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Abstract- In this paper, we have studied the totally anisotropic 

Bianchi type II universe filled with an anisotropic dark energy within 

the framework of Lyra geometry. The Einstein's field equations have 

been solved by applying hybrid expansion law for the average scale 

factor of the model. It is shown that the universe is early decelerating 

and late-time accelerating one. The universe is anisotropic throughout 

its evolution. We have discussed the kinematical and physical 

behaviors of the model. We have observed that the universe expands 

forever due to the dominance of dark energy. 

Keywords - Bianchi II space-time. Anisotropic dark energy. Hybrid 
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I. INTRODUCTION 

The recent observational data of high red-shift from Ia 

supernovac (Riess et al. [1], Perlmutter et al. [2]), comic 

microwave background (CMB) anisotropy (Netterfield et 

al. [3]), large scale structure (LSS) (Spergel et al.[4]) have 

indicated that the present-day universe is undergoing a 

phase of accelerated expansion. This late-time cosmic 

acceleration is assumed to be driven by a mysterious fluid, 

know as dark energy DE, whose origin is still a mystery is 

modern cosmology. It is believed that the accelerating 

expansion of the present-day universe in driven by the 

negative pressure of DE, which tend to increases the rate of 

expansion. In recent years several sources of DE have been 

proposed and extensively studied such as cosmological 

constant (Padmanabhan [5]) quintessence (Martin [6]), 

techyons (Padmanabhan and Chaudhary [7]), phantom 

(Alam et al. [8]), K-essence (Chibra et al. [9]), Chaplygin 

gas (Bento et al. [10]) etc. The DE models have significant 

importance now as far as theoretical study of the universe 

is concerned. 

At present much interests have been focused on the 

study of cosmological models with variable equation of 

state (EoS) parameter 



p

t )( , where p is the pressure 

and   is the energy density of the matter. The 

cosmological constant   (or vacuum density) is the most 

efficient and simplest candidate for explaining the observed 

accelerated background expansion with EoS parameter 

1w , but it needs to be extremely fine tunned to satisfy 

the current value by DE, which is a serious problem in 

cosmology.  

According to Caldwell et al. [11] the matter with 

1 gives rise to Big-Rip type of future singularly. 

Bamba et al. [12] have presented a review of different DE 

isotropic cosmologies with early deceleration and late-time 

acceleration. 

The spatially homogeneous and isotropic FRW models 

are considered to be more suitable to study the large scale 

structure of the universe. However, it is believed that the 

early universe may not have been exactly uniform. This 

prediction motivates us to describe the early stages of the 

universe with models having anisotropic background. 

Bianchi I-IV spaces play significant roles for constructing 

spatially homogenous and anisotropic cosmological models 

of the universe. Thus it would be worthwhile to explore 

anisotropic DE models within the framework of Bianchi 

space-times. Many authors have studied Bianchi type-I in 

the presence of an anisotropic DE. Rodrigues [13] has 

constructed a Bianchi type- I CDM cosmological model 

whose DE component preserves non-dynamical character 

but yields anisotropic vacuum pressurce. Koivisto and 

Moto [14] have investigated Bianchi type- I  cosmological 

model containing interacting DE fluid with non-dynamical 

anisotropic EoS and perfect fluid component and have 

suggested that if the EoS is anisotropic, the expansion rate 

of the universe becomes direction dependent at late-times 

and the cosmological models with anisotropic EoS can 

explain some of the observed anomalies in CMB. Akarsu 

and Kilinc [15,16] studied Bianchi type-I and III 

cosmological models filled with DE and perfect fluid. They 

considered a phenomenological parameterization of 

minimally interacting DE in terms of its EoS parameter and 

time-dependence skewness parameters. Samanta [17] has 

investigated Bianchi type-III cosmological models with 

anisotropic DE with the assumptions on the anisotropy of 

fluid, power-law and exponential law in Lyra geometry, 

Pradhan et al. [18] obtained a new class of LRS Bianchi 

type-II DE models with variable EoS parameter. Shri Ram 

et al. [19] have obtained hypersurface homogeneous 

cosmological models filled with an anisotropic DE in Lyra 

geomotry by applying a special law of variation for the 

mean Hubble parameter that gives a negative value of the 

deceleration parameter.  



 

International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026) 

 160 

Singh and Sharma [20] investigated Bianchi Type-II 

models in the presence of an anisotropic DE in Lyra 

geometry using power-law form and volumetric expansion 

law form of the average scale factor. Recently Shri Ram et 

al. [21] presented a Kantorski-Sachs universe in the 

presence of anisotropic DE within the framework of Lyra 

geometer by utilizing a special form of the Hubble 

parameter that yields a time-varying deceleration 

parameter. 

In this paper, we obtain a Bianchi type-II cosmological 

models in the presences of an anisotropic dark energy 

within the framework of Lyra geometry. The outline of the 

paper is as follows, In Sect. 2, the metric of the totally 

anisotropic Bianchi type-II and the field equations are 

described. Section 3 deals with the solution of the filed 

equations by utilizing the HEL for the average scale factor, 

which describes a unified description of early decelerating 

and late-time accelerating universe. We also study the 

kinematical and physical features of the cosmological 

model in Sect. 4. Finally, we summarize the conclusions in 

the last Sect. 5. 

II. BIANCHI TYPE – II METRIC AND FIELD EQUATIONS- 

We consider the totally anisotropic Bianchi type- II 

space-time in the form 

  22222222 dzCdyBzdydxAdtds   (1) 

where A(t), B(t) and C(t) are cosmic scale functions. 

The energy-momentum tensor 

T of an anisotropic fluid 

can be written in the diagonal form as 

],,,[ 4

4

3

3

2

2

1

1 TTTTdiagT 


  ,,, zyx pppdiag   

    (2) 

Where  is the energy density of the fluid; xp , yp  and 

zp  are pressures on x , y  and z -axes respectively. The 

parameterization of deviation from isotropy by introducing 

skewness parameter   i.e. is the deviation from   on 

x axis only, the energy-momentum tensor can be written 

as 

 diagT 
    1,,,  w     (3) 

Sen [22], Sen and Dunn [23] proposed a scalar-Tensor 

theory of gravitation and constructed analogue of Einstein 

is field equation based on Lyra gromentry. 

 

 

 

The Einstein's field equation are given by 




  TgRgR  )
2

1
(

2

3

2

1      (4) 

where R  is the Ricci tensor, R is the Ricci scalar, 

T  is the energy-momentum tensor the anisotropic fluid 

and   is the time –like displacement field vector given as 

 )(,0,0,0 t  , )(t  being the time dependent gauge 

function. 

In comoving coordinate system, the field equations for 

the totally anisotropic Bianchi type-II space-time yield 

   2

22

2

4

3

4

3

CB

A

BC

CB

C

C

B

B 
 (5)  

  2

22

2

4

3

4

1

CB

A

CA

AC

A

A

C

C       (6) 

  2

22

2

4

3

4

1

CB

A

AB

BA

B

B

A

A 
 (7) 

  2

22

2

4

3

4

1

CB

A

CA

AC

BC

CB

AB

BA    (8) 

Using Bianchi identities to (4) and assuming that the 

matter field is conserved separately, we obtain 

 
0










C

C

B

B

A

A 
 

  (9) 

Now dot denotes derivative with respect to lime t. 

Now we define some parameters for the Bianchi type-II 

model (1) which are important tools in cosmological 

observations. The average scale factor and spatial volume 

are defined as 

 ABCa 3
, 

3aV  .  (10) 

The physical parameters like expansion scalar  , shear 

scalar 
2  are defined as follows: 

 
C

C

B

B

A

A 
               (11) 

    



3

1

222 )3(
2

1



 HH   (12) 

where H is the mean Hubble parameter and  3,2,1H  

represent the directional Hubble parameters in the direction 

of x , y and z axes respectively givens as  
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 )(
3

1
321 HHHH  ,  (13) 

 
A

A
H


1

, 
B

B
H


2

, 
C

C
H


3

.  (14) 

The anisotropy Parameter mA  of the expansion is given 

as 

 



3

13

1



mA

2








 

H

HH .  (15) 

For isotropic behavior of cosmological model 0mA . 

An important observational quantity is the deceleration 

parameter q defined by 

  
2a

aa
q




   (16) 

The sign of q indicates whether the model inflates or not. 

The positive value of q corresponds to standard 

decelerating model whereas the negative sign indicates 

inflation. 

III. SOLUTIONS OF THE FIELD EQUATIONS 

In this section, we obtain the exact solutions of the field 

equation (5)-(9) for the scale factors A, B, C, and the 

physical parameter  ,,  and  . Subtracting (6) from 

equation (7), we obtain 

 0









C

C

B

B

A

A

C

C

B

B 
  (17) 

Equation (17) on integration, provides 

 
3

1

a

k

C

C

B

B



   (18) 

where 1k  is an integration constant. 

In order to obtain a consistent solution of the field 

equation, we assume that 

 BCAm     (19) 

where m is a positive constant. We further assume that 

 DAB

m

2 ,  12  DAC
m

 (20) 

Substituting for B and C in equation (18), we get 

 
3a

K

D

D



     (21) 

where K is an arbitrary constant. From (10) and (19), we 

get  

 1

1

 mVA  = 1

3

ma   (22) 

 

We can determine the scale factors A,B and C if the 

average scale factor a is known function of time. Singh and 

Sharma [20] have presented the solutions of field equations 

(5)-(9) by using the power-law and exponential law forms 

of the average scale factor a(t). Here we obtain exact 

solutions of the field equations by utilizing the hybrid 

expansion law (HEL) for the average scale factor of the 

form 

 kta )(  
tet 
   (23) 

 

where 0k , 0  and 0  are constant. Akarsu 

et al. [24] proposed this generalised form the average scale 

factor which is a combination of power-law and 

exponential-law cosmologies in a unified way. This law 

leads to the power-law cosmology for 0  and the 

exponential-law cosmology for 0 . Kumar [23] has 

studied the dynamics of Bianchi type-V model by 

considering HEL for the average scale factor. Using this 

law, Shri Ram and Chandel [26] discussed a magnetized 

string cosmological model in f(R,T) gravity theory. 

Chandel and Shri Ram [27] investigated a Bianchi type – V 

early decelerating and late-time accelerating cosmological 

model with perfect fluid and heat conduction using HEL. 

From (22) and (23), we get the solution for the scale 

factor A as 

   1

3

 m
tetA 

 .    (24) 

Substituting (23) in equation (21) and integrating, we 

obtain 

 









  )3,31()3(
3

exp 13

1 t
K

KD       (25) 

where   denotes the lower incomplete gamma function 

and 1K  is a constant of integration. Without loss of 

generality, we take 11 K  substituting (25) in equation 

(20), we obtain the expressions of the scale factors B and C 

as 









  )3,31()3(
3

exp)( 13)1(2

3

t
k

etB m

m

t   ,    (26) 
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







  )3,31()3(
3

exp)( 13)1(2

3

t
k

etC m

m

t   . (27) 

For the average scale factors A, B and C to be realistic, 

we must have 
3

1
 . Using (24), (26) and (27) in 

equation (9) and integrating, we obtain the gauge function 

 as 

 
t

o

et 




33
    (28) 

where o is an arbitrary constant. 

The directional Hubble parameters and the average 

Hubble parameter are obtained as 

 
1

3
1




m
H  )( 




t
,  (29) 

   

 
tet

K

tm

m
H





332

)1(2

3












 , (30) 

    

 
tet

K

tm

m
H





333

)1(2

3











 , (31) 

 



t
H .   (32) 

The expansion scalar ( ), shear scalar ( ) and the 

anisotropy parameter  mA  are obtained as 

 








 




t
3    , 

 
tet

K

tm

m






66
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2
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)1(2
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
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





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1
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3

















.      (34) 

The deceleration parameter (q) has the value given as 

 
 2

1
t

q





   (35) 

For the present model, the energy density (  ), 

deviation free EoS parameter ( ) and the skewness 

parameter   are obtained as 

 
    t

o

m

m et

K
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m
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IV. SOME PHYSICAL FEATURES OF THE MODEL 

We observe that the spatial volume of the model is zero 

at the time 0t . At this epoch the energy density, 

expansion scalar and shear scalar are infinite. Therefore, 

the present model has a big-bang singularity at 0t . As 

time increases, the energy density decreases and ultimately 

attains a constant value as t . The expansion scalar 

and shear scalar are decreasing functions of time which 

assume constant value for late times. 

Equation (34) shows that the anisotropy parameter is 

infinite at 0t  and assumes a constant value 
2

1

2

2

3













m

m  as 

t . This means that the anisotropy in the model is 

maintained throughout its evolution. 

From (37) we find that the time-dependent EoS 

parameter is infinite at 0t  and a decreasing function of t 

which assumes a constant value 

  
)4(

)2(2
1






mm

m
  (39) 

as t . It is worthwhile to note that   tends to -1 

as t  for 2m . From this we can infer that the 

universe for 2m  is late-time accelerating due to the 

dominance of cosmological constant as source of DE. The 

skewness parameter, being infinite at 0t , tends to a 

constant for late-time. 

Equation (35) gives the variation of deceleration 

parameter with time. We observe that the universe evolves 

with variable deceleration parameter and the transition 

from deceleration to acceleration takes place at time 
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

 
t   (40) 

Which restrict  in the range 10  . As t , q 

~ -1 which shows the inflationary behavior of the universe. 

For sufficiently large times, we fluid that ~H  which 

indicates that the universe expands forever with the 

dominance of DE. 

The gauge function )(t , being infinite initially, dies 

out as t . The gauge function contributes 

significantly to energy density and the EoS parameter. The 

concept of Lyra manifold is meaningful only for finite 

time, but dose not remain for very large time. 

The present model is new and different than the models 

obtained by Sing and Sharma [20]. 

V. CONCLUSION 

A new anisotropy Bianchi type-II with variable EoS 

parameters has been investigated within the frame work of 

Lyra geometry. The anisotropy DE model is based on exact 

solutions of the Einstein’s filed equations for the totally 

anisotropy Bianchi type-II space-times filled with prefect 

fluid with variable EoS parameter  . The exact solutions 

of the Einstein’s field equations have been obtained by 

utilizing the HEL for the average scale factor of the model 

which correspond to an early decelerating and late-time 

accelerating universe. The universes has a signature flep at 

a finite time. 

The anisotropy parameter mA , which is infinite at the 

initial singularity, tends to a constant as t . Therefore 

the model dose not approach isotropy large-time. In the 

derived model,   is obtained as constant as time-varying 

which ultimately tends to a constant as time tends to 

infinity.  

The skewness parameter   tends to a constant for large-

time. Therefore the anisotropy in the pressures on 

coordinate axes persists for large time. 

For sufficiently large time ~H and 1~ q , which 

indicate that the universe expands forever due to the 

dominance of DE. 
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