it took more number 

of iterations under stressed conditions.   

 

 

 

S. N. Variables 
IEEE 30 Bus 

System 

1 Buses 30 

2 Branches 41 

3 Generators 6 

4 Generator buses 6 

5 Shunt Reactors 2 

6 Tap changing transformers 4 
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The analysis of the different plots and the simulation 

of the results so obtained, it is clear that differential 

evolutions algorithm is working effectively in case of the 

stressed conditions too.  
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Figure-3  Cost of Production Vs No. of Iterations at 100% Load  
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Figure-4  Cost of Production Vs No. of Iterations at 140% Load  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table – 5 

Variation In Minimum Cost At Different Iterations 

Number of 

Iterations 

Cost of Production 

at 100% Load in 

Rs/MWh 

Cost of Production at 

140% Load in 

Rs./MWh 

5 803.794 1276.320 

10 801.975 1273.731 

15 801.975 1273.731 

20 801.966 1272.147 

25 801.966 1271.042 

30 801.852 1271.042 

35 801.852 1270.885 

40 801.846 1270.880 

45 801.844 1270.712 

50 801.843 1270.712 

55 801.843 1270.710 

60 801.843 1270.709 

65 801.843 1270.707 

70 801.843 1270.706 

75 801.843 1270.706 

80 801.843 1270.706 

85 801.843 1270.706 

90 801.843 1270.706 

95 801.843 1270.706 

100 801.843 1270.706 

VII. CONCLUSION 

The result is showing that DE algorithm is efficiently 

working in stressed conditions also as the load increases 

up to 140 %. This shows that DE algorithm can perform 

well even at large systems also. If we compare the 

conventional method it is very clear that DE is simple 

and can be applied to mix-integer problems also.   
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