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Abstract— The effect of iron on the uniformity of the 

field produced by an axisymmetric thick solenoid is 

considered. Here two solution to the vector potential and 

hence the magnetic field components will be derived. The 

first solution is obtained using the complete elliptic integrals 

of Legendre; the other is obtained using the Euler-

Maclaurin summation formula, thus converting the doubly 

infinite summation into an integral. Numerical results are 

presented as are the field distribution. 

Index Terms— Time independent field, Elliptic Integrals 

of the first and second kind, the Euler-Maclaurin 

Summation formula. Component.  

I. INTRODUCTION  

In this paper magnetostatic field calculations 

associated with an axisymmetric conductor of rectangular 

cross section situated equidistant from two semi-infinite 

regions of iron of finite permeability are computed. The 

magnetostatic field associated with iron-free 

axisymmetric systems has been considered by Boom and 

Livingstone [2], Garrett [3] and many others. Caldwell 

[4], Caldwell and Zisserman [5] and [6] have carried out 

work which takes account of the effects of the presence 

of iron on such systems. The main advantages of 

introducing iron are: 

i. Higher fields are provided for the same current, 

producing substantial power savings over 

conventional conductors. 

ii. The field uniformity is improved even for 

superconducting solenoids by placing the iron in a 

suitable position.  

The geometry considered is shown in figure 1, a 

toroidal conductor V’ of rectangular cross section having 

inner radius A, outer radius B and length L-2, is located 

equidistant between two semi-infinite regions of iron of 

finite permeability a distance L apart, the axis of the torus 

being perpendicular to the iron boundaries. The region V 

between the conductor and the iron is assumed insulating. 

Cylindrical polar coordinates (r,, z) are used where r 

and z are normalized in terms of L.  

Prior to Caldwell [3] the presence of iron in 

axisymmetric systems had been largely ignored see 

Loney [8] and Garrett [3] et al. In cylindrical polar 

coordinates Maxwell’s equations give: 
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where e is a unit vector in the direction of increasing 

 and C is a constant with   
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where 
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With boundary conditions 
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Using the integral representation of the vector 
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in cylindrical coordinates  
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II. THE SOLUTION TO THE MAGNETIC VECTOR POTENTIAL 

USING THE COMPLETE ELLIPTIC INTEGRALS 

In order to obtain the solution to the vector potential 

Aφ(r,z) and hence the field components Br(r,z) and Bz(r,z) 

use of the complete elliptic integrals of Legendre is 

made. Using expression (2) if integration with respect to 

  is done first the complete Elliptic Integrals of 
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obtained. Defining  

 




 


2

0 2/12 )cos(

cos
d

x
I  

where 2
 = w

2
+x

2
+r

2
 and =2xr so that: 

2

1/ 20

cos

(1 cos )

x
I d

k








 






  

 

 

 

where k =
2




, so that  

 

2

1/20

1 cos 1

2 (1 cos )

k
I d

r k





 








 
 

  

 


 
 2

0

2/1)cos1(
2

dk
r

I  

                                      






 2

0 2/1)cos1(2 k

d

r
 

So that with slight manipulation this can be written as  
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Where K() and E() are the complete Elliptic 

integrals of the first and second kind respectively. 

Provided 0<<1 these integrals may be expressed as a 

series which is uniformly convergent and thus may be 

integrated term by term. So considering this inequality 

with: 
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i.e. 4xr > 0 which is true , 0x r  . Similarly the 

second inequality gives 
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that the series is uniformly convergent. Hence using  
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gives 
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III. CONSIDERING THE HIGHER ORDER TERMS OF 
n  
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Evaluating the higher order terms as shown in Pavlika 

[9], it can be shown that:   
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Where the i,j, i=3, j=2,3,…7 are defined by 

expression (3). 

IV. CALCULATING THE RADIAL AND AXIAL FIELD 

COMPONENTS. 

Since B A , using cylindrical coordinates this 

gives  
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Results for ( , ),A r z  ( , )rB r z  and ( , )zB r z  using 

expressions (3), (4) and (5) with a=0.9, b=1.1,  = 0.05 

and 0j = 100 are shown in tables 1, 2 and 3 respectively.   

V. CALCULATION OF THE FIELD COMPONENTS USING 

THE EULER-MACLAURIN SUMMATION FORMULA 

Here use of the Euler-Maclaurin summation will be 

made to convert the doubly infinite summation 

corresponding to the image coils to an integral. Much 

literature exists on the derivation of the formula thus only 

the final formula will be quoted. We have expression (2) 
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To proceed with this method these special functions 

must be written in a form so that they can be integrated 

over the volume of interest. 

 

VI. NEUMANN’S FUNCTION, BESSEL FUNCTION OF THE 

SECOND KIND 

Here the Bessel function of the second kind has been 

obtained, taking the definition of the Neumann function 

as  



 


sin

)()(cos
)(

xJxJ
xN 
  

Where )(xJn is the usual Bessel function of the first 

kind of order n, evaluating )(xNn by l’Hopital’s rule for  

indeterminant forms (i.e. for n (integer)) gives  

n

n

n xJxJxN  
















 


|)()1()(

1
)(  

With  

nm

m

m

n

x

mnm
xJ





 













2

0 2
.

)1(!

)1(
)(  

Using 

)(log)( xxx
d

d
e




  

and 

)))(((log)(( z
dz

d
z

dz

d
e   

giving  

rnn

r

rn

r

r

enn

x

r

rn

rnFrF
x

rnr

x
xJxN

21

0

2

0

2
.

!

)!1(1

))()((
2

.
)!(!

)1(1

)
2

(log)(
2

)(













































 

Where F(r) and F(n+r) are the digamma functions 

(Abramowitz and Stegun [1]) arising from the 

differentiation of the gamma function when expressed as 

an infinite limit. Using properties of the digamma 

function gives: 
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Where ' is the Euler-Mascheroni constant 

(Abramowitz and Stegun [1]). So finally for n=0 the 

limiting value is:  
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The template is used to format your paper and style the 

text. All margins, column widths, line spaces, and text 
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note peculiarities. For example, the head margin in this 

template measures proportionately more than is 

customary. This measurement and others are deliberate, 

using specifications that anticipate your paper as one part 

of the entire proceedings, and not as an independent 

document. Please do not revise any of the current 

designations. 

VII. THE WEBER FUNCTION AND ITS RELATION TO THE 

STRUVE FUNCTION  

By definition the Weber function may be expressed as  
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Where to avoid confusion the Euler-Mascheroni 

constant has been denoted by '  and  cosx . Thus 

integration over the volume of interest can now be 

performed. That is  
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VIII. CONSIDERING THE ORDER   TERM IN THE 

EXPRESSION FOR ),( zrA  
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It can be shown that (Gradsteyn and Ryzhik [7]) 
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Pavlika [10] has shown that these integrals containing 

the series of the hypergeometric function are uniformly 

convergent in the interval of integration so that with 

some algebraic manipulation it can be shown that Pavlika 
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IX. CONSIDERING THE ORDER 
0k TERM IN THE 

EXPRESSION FOR   

Considering the term and denoting this integral as 0K  

that is:  
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X. CONSIDERING THE ORDER 
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Where u = x + r and w = z - z’. Therefore  
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XI. CONSIDERING THE ORDER 
0  TERM IN THE 

EXPRESSION FOR ),( zrA . 

Considering the )( 0O term in equation (9) and 
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XII. CONSIDERING THE ORDER   AND   TERMS IN THE 

EXPRESSION FOR ),( zrA . 

Considering the )(O and )(O terms and denoting 
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It can be shown that (see Gradsteyn and Ryzhik [7])  
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For 1||,1,1 2  knm , where ),( qpB is the 

Beta function and ),,,( 2zcbaF  is the hypergeometric 

function whose convergence has already been discussed, 

thus 1 can easily be evaluated. Now the term containing 

the logarithm of   must be considered, denoting this 

integral as 2  then  
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Once again this integral has be computed see Pavlika 

[10], thus finally 
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Where 120 ,, KK and 2  are now known.  

XIII. CONCLUSIONS 

The two methods of solution were found to be in good 

agreement however more terms are required for the 

method of solution based on the Euler-Maclaurin 

summation formula. The summations were performed 

from -200 to 200 with a change only in the fourth 

decimal place occurring when the number of terms in the 

summation was doubled. The effect of the permeability 

of the iron is shown in figures 2, 3, 4 and 5.   
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XIV. TABLES 

Table 1. 

Values of A(r,z) using the Elliptic Integrals of the 1st and 2nd kind, 

accurate O(8). 

r Z =10
3
 =10

2
 =10 =1 

   0 0.1 0 0 0 0 

0.1 0.1 0.89172 0.881238 0.7576 0.3481 

0.2 0.1 1.79492 1.762867 1.5141 0.6902 

0.3 0.1 2.69390 2.645277 2.2679 1.0201 

0.4 0.1 3.59466 3.528858 3.0178 1.3319 

0.5 0.1 4.49780 4.414002 3.7625 1.6196 

      

0.1 0.2 0.89782 0.882508 0.7642 0.3733 

0.1 0.3 0.89596 0.883737 0.7693 0.3926 

0.1 0.4 0.89920 0.884629 0.7726 0.4049 

0.1 0.5 0.89943 0.884955 0.7738 0.4091 

 

Table 2. 

Values of Br(r,z) using the Elliptic Integrals of the 1st and 2nd kind, 

accurate O(8). 

r z =10
3
 =10

2
 =10 =1 

0.1 0.1 5.832E-3 0.0163 0.1042 0.0362 

0.2 0.1 1.315E-2 0.0343 0.2120 0.0776 

0.3 0.1 2.344E-2 0.0556 0.3674 0.1426 

0.4 0.1 3.819E-2 0.0820 0.4521 0.1599 

0.5 0.1 5.887E-2 0.1151 0.5914 2.0972 

      

0.1 0.2 8.426E-3 0.0166 0.0852 0.2937 

0.1 0.3 8.083E-3 0.0136 0.0607 0.2072 

0.1 0.4 4.898E-3 0.0071 0.0316 0.0107 

0.1 0.5 0 0 0 0 

 
Table 3. 

Values of Bz(r,z) using the Maclaurin Series Expansion accurate 

O(r8). 

r Z =10
3
 =10

2
 =1 

   0 0.1 17.9170 17.6164 6.9822 

0.1 0.1 17.0150 17.6151 7.0023 

0.2 0.1 17.9091 17.6112 7.0628 

0.3 0.1 17.8991 17.6047 7.1635 

0.4 0.1 17.8852 17.5965 7.3046 

0.5 0.1 17.8673 17.5839 7.4860 

     

0.1 0.2 17.9732 17.6546 7.5233 

0.1 0.3 17.9723 17.6771 7.9259 

0.1 0.4 17.9861 17.6996 8.1803 

0.1 0.5 17.9867 17.7015 8.2673 

XV. FIGURES 

Figure 1. A toroidal conductor V’ of rectangular cross 

section located midway between two semi infinite 

regions of iron of finite permeability. The region V is 

assumed to be insulating.  
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Figure 2. The variation of Bz(r,z) with r and z for two semi-infinite 

regions of iron of unit permeability. :r=0.3, :r=0.2, •:r=0.1 
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    Figure 3. The variation of Bz(r,z) with r and z for two semi-

infinite regions of iron of infinite permeability. :r=0.1, :r=0.2, 

•:r=0.3 
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Figure 4. The variation of Br(r,z) with r and z for two semi-infinite 

regions of iron of unit permeability. :r=0.1, :r=0.2, 
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Figure 5. The variation of Br(r,z) with r and z for two semi-infinite 

regions of iron of infinite  permeability. :r=0.1, :r=0.2, •:r=0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


