

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

299

Survey on Backend Frameworks, Secure Data Handling, and

API Integration for IoT-Enabled Smart Agriculture Systems
Dr. Sumathy Kingslin1, K. Vaishnavi2

1Associate Professor, 2Research Scholar, PG Department of Computer Science, Quaid-E-Millath Government College for

Women, Chennai – 02, India

Abstract-- The growing adoption of IoT-based smart

agriculture systems requires robust backend architectures

capable of securely managing continuous sensor data and

delivering real-time insights to end users. This study presents

a concise survey of existing backend frameworks, secure data-

handling techniques, and API mechanisms used in modern

agricultural IoT platforms. Literature shows a strong

preference for lightweight backend technologies such as Flask

due to their compatibility with Python-based AI models, while

MongoDB remains widely used for storing unstructured

sensor datasets. Common security practices include AES

encryption for protecting sensitive farm information and

JWT-based authentication for implementing stateless, multi-

role access control. The survey also identifies persistent gaps,

including limited end-to-end security, fragmented system

designs, and insufficient support for young farmers. The

findings highlight the need for an integrated, secure, and

scalable backend layer—addressed in the proposed Phase 2

architecture—to ensure reliable IoT data processing and

provide a strong foundation for subsequent blockchain-

enabled agricultural services.

Keywords-- IoT-based Smart Agriculture, Backend

Frameworks, Flask API, Secure Data Handling, AES

Encryption, JWT Authentication, MongoDB Storage,

RESTful Services, Role-Based Access Control, Real-Time

Sensor Data.

I. INTRODUCTION

The rapid expansion of IoT-enabled smart agriculture

has transformed traditional farming by enabling continuous

monitoring of soil conditions, crop health, and

environmental parameters. While sensor networks generate

valuable real-time data, the effectiveness of these systems

depends on a reliable backend capable of processing,

storing, and securing the collected information. Phase 2 of

modern smart farming architectures focuses on building

this essential backend layer, which acts as the bridge

between field-level IoT devices, AI-based analytics, and

user-facing web or mobile platforms.

Existing agricultural systems often struggle with

challenges such as inconsistent sensor data, insecure

communication channels, and limited mechanisms for user

authentication. To overcome these issues, researchers

emphasize the use of lightweight backend frameworks,

secure API design, efficient database selection, and strong

encryption methods. Technologies like Flask provide a

flexible and AI-compatible API server, while MongoDB

supports high-speed storage of heterogeneous sensor

values. Meanwhile, AES encryption and JWT

authentication ensure data confidentiality and controlled

access for farmers, buyers, and administrators.

This article presents a focused survey of backend and

security approaches commonly used in IoT-based

agricultural platforms. By analysing current practices and

identifying existing gaps, the study highlights the need for

a unified, secure, and scalable backend architecture—

forming the foundation for the proposed Phase 2

implementation in this project.

II. REVIEW OF LITERATURE

Recent work on IoT-enabled smart agriculture

emphasizes lightweight, AI-friendly backend stacks, robust

storage for high-frequency sensor streams, and pragmatic

security measures to protect farm data. Several prototype

and survey papers report that Python-based

microframeworks (notably Flask) are commonly adopted in

agricultural research because they integrate directly with

machine-learning pipelines and enable rapid prototyping of

REST APIs for sensor ingestion and model inference.

For time-series sensor data, the literature compares

document stores (e.g., MongoDB) and specialized time-

series databases (e.g., InfluxDB/TimescaleDB). Many

studies conclude MongoDB is favored in prototypes

because its JSON document model matches the structure of

IoT payloads and simplifies development, while time-series

DBs can offer better compression and query performance

for large-scale telemetry—leading authors to recommend a

hybrid approach depending on workload characteristics.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

300

Security is a central theme. Symmetric ciphers such as

AES (commonly AES-128) remain the default for on-

device and backend data protection due to hardware

support and acceptable performance on constrained

devices; however, recent analyses highlight implementation

caveats and resource trade-offs on low-power

microcontrollers, prompting research into lightweight

alternatives or careful AES parameter selection.

Authentication and authorization practices for IoT

systems have been widely surveyed. JWT (JSON Web

Token) is frequently used in RESTful IoT backends and for

securing API access because of its statelessness and easy

integration with web/mobile clients, though research also

warns about secure token handling, rotation, and revocation

strategies. Broader surveys of IoT

authentication/authorization recommend layered

approaches (device identity, transport security, token

management, and RBAC/ABAC for fine-grained access

control).

API design patterns in the agricultural IoT literature

favor REST for device-to-server communication, often

with validation middleware (Pydantic/Marshmallow) and

logging to detect faulty sensors. Several applied systems

add message-brokers (MQTT) or WebSocket layers for

real-time dashboards while keeping REST endpoints for

CRUD, authentication, and administrative tasks.

Across the surveyed sources, recurring gaps appear: (1)

few end-to-end architectures integrate lightweight backend,

in-server ML inference, robust storage, and blockchain

traceability in a single, evaluated system; (2) many

prototypes secure communication channels (TLS/MQTT)

but do not apply encryption to persisted data or implement

token revocation; (3) user-centered design for youth

adoption (simplified dashboards, role-specific UX) is

underexplored. These gaps motivate Phase 2 choices such

as Flask + MongoDB + AES + JWT combined with clear

RBAC policies.

III. OVERVIEW OF BACKEND FRAMEWORKS

Modern IoT–agriculture backends must handle high-

frequency sensor writes, API access for web/mobile

dashboards, integration with AI inference, and secure

user/device authentication. Framework choice balances

development speed, AI compatibility, real-time support,

and production scalability.

Short comparison of common frameworks:

 Flask (Python) — Minimal, easy to prototype,

excellent for embedding Python ML models directly.

Best for research prototypes and Phase-2

implementations where in-server inference and rapid

development matter. Requires adding libraries for

validation, async handling, and large-scale production

concerns.

 FastAPI (Python) — Modern, fast (ASGI), built-in

validation (Pydantic), automatic OpenAPI docs, and

great async support. Strong candidate when you want

both Python/ML compatibility and higher throughput

than Flask without much extra boilerplate.

 Django (Python) — Batteries-included (ORM, admin,

auth). Good for large, data-centric applications with

complex business logic (user management,

transactions). Heavier to set up; overkill for simple

sensor ingestion but useful if you need robust admin

features quickly.

 Node.js (Express / NestJS) — Excellent for real-time

streaming, WebSocket/MQTT bridging, and high

concurrency. Use when you need event-driven

pipelines or prefer JavaScript stack for

frontend/backend parity. Less direct ML integration

(requires model-serving or microservice approach).

 Spring Boot (Java) — Enterprise-grade, strong for

high-throughput, strongly typed systems with

complex transactions. More heavyweight; chosen

when long-term maintainability, strong typing, and

corporate deployment standards matter.

FIG 1: BACKEND ARCHITECTURE FOR IoT-ENABLED SMART

AGRICULTURE SYSTEM

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

301

Figure 1 illustrates the overall backend architecture used

in Phase 2 of the smart agriculture system. IoT devices

deployed in the field send sensor data to an MQTT broker,

which acts as the initial communication layer. The API

service (implemented using Flask or FastAPI) receives this

data, performs validation, and forwards it to the MongoDB

database for secure storage. The backend also interacts with

a dedicated authentication service that manages JWT-based

identity verification and role-based access control. An ML

inference module provides real-time predictions to the API

when required. A real-time gateway (such as a Node.js

WebSocket service) pushes live updates to the web and

mobile dashboards. This architecture ensures efficient data

ingestion, strong security, AI integration, and seamless

communication between devices, backend services, and

user interfaces.

IV. SECURE DATA HANDLING METHODS

Secure data handling is essential in IoT-enabled smart

agriculture systems because sensor values, user credentials,

and marketplace transactions must remain protected

throughout their lifecycle. The backend must ensure

confidentiality, integrity, authenticity, and controlled

access while processing high-frequency sensor data from

distributed farm environments.

The first layer of protection involves securing data-in-

transit. Agricultural IoT devices often transmit readings

over constrained networks, making them vulnerable to

interception. To mitigate this, systems commonly employ

TLS/HTTPS encryption or device-to-broker secure

channels. For additional protection, sensitive fields such as

humidity, soil data, or fertilizer information can be

encrypted at the device level using AES symmetric

encryption, which provides strong security with low

computational overhead suitable for IoT microcontrollers.

Once the data reaches the backend, data-at-rest security

becomes crucial. Databases such as MongoDB store large

volumes of JSON-based sensor records, making structured

encryption and access control essential. Sensitive

information is encrypted before storage, and role-based

permissions restrict who can view or modify specific

datasets. Database-level authentication and IP-based access

rules further reduce unauthorized access risks.

Authentication and authorization mechanisms form

another core component of secure handling. JWT (JSON

Web Token) is widely used to validate every request

coming from the front-end or mobile apps. Since JWTs are

stateless, the backend efficiently verifies user identity

without frequent database lookups.

Combined with role-based access control, the system

ensures that farmers, buyers, administrators, and youth

users each access only the features they are authorized to

use.

Finally, robust input validation and error-handling

procedures protect the system from malformed packets,

sensor failures, and API abuse. Validation layers prevent

SQL/NoSQL injection attacks, filter out noisy or corrupted

sensor values, and maintain the overall integrity of the data

pipeline.

Together, these security measures create a trustworthy

and resilient backend capable of protecting sensitive

agricultural information while supporting real-time

decision-making and future blockchain-based traceability.

FIG 2: SECURE DATA FLOW IN THE IOT-ENABLED SMART

AGRICULTURE BACKEND

Figure 2 illustrates how sensor data moves securely

through the backend architecture. IoT devices encrypt the

collected values using lightweight AES before transmitting

them to the API server over secure channels. Upon

receiving the request, the backend validates the JSON

payload and verifies the user or device identity using JWT-

based authentication. The validated data is then stored

securely in the MongoDB database with role-based

permissions controlling access. Finally, the backend returns

responses only after ensuring proper authorization,

maintaining confidentiality and integrity throughout the

entire flow.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

302

1. API INTEGRATION APPROACHES

In IoT-enabled smart agriculture systems, the backend

must provide reliable and efficient APIs to support

communication between field devices, AI inference

modules, and web or mobile dashboards. API design

ensures smooth data ingestion, validation, secure access,

and retrieval of processed results.

RESTful APIs

Most research and practical implementations favor

REST APIs due to their simplicity, scalability, and

compatibility with both web and mobile platforms. REST

endpoints typically support CRUD operations for sensor

data, user management, and transaction records. Common

practices include:

 Using JSON as the standard data format for sensor

payloads

 Validating incoming requests with schemas (e.g.,

Pydantic or Marshmallow)

 Returning structured responses with proper HTTP

status codes

 Logging requests and errors for monitoring and

troubleshooting

Real-Time Data APIs

Some systems require real-time streaming of sensor

updates to dashboards. For these scenarios:

 WebSockets or MQTT bridging services

complement REST APIs for low-latency updates

 API endpoints manage authentication and filtering,

while the real-time gateway pushes data live to clients

Security in API Integration

All API endpoints enforce JWT authentication and

role-based access control. Requests from mobile apps,

web dashboards, or edge devices are validated for:

 Token integrity

 Expiry and revocation

 Permissions for specific operations (read/write/admin)

Together, REST endpoints for CRUD operations and

real-time API channels form a robust interface for the

backend to manage high-frequency IoT data while

maintaining security and integrity.

FIG 3: API INTEGRATION FLOW FOR IoT SMART

AGRICULTURE BACKEND

Figure 3 depicts the API integration approach in the

Phase-2 backend. IoT devices send sensor data to REST

endpoints on the API server, which validates requests using

JWT authentication and RBAC. The backend stores

validated data in MongoDB and returns responses to web

or mobile clients. For live dashboards, a real-time gateway

(WebSocket or MQTT bridge) pushes sensor updates to

subscribed clients. This combination of REST and real-

time APIs ensures efficient, secure, and scalable

communication across all system layers.

V. IDENTIFIED RESEARCH GAPS

Despite significant progress in IoT-enabled smart

agriculture, the surveyed literature highlights several

persistent gaps that Phase 2 aims to address:

1. Lack of Integrated Backend Architectures – Many

existing systems focus either on IoT data acquisition,

AI inference, or blockchain traceability

independently. Very few studies implement a fully

integrated backend that combines sensor ingestion,

secure storage, real-time analytics, and AI prediction

in a single pipeline.

2. Incomplete Security Measures – While TLS or

MQTT-secured channels are common, many systems

do not encrypt data at rest or implement robust token

management. Role-based access control and end-to-

end encryption are often overlooked, leaving sensitive

agricultural data partially exposed.

3. Limited Real-Time Data Support – Several prototypes

rely solely on REST APIs for data ingestion, which

may introduce latency and fail to meet real-time

monitoring requirements for critical parameters like

soil moisture, temperature, or crop health.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

303

4. Insufficient User-Centric Design – Research rarely

considers the usability needs of different stakeholders

such as young farmers, buyers, and administrators.

Dashboards and APIs are often complex, limiting

adoption among youth and non-technical users.

5. Scalability and Extensibility Challenges – Many

backend frameworks are evaluated only on small-

scale deployments. Scaling to multiple farms,

thousands of sensors, and concurrent users remains

underexplored, limiting real-world applicability.

6. Limited Integration with AI and Future Blockchain

Modules – Backend systems frequently store raw

sensor data but do not directly integrate ML inference

pipelines or prepare data for blockchain-enabled

smart contracts, reducing automation and traceability

capabilities.

VI. RELEVANCE TO THE PROPOSED SYSTEM

The proposed backend design directly addresses the gaps

identified in the surveyed literature. By integrating a

lightweight framework (Flask/FastAPI) with MongoDB for

flexible sensor storage, the system ensures efficient

ingestion and storage of high-frequency IoT data. AES

encryption secures sensitive sensor information both in

transit and at rest, while JWT-based authentication

combined with role-based access control (RBAC) enforces

strict user permissions for farmers, buyers, administrators,

and youth participants.

RESTful APIs provide reliable endpoints for CRUD

operations, whereas a real-time gateway

(WebSocket/MQTT) ensures low-latency monitoring for

dashboards. Input validation and error-handling layers

guarantee that noisy or corrupted sensor packets do not

compromise system integrity. The backend is also designed

to support seamless integration with AI inference modules

and future blockchain-based traceability layers, ensuring

end-to-end automation, security, and transparency.

In summary, the proposed system combines secure data

handling, robust API integration, real-time support, and

scalable backend architecture to create a reliable platform

that meets both research and practical requirements for

IoT-enabled smart agriculture.

FIG 4: PROPOSED BACKEND ARCHITECTURE INTEGRATING

SECURITY, API, AND REAL-TIME PROCESSING

VII. CONCLUSION

The survey highlights that modern IoT-enabled smart

agriculture systems rely heavily on robust backend

architectures capable of managing large volumes of

heterogeneous sensor data while ensuring security,

scalability, and real-time responsiveness. Existing studies

demonstrate significant progress in individual aspects such

as IoT data acquisition, cloud communication, or machine

learning integration, but they often lack a unified

framework that combines secure data handling, efficient

API design, and adaptable backend technologies.

The proposed system architecture in Phase 2 addresses

these limitations by integrating lightweight backend

frameworks (Flask/FastAPI), AES-based encryption for

secure data storage and transmission, JWT authentication

with role-based access control, and flexible API

mechanisms supporting both REST and real-time

communication. This unified approach ensures the

confidentiality, integrity, and availability of agricultural

data while enabling seamless communication between IoT

devices, AI models, user dashboards, and future blockchain

modules.

Overall, the survey reinforces the relevance and

necessity of a secure, scalable, and extensible backend

foundation for smart agriculture applications. The insights

derived from this study directly support the design choices

of the proposed system and lay a strong groundwork for

Phase 3, where blockchain-based traceability and smart

contract automation will further enhance transparency,

farmer empowerment, and trust in agri-commerce.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

304

REFERENCES

[1] A. D. Mishra, ―Farmingo: A MERN and ML-Integrated Platform for

Smart, ...,‖ Int. J. Adv. Eng. Res. Sci., 2025.

journals.latticescipub.com

[2] ―InfluxDB vs. MongoDB — A comparison for time series

workloads,‖ InfluxData (technical paper). 3.1 years ago. InfluxData

[3] M. Has, ―Efficient Data Management in Agricultural IoT,‖ PMCID:

PMC11174974, 2024. PMC

[4] P. Arpaia, ―Problems of the advanced encryption standard in ...,‖

Comput. Secur. (article discussing AES on IoT MCUs), 2020.

ScienceDirect

[5] K. Shingala, ―JSON Web Token (JWT) based client authentication

in Message Queuing Telemetry Transport (MQTT),‖ arXiv, 2019.

arXiv

[6] M. El-hajj et al., ―A Survey of Internet of Things (IoT)

Authentication Schemes,‖ J. Netw. Comput. Appl., 2019. PMC

[7] J. P. Díaz et al., ―Authorization models for IoT environments: A

survey,‖ Comput. Commun., 2025. ScienceDirect

[8] ―Smart Secure with IoT: Agriculture Data based on Farm ...,‖

Zenodo preprint (AES extension in agriculture), 2019–2020.

