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Abstract- In this paper, we have studied the totally anisotropic
Bianchi type Il universe filled with an anisotropic dark energy within
the framework of Lyra geometry. The Einstein's field equations have
been solved by applying hybrid expansion law for the average scale
factor of the model. It is shown that the universe is early decelerating
and late-time accelerating one. The universe is anisotropic throughout
its evolution. We have discussed the kinematical and physical
behaviors of the model. We have observed that the universe expands
forever due to the dominance of dark energy.
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I. INTRODUCTION

The recent observational data of high red-shift from la
supernovac (Riess et al. [1], Perlmutter et al. [2]), comic
microwave background (CMB) anisotropy (Netterfield et
al. [3]), large scale structure (LSS) (Spergel et al.[4]) have
indicated that the present-day universe is undergoing a
phase of accelerated expansion. This late-time cosmic
acceleration is assumed to be driven by a mysterious fluid,
know as dark energy DE, whose origin is still a mystery is
modern cosmology. It is believed that the accelerating
expansion of the present-day universe in driven by the
negative pressure of DE, which tend to increases the rate of
expansion. In recent years several sources of DE have been
proposed and extensively studied such as cosmological
constant (Padmanabhan [5]) quintessence (Martin [6]),
techyons (Padmanabhan and Chaudhary [7]), phantom
(Alam et al. [8]), K-essence (Chibra et al. [9]), Chaplygin
gas (Bento et al. [10]) etc. The DE models have significant
importance now as far as theoretical study of the universe
is concerned.

At present much interests have been focused on the
study of cosmological models with variable equation of

state (EoS) parameter oft) = P, where pis the pressure

and p is the energy density of the matter. The
cosmological constant A (or vacuum density) is the most
efficient and simplest candidate for explaining the observed
accelerated background expansion with EoS parameter
W =—1, but it needs to be extremely fine tunned to satisfy
the current value by DE, which is a serious problem in
cosmology.
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According to Caldwell et al. [11] the matter with
@ < —1gives rise to Big-Rip type of future singularly.
Bamba et al. [12] have presented a review of different DE
isotropic cosmologies with early deceleration and late-time
acceleration.

The spatially homogeneous and isotropic FRW models
are considered to be more suitable to study the large scale
structure of the universe. However, it is believed that the
early universe may not have been exactly uniform. This
prediction motivates us to describe the early stages of the
universe with models having anisotropic background.
Bianchi I-1V spaces play significant roles for constructing
spatially homogenous and anisotropic cosmological models
of the universe. Thus it would be worthwhile to explore
anisotropic DE models within the framework of Bianchi
space-times. Many authors have studied Bianchi type-1 in
the presence of an anisotropic DE. Rodrigues [13] has
constructed a Bianchi type- | CDM cosmological model
whose DE component preserves non-dynamical character
but yields anisotropic vacuum pressurce. Koivisto and
Moto [14] have investigated Bianchi type- | cosmological
model containing interacting DE fluid with non-dynamical
anisotropic EoS and perfect fluid component and have
suggested that if the EoS is anisotropic, the expansion rate
of the universe becomes direction dependent at late-times
and the cosmological models with anisotropic EoS can
explain some of the observed anomalies in CMB. Akarsu
and Kilinc [15,16] studied Bianchi type-l and lll
cosmological models filled with DE and perfect fluid. They
considered a phenomenological parameterization of
minimally interacting DE in terms of its EoS parameter and
time-dependence skewness parameters. Samanta [17] has
investigated Bianchi type-Ill cosmological models with
anisotropic DE with the assumptions on the anisotropy of
fluid, power-law and exponential law in Lyra geometry,
Pradhan et al. [18] obtained a new class of LRS Bianchi
type-11 DE models with variable EoS parameter. Shri Ram
et al. [19] have obtained hypersurface homogeneous
cosmological models filled with an anisotropic DE in Lyra
geomotry by applying a special law of variation for the
mean Hubble parameter that gives a negative value of the
deceleration parameter.
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Singh and Sharma [20] investigated Bianchi Type-I1I
models in the presence of an anisotropic DE in Lyra
geometry using power-law form and volumetric expansion
law form of the average scale factor. Recently Shri Ram et
al. [21] presented a Kantorski-Sachs universe in the
presence of anisotropic DE within the framework of Lyra
geometer by utilizing a special form of the Hubble
parameter that vyields a time-varying deceleration
parameter.

In this paper, we obtain a Bianchi type-1l1 cosmological
models in the presences of an anisotropic dark energy
within the framework of Lyra geometry. The outline of the
paper is as follows, In Sect. 2, the metric of the totally
anisotropic Bianchi type-l1l and the field equations are
described. Section 3 deals with the solution of the filed
equations by utilizing the HEL for the average scale factor,
which describes a unified description of early decelerating
and late-time accelerating universe. We also study the
kinematical and physical features of the cosmological
model in Sect. 4. Finally, we summarize the conclusions in
the last Sect. 5.

I1. BIANCHI TYPE — |l METRIC AND FIELD EQUATIONS-

We consider the totally anisotropic Bianchi type- Il
space-time in the form

@)

where A(t), B(t) and C(t) are cosmic scale functions.
The energy-momentum tensor Tﬂ” of an anisotropic fluid

ds? =dt* — A*(dx —zdy — Bdy? —C%dz’

can be written in the diagonal form as

T;zu = diag[-rll'T227T33’T44] :dlag |__ px’_pyl_pz’pJ
)

Where p is the energy density of the fluid; p,, P, and

P, are pressures on X, Y and Z -axes respectively. The
parameterization of deviation from isotropy by introducing
skewness parameter O i.e. is the deviation from @ on
X —axis only, the energy-momentum tensor can be written
as

TY =diag [- (W+3)-w-ollp @

Sen [22], Sen and Dunn [23] proposed a scalar-Tensor
theory of gravitation and constructed analogue of Einstein
is field equation based on Lyra gromentry.
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The Einstein’s field equation are given by
1 3 1
le - E Rg ou + E (¢,u¢v - E g,uv¢a ¢!¥) = _T;; v (4)

where R, is the Ricci tensor, R is the Ricci scalar,

T,uv is the energy-momentum tensor the anisotropic fluid

and ¢# is the time —like displacement field vector given as

4, =(0,00,p(t), w(t) being the time dependent gauge
function.

In comoving coordinate system, the field equations for
the totally anisotropic Bianchi type-I1 space-time yield

B ¢ BC 3 A2 3,
Sy ==-= + 2yt =—(w+6 (®)
5C Be apict gV T @rok
C ACA LA 3, (6)
c aTcatapc? TV TP
A B AB 1A 3, @)
A B a8 aBc? 2 P
AB_BC CA 1A 3, (8)

AB BC CA 4BC® 4

Using Bianchi identities to (4) and assuming that the
matter field is conserved separately, we obtain

, A B C
W+W(X+E+EJ:0 ©)

Now dot denotes derivative with respect to lime t.

Now we define some parameters for the Bianchi type-II
model (1) which are important tools in cosmological
observations. The average scale factor and spatial volume
are defined as

a®=ABC, V=a° (10)

The physical parameters like expansion scalar &, shear
2 -
scalar o“ are defined as follows:

oA B C (1)
A B C

az—li(H *—3H?) (12)
2

where H is the mean Hubble parameter and H#(yzlzlg)

represent the directional Hubble parameters in the direction
of X, Y and z axes respectively givens as
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H :%(H1+HZ+H3), (13)
H=2 n, =By, 2C. (14)
A B c

The anisotropy Parameter A of the expansion is given
as

(15)

For isotropic behavior of cosmological model A, =0.

An important observational quantity is the deceleration
parameter g defined by

=7

(16)

The sign of g indicates whether the model inflates or not.
The positive value of g corresponds to standard
decelerating model whereas the negative sign indicates
inflation.

I11.  SOLUTIONS OF THE FIELD EQUATIONS

In this section, we obtain the exact solutions of the field
equation (5)-(9) for the scale factors A, B, C, and the
physical parameter p,®,0 and [ . Subtracting (6) from
equation (7), we obtain

B C,AB Cl_ (17)
B C A(B C

Equation (17) on integration, provides
B C_k (18)
B Cc &

where K, is an integration constant.

In order to obtain a consistent solution of the field
equation, we assume that

A" =BC (19)

where m is a positive constant. We further assume that

B=A?D, C-A‘D"

Substituting for B and C in equation (18), we get

(20)

D_K

(21)
D a°
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where K is an arbitrary constant. From (10) and (19), we
get

1 3

A=V mi = gm (22)

We can determine the scale factors A,B and C if the
average scale factor a is known function of time. Singh and
Sharma [20] have presented the solutions of field equations
(5)-(9) by using the power-law and exponential law forms
of the average scale factor a(t). Here we obtain exact
solutions of the field equations by utilizing the hybrid
expansion law (HEL) for the average scale factor of the
form

a(t) =k t“e” (23)

wherek >0, >0 and #>0 are constant. Akarsu

et al. [24] proposed this generalised form the average scale
factor which is a combination of power-law and
exponential-law cosmologies in a unified way. This law

leads to the power-law cosmology for =0 and the

exponential-law cosmology for ¢ =0. Kumar [23] has
studied the dynamics of Bianchi type-V model by
considering HEL for the average scale factor. Using this
law, Shri Ram and Chandel [26] discussed a magnetized
string cosmological model in f(R,T) gravity theory.
Chandel and Shri Ram [27] investigated a Bianchi type — V
early decelerating and late-time accelerating cosmological
model with perfect fluid and heat conduction using HEL.

From (22) and (23), we get the solution for the scale
factor A as

3

A=(t"e”Jma .

Substituting (23) in equation (21) and integrating, we
obtain

(24)

o-K,00{- K@ Taazm| @

where I" denotes the lower incomplete gamma function
and K, is a constant of integration. Without loss of

generality, we take K, =1 substituting (25) in equation

(20), we obtain the expressions of the scale factors B and C
as

3m

B= (taeﬁl)z(m+l) exp {_2(3,8)3&1(].—3&,3@}’ (26)
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3m

C = (t"e™)?m exp{lg (3/3)3“(1—305,3/3[)}- (27)

For the average scale factors A, B and C to be realistic,

1
we must have o < § Using (24), (26) and (27) in
equation (9) and integrating, we obtain the gauge function

pas

_ Y,
V= t3ae3ﬂ[

(28)

where y/ is an arbitrary constant.

The directional Hubble parameters and the average
Hubble parameter are obtained as

3 a
H-=-_°> (% , 29
Y m+l (t+ﬂ) @)
__3m (a K | (0
H2_2(m+1)(t+ﬁj+t3“e3/" (%0

3m a K
*2(m+1) [ t * ] i (31

H:%+ﬂ- (32)

The expansion scalar (@), shear scalar (o) and the
anisotropy parameter (An) are obtained as

9:3[%+/3J :

2 _3m-2°(a /) 2K® (a
o 2(m+1)° [t +ﬂj T {oeon (39
An:g(m 2) . 2K (34)

l 2 2
(m+ ) (0!+ﬂj t6ugbs
t
The deceleration parameter (q) has the value given as

@ (35)
T Ay
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For the present model, the energy density (o),
deviation free EoS parameter (@) and the skewness
parameter O are obtained as

p:9m(m+4)[0,+ﬂj2_1 1 +(3W02—4K2), (36)
(m+1)* 't 4 tsa%esn% 4t°ee
w:_iig(m2+2m+4)(g j2_3a(m+2)+31//§+4K2 1 !
P 4(m+l)z kt 2(m+1)t2 457gR 6a(m-1) 64(m-)t
L 4t m+1 e m+l
(37)
i 2
(5‘:& _g(m_Z)(g+ﬂj + Sa(m_zz) + m—ltls mDt
p| 2m+1) (t 2m+1yt - S T
(38)

IV. SOME PHYSICAL FEATURES OF THE MODEL

We observe that the spatial volume of the model is zero
at the time t=0. At this epoch the energy density,
expansion scalar and shear scalar are infinite. Therefore,
the present model has a big-bang singularity at t=0. As
time increases, the energy density decreases and ultimately
attains a constant value as t — 0. The expansion scalar
and shear scalar are decreasing functions of time which
assume constant value for late times.

Equation (34) shows that the anisotropy parameter is
infinite at t =0 and assumes a constant value §[M)2 as

2{m+1
t — oo. This means that the anisotropy in the model is
maintained throughout its evolution.

From (37) we find that the time-dependent EoS
parameter is infinite at t =0 and a decreasing function of t
which assumes a constant value

w14 2M=2) (39)
m(m+4)

as t —oo. It is worthwhile to note that @ tends to -1
as t —oo0 for m=2. From this we can infer that the

universe for m=2 is late-time accelerating due to the
dominance of cosmological constant as source of DE. The
skewness parameter, being infinite at t=0, tends to a
constant for late-time.

Equation (35) gives the variation of deceleration
parameter with time. We observe that the universe evolves
with variable deceleration parameter and the transition
from deceleration to acceleration takes place at time
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(40)

Which restrict o inthe range 0<a <1.Ast—0,q
~ -1 which shows the inflationary behavior of the universe.
For sufficiently large times, we fluid that H ~ £ which

indicates that the universe expands forever with the
dominance of DE.

The gauge function /(t), being infinite initially, dies
out as t—>oo. The gauge function contributes
significantly to energy density and the EoS parameter. The
concept of Lyra manifold is meaningful only for finite
time, but dose not remain for very large time.

The present model is new and different than the models
obtained by Sing and Sharma [20].

V. CONCLUSION

A new anisotropy Bianchi type-ll with variable EoS
parameters has been investigated within the frame work of
Lyra geometry. The anisotropy DE model is based on exact
solutions of the Einstein’s filed equations for the totally
anisotropy Bianchi type-Il space-times filled with prefect
fluid with variable EoS parameter @ . The exact solutions
of the Einstein’s field equations have been obtained by
utilizing the HEL for the average scale factor of the model
which correspond to an early decelerating and late-time
accelerating universe. The universes has a signature flep at
a finite time.

The anisotropy parameter A, which is infinite at the

initial singularity, tends to a constant as t — oo . Therefore
the model dose not approach isotropy large-time. In the
derived model, @ is obtained as constant as time-varying
which ultimately tends to a constant as time tends to
infinity.
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The skewness parameter O tends to a constant for large-
time. Therefore the anisotropy in the pressures on
coordinate axes persists for large time.

For sufficiently large time H ~ fand q ~ —1, which

indicate that the universe expands forever due to the
dominance of DE.
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