"

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

Survey on Backend Frameworks, Secure Data Handling, and
API Integration for loT-Enabled Smart Agriculture Systems

Dr. Sumathy Kingslin®, K. Vaishnavi®

!Associate Professor, *Research Scholar, PG Department of Computer Science, Quaid-E-Millath Government College for
Women, Chennai — 02, India

Abstract-- The growing adoption of loT-based smart
agriculture systems requires robust backend architectures
capable of securely managing continuous sensor data and
delivering real-time insights to end users. This study presents
a concise survey of existing backend frameworks, secure data-
handling techniques, and APl mechanisms used in modern
agricultural 10T platforms. Literature shows a strong
preference for lightweight backend technologies such as Flask
due to their compatibility with Python-based Al models, while
MongoDB remains widely used for storing unstructured
sensor datasets. Common security practices include AES
encryption for protecting sensitive farm information and
JWT-based authentication for implementing stateless, multi-
role access control. The survey also identifies persistent gaps,
including limited end-to-end security, fragmented system
designs, and insufficient support for young farmers. The
findings highlight the need for an integrated, secure, and
scalable backend layer—addressed in the proposed Phase 2
architecture—to ensure reliable loT data processing and
provide a strong foundation for subsequent blockchain-
enabled agricultural services.

Keywords-- loT-based Smart Agriculture, Backend
Frameworks, Flask API, Secure Data Handling, AES
Encryption, JWT Authentication, MongoDB Storage,

RESTful Services, Role-Based Access Control, Real-Time
Sensor Data.

I. INTRODUCTION

The rapid expansion of loT-enabled smart agriculture
has transformed traditional farming by enabling continuous
monitoring of soil conditions, crop health, and
environmental parameters. While sensor networks generate
valuable real-time data, the effectiveness of these systems
depends on a reliable backend capable of processing,
storing, and securing the collected information. Phase 2 of
modern smart farming architectures focuses on building
this essential backend layer, which acts as the bridge
between field-level 10T devices, Al-based analytics, and
user-facing web or mobile platforms.

299

Existing agricultural systems often struggle with
challenges such as inconsistent sensor data, insecure
communication channels, and limited mechanisms for user
authentication. To overcome these issues, researchers
emphasize the use of lightweight backend frameworks,
secure API design, efficient database selection, and strong
encryption methods. Technologies like Flask provide a
flexible and Al-compatible API server, while MongoDB
supports high-speed storage of heterogeneous sensor
values. Meanwhile, AES encryption and JWT
authentication ensure data confidentiality and controlled
access for farmers, buyers, and administrators.

This article presents a focused survey of backend and
security approaches commonly used in loT-based
agricultural platforms. By analysing current practices and
identifying existing gaps, the study highlights the need for
a unified, secure, and scalable backend architecture—
forming the foundation for the proposed Phase 2
implementation in this project.

Il. REVIEW OF LITERATURE

Recent work on loT-enabled smart agriculture
emphasizes lightweight, Al-friendly backend stacks, robust
storage for high-frequency sensor streams, and pragmatic
security measures to protect farm data. Several prototype
and survey papers report that Python-based
microframeworks (notably Flask) are commonly adopted in
agricultural research because they integrate directly with
machine-learning pipelines and enable rapid prototyping of
REST APIs for sensor ingestion and model inference.

For time-series sensor data, the literature compares
document stores (e.g., MongoDB) and specialized time-
series databases (e.g., InfluxDB/TimescaleDB). Many
studies conclude MongoDB is favored in prototypes
because its JSON document model matches the structure of
0T payloads and simplifies development, while time-series
DBs can offer better compression and query performance
for large-scale telemetry—Ileading authors to recommend a
hybrid approach depending on workload characteristics.

o

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

Security is a central theme. Symmetric ciphers such as
AES (commonly AES-128) remain the default for on-
device and backend data protection due to hardware
support and acceptable performance on constrained
devices; however, recent analyses highlight implementation
caveats and resource trade-offs on low-power
microcontrollers, prompting research into lightweight
alternatives or careful AES parameter selection.

Authentication and authorization practices for loT
systems have been widely surveyed. JWT (JSON Web
Token) is frequently used in RESTful loT backends and for
securing API access because of its statelessness and easy
integration with web/mobile clients, though research also
warns about secure token handling, rotation, and revocation
strategies. Broader surveys of loT
authentication/authorization recommend layered
approaches (device identity, transport security, token
management, and RBAC/ABAC for fine-grained access
control).

API design patterns in the agricultural 10T literature
favor REST for device-to-server communication, often
with validation middleware (Pydantic/Marshmallow) and
logging to detect faulty sensors. Several applied systems
add message-brokers (MQTT) or WebSocket layers for
real-time dashboards while keeping REST endpoints for
CRUD, authentication, and administrative tasks.

Across the surveyed sources, recurring gaps appear: (1)
few end-to-end architectures integrate lightweight backend,
in-server ML inference, robust storage, and blockchain
traceability in a single, evaluated system; (2) many
prototypes secure communication channels (TLS/MQTT)
but do not apply encryption to persisted data or implement
token revocation; (3) user-centered design for youth
adoption (simplified dashboards, role-specific UX) is
underexplored. These gaps motivate Phase 2 choices such
as Flask + MongoDB + AES + JWT combined with clear
RBAC policies.

I11. OVERVIEW OF BACKEND FRAMEWORKS

Modern loT—agriculture backends must handle high-
frequency sensor writes, APl access for web/mobile
dashboards, integration with Al inference, and secure
user/device authentication. Framework choice balances
development speed, Al compatibility, real-time support,
and production scalability.

Short comparison of common frameworks:

e Flask (Python) — Minimal, easy to prototype,
excellent for embedding Python ML models directly.
Best for research prototypes and Phase-2
implementations where in-server inference and rapid
development matter. Requires adding libraries for
validation, async handling, and large-scale production
concerns.

o FastAPl (Python) — Modern, fast (ASGI), built-in
validation (Pydantic), automatic OpenAPI docs, and
great async support. Strong candidate when you want
both Python/ML compatibility and higher throughput
than Flask without much extra boilerplate.

e Django (Python) — Batteries-included (ORM, admin,
auth). Good for large, data-centric applications with
complex business logic (user management,
transactions). Heavier to set up; overkill for simple
sensor ingestion but useful if you need robust admin
features quickly.

o Node.js (Express / NestJS) — Excellent for real-time
streaming, WebSocket/MQTT bridging, and high
concurrency. Use when you need event-driven
pipelines or prefer JavaScript stack for
frontend/backend parity. Less direct ML integration
(requires model-serving or microservice approach).

e Spring Boot (Java) — Enterprise-grade, strong for
high-throughput, strongly typed systems with
complex transactions. More heavyweight; chosen
when long-term maintainability, strong typing, and
corporate deployment standards matter.

jpublish sensor data

Edge/Network
¥

MQTT Broker API Gateway | Load Balancer
i r s

\{ngest tbridgel / webhook [REST calls (Wabs / Mobile)

.
. [Backend sewi:E\
— ¥
af

\push updates

APl Service Realtime Gateway
(Flask/FastAPl) {Nodejs / WebSocket)

7
[token validation (JWT) ™ request inferance / batch jobs

Ll £

Object Storage

Auth Service ML Inference Service
1) {Analytics / Logs)

(WT, RBAC} (Pythan model

\model data predictions /

FIG 1: BACKEND ARCHITECTURE FOR lIoT-ENABLED SMART
AGRICULTURE SYSTEM

'

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

Figure 1 illustrates the overall backend architecture used
in Phase 2 of the smart agriculture system. IoT devices
deployed in the field send sensor data to an MQTT broker,
which acts as the initial communication layer. The API
service (implemented using Flask or FastAPI) receives this
data, performs validation, and forwards it to the MongoDB
database for secure storage. The backend also interacts with
a dedicated authentication service that manages JWT-based
identity verification and role-based access control. An ML
inference module provides real-time predictions to the API
when required. A real-time gateway (such as a Node.js
WebSocket service) pushes live updates to the web and
mobile dashboards. This architecture ensures efficient data
ingestion, strong security, Al integration, and seamless
communication between devices, backend services, and
user interfaces.

IV. SECURE DATA HANDLING METHODS

Secure data handling is essential in loT-enabled smart
agriculture systems because sensor values, user credentials,
and marketplace transactions must remain protected
throughout their lifecycle. The backend must ensure
confidentiality, integrity, authenticity, and controlled
access while processing high-frequency sensor data from
distributed farm environments.

The first layer of protection involves securing data-in-
transit. Agricultural 10T devices often transmit readings
over constrained networks, making them vulnerable to
interception. To mitigate this, systems commonly employ
TLS/HTTPS encryption or device-to-broker secure
channels. For additional protection, sensitive fields such as
humidity, soil data, or fertilizer information can be
encrypted at the device level using AES symmetric
encryption, which provides strong security with low
computational overhead suitable for 10T microcontrollers.

Once the data reaches the backend, data-at-rest security
becomes crucial. Databases such as MongoDB store large
volumes of JSON-based sensor records, making structured
encryption and access control essential. Sensitive
information is encrypted before storage, and role-based
permissions restrict who can view or modify specific
datasets. Database-level authentication and I1P-based access
rules further reduce unauthorized access risks.

Authentication and authorization mechanisms form
another core component of secure handling. JWT (JSON
Web Token) is widely used to validate every request
coming from the front-end or mobile apps. Since JWTs are
stateless, the backend efficiently verifies user identity
without frequent database lookups.

301

Combined with role-based access control, the system
ensures that farmers, buyers, administrators, and youth
users each access only the features they are authorized to
use.

Finally, robust input validation and error-handling
procedures protect the system from malformed packets,
sensor failures, and API abuse. Validation layers prevent
SQL/NoSQL injection attacks, filter out noisy or corrupted
sensor values, and maintain the overall integrity of the data
pipeline.

Together, these security measures create a trustworthy
and resilient backend capable of protecting sensitive
agricultural information while supporting real-time
decision-making and future blockchain-based traceability.

loT DEVICE

Encrypt Sensor Data (AES-128)

AES Encryption Module
(Data Encryption/Decryption)

/SEﬂd Encrypted Payload

Secure Transport Layer
(TLS/HTTPS/MQTT-S)

%ﬁl Reguest (POST /sensor

APl Server
(Flask/FastAPI)

Validate JWT Tukeﬂ/oke’n Venfed&i Validated & Encrypted Data \Retrieval with Access Control

JWT Auth Service _"
(Token Verification)

uthorized Response

MongnDB
(Encrypted Sensor Storage)

FIG 2: SECURE DATA FLOW IN THE IOT-ENABLED SMART
AGRICULTURE BACKEND

Figure 2 illustrates how sensor data moves securely
through the backend architecture. 10T devices encrypt the
collected values using lightweight AES before transmitting
them to the API server over secure channels. Upon
receiving the request, the backend validates the JSON
payload and verifies the user or device identity using JWT-
based authentication. The validated data is then stored
securely in the MongoDB database with role-based
permissions controlling access. Finally, the backend returns
responses only after ensuring proper authorization,
maintaining confidentiality and integrity throughout the
entire flow.

o

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

1. APl INTEGRATION APPROACHES

In loT-enabled smart agriculture systems, the backend
must provide reliable and efficient APIs to support
communication between field devices, Al inference
modules, and web or mobile dashboards. API design
ensures smooth data ingestion, validation, secure access,
and retrieval of processed results.

RESTful APIs

Most research and practical implementations favor
REST APIs due to their simplicity, scalability, and
compatibility with both web and mobile platforms. REST
endpoints typically support CRUD operations for sensor
data, user management, and transaction records. Common
practices include:

e Using JSON as the standard data format for sensor
payloads

e Validating incoming requests with schemas (e.g.,
Pydantic or Marshmallow)

e Returning structured responses with proper HTTP
status codes

e Logging requests and errors for monitoring and
troubleshooting

Real-Time Data APls

Some systems require real-time streaming of sensor
updates to dashboards. For these scenarios:

o WebSockets or MQTT Dbridging services
complement REST APIs for low-latency updates

e API endpoints manage authentication and filtering,
while the real-time gateway pushes data live to clients

Security in API Integration

All APl endpoints enforce JWT authentication and
role-based access control. Requests from mobile apps,
web dashboards, or edge devices are validated for:

o Token integrity

e Expiry and revocation

o Permissions for specific operations (read/write/admin)

Together, REST endpoints for CRUD operations and
real-time API channels form a robust interface for the
backend to manage high-frequency loT data while
maintaining security and integrity.

302

IoT Device

05T fsensor-data (JSON)

~
a) \push reaktime updates
|
¥

| -

Service

(Auth eal-Time Gateway
| nse wi MongaD!
Response with data | yut Tai S oo gy - | (WebSocket/MQTT}

_—TTve sensor updates

WebjMobile Dashboard

FIG 3: API INTEGRATION FLOW FOR loT SMART
AGRICULTURE BACKEND

Figure 3 depicts the API integration approach in the
Phase-2 backend. loT devices send sensor data to REST
endpoints on the API server, which validates requests using
JWT authentication and RBAC. The backend stores
validated data in MongoDB and returns responses to web
or mobile clients. For live dashboards, a real-time gateway
(WebSocket or MQTT bridge) pushes sensor updates to
subscribed clients. This combination of REST and real-
time APIs ensures efficient, secure, and scalable
communication across all system layers.

V. |IDENTIFIED RESEARCH GAPS

Despite significant progress in loT-enabled smart
agriculture, the surveyed literature highlights several
persistent gaps that Phase 2 aims to address:

1. Lack of Integrated Backend Architectures — Many
existing systems focus either on loT data acquisition,
Al inference, or blockchain traceability
independently. Very few studies implement a fully
integrated backend that combines sensor ingestion,
secure storage, real-time analytics, and Al prediction
in a single pipeline.

2. Incomplete Security Measures — While TLS or
MQTT-secured channels are common, many systems
do not encrypt data at rest or implement robust token
management. Role-based access control and end-to-
end encryption are often overlooked, leaving sensitive
agricultural data partially exposed.

3. Limited Real-Time Data Support — Several prototypes
rely solely on REST APIs for data ingestion, which
may introduce latency and fail to meet real-time
monitoring requirements for critical parameters like
soil moisture, temperature, or crop health.

L~V

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

4. Insufficient User-Centric Design — Research rarely
considers the usability needs of different stakeholders
such as young farmers, buyers, and administrators.
Dashboards and APIs are often complex, limiting
adoption among youth and non-technical users.

5. Scalability and Extensibility Challenges — Many
backend frameworks are evaluated only on small-
scale deployments. Scaling to multiple farms,
thousands of sensors, and concurrent users remains
underexplored, limiting real-world applicability.

6. Limited Integration with Al and Future Blockchain
Modules — Backend systems frequently store raw
sensor data but do not directly integrate ML inference
pipelines or prepare data for blockchain-enabled
smart contracts, reducing automation and traceability
capabilities.

VI. RELEVANCE TO THE PROPOSED SYSTEM

The proposed backend design directly addresses the gaps
identified in the surveyed literature. By integrating a
lightweight framework (Flask/FastAPI) with MongoDB for
flexible sensor storage, the system ensures efficient
ingestion and storage of high-frequency loT data. AES
encryption secures sensitive sensor information both in
transit and at rest, while JWT-based authentication
combined with role-based access control (RBAC) enforces
strict user permissions for farmers, buyers, administrators,
and youth participants.

RESTful APIs provide reliable endpoints for CRUD
operations, whereas a real-time gateway
(WebSocket/MQTT) ensures low-latency monitoring for
dashboards. Input validation and error-handling layers
guarantee that noisy or corrupted sensor packets do not
compromise system integrity. The backend is also designed
to support seamless integration with Al inference modules
and future blockchain-based traceability layers, ensuring
end-to-end automation, security, and transparency.

In summary, the proposed system combines secure data
handling, robust API integration, real-time support, and
scalable backend architecture to create a reliable platform
that meets both research and practical requirements for
loT-enabled smart agriculture.

303

WebiMobile Dashboard

FIG 4: PROPOSED BACKEND ARCHITECTURE INTEGRATING
SECURITY, API, AND REAL-TIME PROCESSING

VII. CONCLUSION

The survey highlights that modern loT-enabled smart
agriculture systems rely heavily on robust backend
architectures capable of managing large volumes of
heterogeneous sensor data while ensuring security,
scalability, and real-time responsiveness. Existing studies
demonstrate significant progress in individual aspects such
as loT data acquisition, cloud communication, or machine
learning integration, but they often lack a unified
framework that combines secure data handling, efficient
API design, and adaptable backend technologies.

The proposed system architecture in Phase 2 addresses
these limitations by integrating lightweight backend
frameworks (Flask/FastAPl), AES-based encryption for
secure data storage and transmission, JWT authentication
with role-based access control, and flexible API
mechanisms supporting both REST and real-time
communication. This unified approach ensures the
confidentiality, integrity, and availability of agricultural
data while enabling seamless communication between 10T
devices, Al models, user dashboards, and future blockchain
modules.

Overall, the survey reinforces the relevance and
necessity of a secure, scalable, and extensible backend
foundation for smart agriculture applications. The insights
derived from this study directly support the design choices
of the proposed system and lay a strong groundwork for
Phase 3, where blockchain-based traceability and smart
contract automation will further enhance transparency,
farmer empowerment, and trust in agri-commerce.

[

[2]
[3]
[4]

N

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

REFERENCES

A. D. Mishra, “Farmingo: A MERN and ML-Integrated Platform for
Smart, ..” Int. J. Adv. Eng. Res. Sci, 2025.
journals.latticescipub.com

“InfluxDB vs. MongoDB — A comparison for time series
workloads,” InfluxData (technical paper). 3.1 years ago. InfluxData
M. Has, “Efficient Data Management in Agricultural IoT,” PMCID:
PMC11174974, 2024. PMC

P. Arpaia, “Problems of the advanced encryption standard in ...,
Comput. Secur. (article discussing AES on loT MCUs), 2020.
ScienceDirect

”»

304

[5]

6]
(71
(8]

K. Shingala, “JSON Web Token (JWT) based client authentication
in Message Queuing Telemetry Transport (MQTT),” arXiv, 2019.
arXiv

M. El-hajj et al., “A Survey of Internet of Things (IoT)
Authentication Schemes,” J. Netw. Comput. Appl., 2019. PMC

J. P. Diaz et al., “Authorization models for IoT environments: A
survey,” Comput. Commun., 2025. ScienceDirect

»

“Smart Secure with IoT: Agriculture Data based on Farm ...,
Zenodo preprint (AES extension in agriculture), 2019-2020.

