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Abstract-- our project, we focus on understanding the
concept of series convergence and how it appears in real-life
situations. In our study, we explain how an infinite series
can still have a finite sum, which is an important idea in
mathematics.We also explain the Bouncing Ball Model as a
real-life example of a convergent geometric series.
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I. INTRODUCTION

Series and their convergence play a fundamental role
in mathematics, often forming the backbone of many
analytical techniques. In real-life data analysis,
understanding whether a series converges helps in
interpreting trends, making predictions, and ensuring
model stability. Financial time series, sensor readings,
and signal processing data often involve summations or
iterative calculations that resemble series. Analyzing their
convergence allows researchers to assess model
reliability and the underlying behaviour of the system.
This research explores the application of series
convergence analysis within real-world datasets and
examines various methods to determine convergence in
practical scenarios.

What is Convergence and Why Does It Matter?

A key idea in advanced math is convergence, which is
when you add numbers from a long list and the total sum
gets closer and closer to a final, stable value. Think of it
like building with blocks; if each new block is smaller
than the last, you'll eventually reach a fixed height. Early
mathematicians figured out the rules for when this would
happen[13].

Convergence plays an important role in both pure and
applied mathematics, serving as the backbone for many
scientific and engineering fields.This review combines
theory with practical examples to show how convergence
of series is used in real-life application.

How Convergence is Used in the Real Life
e Signal Processing: Fourier Series

To really get Fourier series, you need to understand
both the deep mathematics and how it's used in the real
world. The reasons why this mathematics works are
explained in pure mathematics books like Introduction to
Real Analysis[13]. A bridge between that deep theory and
real-world problem-solving is found in books like
Advanced Engineering Mathematics[14].
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Finally, how to actually use these ideas for things like
filtering signals or compressing files is covered in expert
books like Discrete-Time Signal Processing[15] and
Digital Signal Processing[16].

¢ Finance and Economics: Geometric Series

In finance, the Geometric Series helps figure out the
value of long-term investments like stocks [17]. An
investment that pays you money forever, called a
perpetuity, is an infinite stream of payments. To find its
value today, we add up all the future payments. As
explained in calculus books [18] , this infinite list of

payments adds up to a simple, finite value PV = % which

lets investors put a clear price on an asset that pays out
forever [19].

e Calculators and Computers: Taylor Series

The chip in your calculator uses the Taylor Series to
figure out functions like sin(x) or e A computer can't
understand these directly, so it's taught to estimate them
by adding up a list of simpler numbers [18]. Convergence
guarantees that by adding just a few of these numbers,
the calculator can get a very accurate answer. How to
program these methods is a key subject in the field of
computational mathematics[20].

e What Past Studies Have Found

Researchers have seen these patterns in real data for
years.

< In finance, studies show that after a market crash,
the chaos and wild price swings converge back to a
stable, historical average.

<~ In engineering, by analyzing a bridge's vibrations,
researchers can tell if it's safe. If the vibration
patterns converge as expected, the bridge is stable
[15].

<~ In statistics, research has proved with real data that
the "settling down" effect of the Law of Large
Numbers works even in huge, messy datasets [21].

e Current Challenges and Unsolved Problems

Even with all its uses, there are still some big
challenges with convergence.

<- Old Mathematics vs. Real Data: The -classic
mathematics tests are too strict because they were
made for perfect, infinite lists of numbers [13]. They
don't work well on real-world data, which is always
limited and messy.
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<~ When Has It "Settled Down"? With real data, it's
hard to know the exact point when a trend has
stopped. Choosing where to start testing is often just
a guess and can affect the final answer.

< Guessing vs. Knowing in Al: When an Al model is
learning, programmers need to know when it's
finished. Often, they just look at a graph and guess
when it "looks flat" instead of using a proper test.

e  Summary and Why This Study is Important

This review has shown how the idea of convergence
connects pure mathematics theory to real-world stability.
Past research proves that convergence is a real pattern we
can see. However, we also found a major problem: the
classic mathematics tests don't work well with modern,
messy data, which leads to guesswork, especially in new
fields like Al.

This study helps solve that problem. By mixing the
core ideas with clear, practical demonstrations, it acts as
a bridge between theory and practice. It gives a simple
guide with hands-on examples that anyone—students,
professionals, or researchers—can use to understand and
test for convergence in their own data.

The Bouncing Ball Paradox: How an Infinite Number of
Bounces Leads to a Finite Stop.

The simple act of a bouncing ball is a great way to see
a cool math idea in real life. When a ball bounces, it
seems to bounce forever, with each bounce getting
smaller and smaller. This brings up a question that has
interested people for a long time: How can a ball that
bounces an infinite number of times stop in a finite
amount of time and travel a finite distance? The answer
is found in a math concept called a "converging
geometric series"[37].

The motion of a bouncing ball is a real-world example
that helps us understand old puzzles like Zeno's Paradox,
which questions how movement is possible if you have to
complete an infinite number of smaller steps. By looking
at the physics of the bounce and turning it into math, we
can figure out exactly how an infinite number of bounces
can add up to a final, measurable result.[1].

This report will explore this idea. We'll start with the
physics of why balls don't bounce back to their original
height, using an idea called the Coefficient of Restitution
(COR). Then, we'll use that idea to create math formulas
for the total distance the ball travels and the total time it
takes. We'll see that these formulas are "geometric
series," and we'll prove why they add up to a final
number. After that, we'll look at how you could do an
experiment to test this model and what problems you
might run into. Finally, we'll bring everything together to
understand how this math model helps us understand the
real world[38].
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The Physics of the Bounce:

e The Coefficient of Restitution (COR): A Measure of
“Bounciness”

The main idea that explains a bounce is the Coefficient
of Restitution, or COR, which we represent with the
letter e. The COR is just a number that tells us how
“bouncy” a collision is. It’s the ratio of how fast two
objects separate after they collide compared to how fast
they were approaching before they collided[39].

A Bouncing Ball:

For a ball hitting a big, stationary surface like the
floor, the formula gets much simpler. The floor's speed is
zero before and after the hit. So, the COR is just the ball's
rebound speed divided by its impact speed. This simple
relationship is what we use for most bouncing ball
experiments[39].

_ rebound speed

impact speed
€ Types of Collisions

The value ofetells us what kind of collision happened
and how much energy was kept[40].

e e=1:This is a "perfectly elastic” collision. No energy
is lost, and the ball would bounce back to the same
height it was dropped from. This is an ideal case that
doesn't really happen.

® 0<e<l:This is a real-world "inelastic" collision.
Some energy is lost as heat or sound when the ball
hits the ground. This is why a real ball never
bounces back to its original height.

e ¢=0: This is a "perfectly inelastic" collision. The
objects stick together, and the maximum amount of
energy is lost. Think of a ball of clay hitting the
floor—it doesn't bounce at all.

COR and Energy: The COR is really a measure of how
much energy is lost in a bounce. When a ball hits the
floor, some of its kinetic energy (the energy of motion) is
turned into heat and sound. The amount of kinetic energy

lost is related to the COR by the formuIaAE—ik =1-¢€% This

is why a higher COR means a bouncier ball—it loses less
energy with each bounce [40].

e "What Affects the Bounciness?"

Our simple math model assumes the COR is always
the same for a ball and a surface. But in reality, the COR
can change based on a few things.

It's a Team Effort: The COR isn't just a property of the
ball; it's a property of the system—the ball and the
surface it hits. A basketball will have a different COR on
a wooden gym floor than on a concrete sidewalk. This is
because both the ball and the surface bend a little during
the impact, which affects how much energy is lost[38].
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Material and Speed: The material the ball is made of is a
big factor. For rubber balls, energy is lost because of
something called "hysteresis." This means that the force
it takes to squish the ball is more than the force the ball
gives back when it un-squishes. This difference is lost as
heat. Also, the COR often changes with speed. For many
sports balls, the COR actually decreases as the impact
speed increases. A faster hit means more squishing and
more energy lost[38].

Temperature Matters: The temperature of a ball can also

changes its bounciness. For most rubber balls, a warmer
ball has a higher COR, meaning it's bouncier.

This is why squash players warm the ball up before a
game. However, some materials, like the one in a table-
tennis  ball, actually get bouncier at lower
temperature.[41].

The mathematics model we're about to build uses a
constant COR to keep things simple. This is a good
approximation, but it's important to remember that in the
real world, things are a little more complicated. The
differences between our simple model and a real
experiment can actually teach us about these other
factors[38].

Table 1:
Bounciness of Different Balls
Ball Type Surface Type Coefficient of Restitution (e) Source(s)
Table Tennis Ball Wooden Table 0.90 [38]
Tennis Ball Wooden Table 0.82 [38]
Golf Ball Wooden Table 0.79 [38]
Cricket Ball Wooden Table 0.48 [38]
Basketball Concrete Varies with height [38]
Superball Hard Surface ~0.92 [42]

e The Math of a Bouncing Ball

Using the physics idea of the COR, we can build a
math model to figure out the total distance a ball travels
and the total time it takes to stop bouncing. This is where
we'll see a special type of math series called a geometric
series.

¢ Finding the Total Distance Travelled

To get the total distance, we have to add up the first
drop and all the bounces that come after. Each bounce
includes the ball going up and then coming back
down[43].

Let's say the first drop is from height h,. Because
some energy is lost on the bounce, the ball only comes
back up to a fraction of that height. This fraction is
related to the COR by r = e? So, the first bounce height
will be h;=r.hy. The next bounce will be h,=r.h;=r2.h,
and so on[43].

Here's the path broken down;

e Initial Drop: The ball travels down a distance of h,,.
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First Bounce: The ball travels up h;and down hy,
for a total of 2h,;=2rh,

Second Bounce: The ball travels up h, and down
h,,for a total of 2h,=2r?h,

...And so on
The total distance, Dyyq),iS the sum of all these parts:
Diotar = ho +(2rhg + 2r2hg + 2r3hg +...)

The part in the parentheses is an infinite geometric
series. We can use a special formula for this (which we'll
prove later) to find the sum. The total distance ends up
being[43]:

1+r
Dtotal = hO?

Since we know r = e?, we can write the final formula

in terms of the COR[43]:

1+e?
Dtotal = h0 m
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¢ Finding the Total Time of Flight

We can do something similar to find the total time the
ball is in the air. The time it takes for an object to fall a

distance h istyy = \/% where gis the acceleration due to

gravity. The time for a full bounce (up and down) is
twice that[43].

Here are the time intervals:

e Initial Drop: The time is T = /2%
e First Bounce: The time isT; =2 2%: 2 f?
2
e Second Bounce: The time is T, = 2\/?:0: 2 f%
e ..And soon[43].

The total time, Ty is the sum of all these times:

2ho 2rhy 2r2h,
TtotaI: F"'Z T+2 g +....

This is also a geometric series. After using the sum
formula and simplifying, we get the final formula for
total time in terms of the COR:

2hy 1+e

total = Fl_-e

Notice that the ratio for the distance series was r = e?,
but for the time series, the ratio is /r = e. This is because
bounce height is related to energy (which involves
velocity squared), while the time of flight is related
directly to velocity. This shows how the physics directly
creates the math we see[43].

o Why the Math Works: Proving the Series Converges

The idea that a ball can bounce an infinite number of
times but stop in a finite time depends on the math of
infinite series. We need to prove that adding up an
infinite number of smaller and smaller numbers can give
you a final, finite answer.

e The Sum of a Finite Number of Bounces

Let's first look at a geometric series with a limited
number of terms. The sum of the first n terms (S,) is:

S, = at+ar+ar’+....+ar"!

There's a trick to find a simple formula for this. If you
multiply the whole equation by rand then subtract it from
the original equation, most of the terms cancel out,
leaving you with:

S,(1-r) = a(1-r)

259

As long asr# 1, we can divide to get the final formula
for a finite sum:

5 1-r"
—a——
"L
This derivation is a standard topic covered in calculus
textbooks such as Stewart's Calculus [37].
e The Sum of Infinite Bounces

The sum of an infinite series is what happens to S,, as
ngets infinitely large. We write this as a limit.

S= lims, = lima~"
= limS, = lima
now 1 now  1-r

What happens to this formula depends completely on
the value of r[37].

Case 1: |r|< 1(The series adds up to a finite number)

When the common ratio r is a fraction between -1 and
1, the term r" gets closer and closer to zero as n gets
bigger and bigger. For example,
(1/2)> =1/4,(1/2)* = 1/8,and so on. Eventually, it's
practically zero. In our limit formula, the r" term
disappears, and we are left with the famous formula for
the sum of an infinite geometric series:

_a
T 1r

This is why the bouncing ball stops. Because the ball
is not perfectly bouncy, the ratio r is less than 1, which
means the series for both total distance and total time
"converges" to a finite number. This condition for
convergence is a key theorem in the study of infinite
series[37].

Case 2: |r|>1 (The series goes to infinity)

If the ratio is 1 or bigger, the terms either stay the
same or get larger. Adding them up forever would just go
to infinity. This is called a "divergent" series. For a
bouncing ball, this would be like a perfectly bouncy ball
(e=1)that never loses energy and just bounces forever
[37].

This proof is the mathematical foundation that allows
our bouncing ball model to work.

S

¢ Doing the Experiment

To see if our mathematics model matches the real
world, we can do an experiment to measure how a ball
bounces. This section outlines a methodological
framework; the data presented is for illustrative purposes.
e How to Measure the Bounce

There are a few ways to measure the bounce height,
from simple to high-tech.

e Just a Ruler: The easiest way is to tape a meter stick
to a wall and drop the ball next to it. You can then
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watch and see how high it bounces. The main
problem here is that it's hard to see the exact peak of
the bounce with your eyes. A clever trick is to coat
the ball in chalk or paint and have it leave a mark on
paper taped to the wall [44].

e Slow-Motion Video: Most smartphones can record in
slow motion. If you record the bounce, you can go
back and look at the video frame-by-frame to see the
exact height the ball reached. This is much more
accurate [45].

Table 2:

e Motion Sensors: In a physics lab, you might use an
ultrasonic motion sensor. You place it above the ball,
and it uses sound waves to track the ball's position
over time, creating a graph on a computer. The peaks
of the graph show you the bounce heights [44].

e Smartphone Apps: There are even apps like phyphox
that can use your phone's microphone. The app
listens for the sound of each bounce and measures
the time between them. From the time between
bounces, it can calculate the height of the
bounce[46].

Comparing Ways to Measure the Bounce

Method What You Need How It Works

Good For Bad For

Manual/Visual Meter stick, ball

Drop the ball and watch the

Hard to be accurate with your

Simple and cheap. eyes[44]

peak height.
. . Smartphone Record in slow motion and
Video Analysis P
camera check the frames.

Takes more time and needs
software[45].

\ery accurate, gives
lots of data.

Motion sensor,

Motion Sensor
computer

with sound.

Sensor tracks the ball's position

Gives a real-time

graph, easy to read. Needs special equipment[44].

Smartphone with

Acoustic App app

App listens for bounces and
calculates height from time.

Indirect measurement,
sensitive to noise[46].

Very easy to use, uses
your phone.

¢ Analysing Your Data

Once you have your bounce heights, you can analyze
them.

Calculate the COR: For each bounce, you can calculate
the  experimental COR using the formula

rebound height ., . .
e= /—g It's a good idea to do several trials and
drop height

average your results to be more accurate[47].

Calculating Measurement Uncertainty: No measurement
is perfect. To account for this, you should calculate the
uncertainty. After repeating a measurement several times
(e.g., dropping the ball from the same height 5 times and
measuring each bounce), you can find the average
bounce height. A simple way to estimate the uncertainty
is to take the range of your measurements (maximum
value minus minimum value) and divide by two. For
example, if your bounce heights were 8.8, 9.0, 9.5, 8.5,
and 9.2, the average is 9.0, and the uncertainty would

be(9.5-8.5)/2=0.5.
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Your measurement would be reported as 9.0+0.5.
More advanced methods involve calculating the standard
deviation. This uncertainty can then be propagated
through your calculations for the COR[47].

Make a Graph: A great way to see the pattern is to make

a graph.

e Bounce Height vs. Bounce Number: If you plot the
height of each bounce on the y-axis and the bounce
number (1, 2, 3,...) on the x-axis, you should see the
points form a curve that drops off quickly, called an
exponential decay curve.[44].

e Total Distance vs. Bounce Number: If you plot the
total distance traveled after each bounce, you'll see
the line get flatter and flatter as it gets closer to the
final total distance. This is a great visual of the series
converging.[43].
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Bounce Height Decay

Convergence of Total Distance

10 1 —8— Simulated Bounce Height

Peak Height (m)

Cumulative Distance Traveled (m)

10 1

—8— Cumulative Distance
===~ Theoretical Limit (45.56 m)

T T T
7.5 10.0 12.5
Bounce Number

T T T
0.0 2.5 5.0

Simulation of a Bouncing Ball.

® (Left) Shows how the ball's bounce height gets
smaller over time.
® (Right) Shows the total distance traveled adding up

to a final, fixed limit.

o Putting It All Together

The bouncing ball model is a good approximation of
reality, but it's not perfect. Looking at where the model
and the real world are different can teach us even more.

o Limits of the Simple Model

Our math model is built on a few simplifications that
aren't perfectly true.

Is the COR Really Constant? We assumed the COR is a
single number for a given ball and surface. But as we
learned in Part I, the COR can actually change depending
on the impact speed. Since the ball is slower on each
bounce, the COR might change a little bit each time. This
is one reason why experimental data won't perfectly
match the simple exponential curve[38].

What Else Are We Ignoring? The simple model also
leaves out a few other real-world forces like air resistance
(drag), which removes energy continuously, not just at
the bounce. Spin can also affect the trajectory, and the
model assumes the surface is perfectly rigid, but slight
bending can also affect the energy of the bounce[48].
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The fact that our simple model works so well shows
that the energy lost during the bounce is the most
important factor. The small differences between the
model and reality point us toward these other, more
complex physics ideas.

e Errors in the Experiment

Any experiment will have some errors or uncertainties.
It's helpful to think about them in two categories.

Random Errors: These are small, unpredictable
variations that happen each time you take a measurement.
For example, your reaction time might be slightly
different, or you might read the ruler from a slightly
different angle (this is called parallax error). You can
reduce the effect of random errors by doing many trials
and averaging your results.[47].

Systematic Errors: These are errors that are consistent
and always push your measurement in the same direction.
For example, if your meter stick was made incorrectly
and all the markings were off, all of your measurements
would be wrong in the same way. Averaging your results
won't fix a systematic error. You have to find the source
of the problem and fix it. Another example is air
resistance, which will always make the bounce heights a
little lower than our simple model predicts.[47].
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Table 3:
Common Errors and How to Fix Them
Error .
Type What Causes It What It Does to Your Data How to Fix It
. . . Keep eye level with bounce; use a
Random Parallax Error Inconsistent height readings P ey
camera[49].
Random Inconsistent Drop Varied starting height or accidental spin Use a clamp for consistent release[49].
. Bad Measurin . . Calibrate or check tool against a
Systematic g All measurements will be incorrect g
Tool standard[47].
. . . Always makes bounce height lower than Acknowledge as a model
Systematic Air Resistance . S
predicted limitation[48].

e Solving Zeno's Paradox

The bouncing ball gives us a real-world answer to
Zeno's paradox. The paradox says that to get anywhere,
you first have to go half the distance, then half of the
remaining distance, and so on forever. Since you have to
do an infinite number of things, it seems like you should
never be able to get there [1].

The bouncing ball is similar: it has to complete an
infinite number of bounces to stop. The solution is that
the time for each bounce gets shorter and shorter.
Because the ratio of the time for each bounce is less than
one, the infinite series of time intervals adds up to a final,
finite number. The math doesn't just say the ball stops
eventually; it predicts the exact time when it will stop.
This shows that it's possible for an infinite number of
events to happen in a finite amount of time[43].

At a certain point, the theoretical bounce height
becomes smaller than physical limits, such as the
microscopic roughness of the ball and surface, or even

the Planck length (1.616255(18) x10°°m), which is a
scale at which our current understanding of gravity and
spacetime breaks down[49].Furthermore, the Heisenberg
Uncertainty Principle places a fundamental limit on how
precisely we can know both the position and momentum
of the ball simultaneously. As the bounces become
infinitesimally small, these quantum effects, while
negligible for a macroscopic object, represent a
theoretical boundary to the classical model[50].
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Il. CONCLUSION
A Simple Model for a Complex World

From a simple bouncing ball, we've seen how physics
and math can work together to explain the world. The
ball's motion is described perfectly by the idea of a
converging infinite geometric series. This connects
something we can see and touch with an abstract math
concept, showing us that the total distance and time are
finite, even if the number of bounces is infinite.

The key was the Coefficient of Restitution, a single
number that tells us about the energy lost in each bounce.
By using this number as the ratio in our geometric series,
we can solve the puzzle of how infinite bounces can
happen in a finite time, giving a clear answer to Zeno's
old paradox. [1,43].

We also saw that even when our simple model isn't
perfect, it's still useful. The places where the model
doesn't quite match reality point us toward deeper
physics, like air resistance or the fact that bounciness can
change with speed. In this way, the bouncing ball is a
perfect example of how science works: we observe
something, create a model, test it, and then refine our
model to better understand the world. [48].
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