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Abstract-- The study of buoyancy effect on fluctuation on 

three dimensional unsteady flow with heat and mass transfer 

has been the object of fur flung research due to its possible 

applications in many modern branches of Science and 

Technology. The oscillatory free convective flows play an 

important role in Chemical engineering, turbo machinery and 

Aerospace technology. In industrial applications many 

transports exit where the transfer of heat and mass takes 

place simultaneously because of combined buoyancy effects 

thermal diffusion and diffusion chemical species. The study of 

this kind of flows was initiated by Lighthill (1954). Stuart 

(1955) further extended it to study a two-dimensional 

oscillatory flow past an infinite plate with fixed suction. 

Soundalgekar (1979) studies the flow past an infinite normal 

plate oscillating in its own place and with wall temperature. 

Messiha (1966) investigated the two-dimensional oscillatory 

flow when the plate is bounded to a time-dependent suction. 

Soundalgekaretl al (1977a) have also discussed the free 

convective unsteady flow with mass transfer. Further 

Vignesam and Soundalgekar investigated the free and forced 

convective flow with variable temperature. 

Keywords--MHD, Visco-elastic, Incompressible fluid, 

Porous Medium. Unsteady flow.  

 

I. INTRODUCTION 

Chauhan, D.S. (01) and N. Veerraju (02) are the pioneer 

workers of the present area. In fact, the present work is an 

extension of the work done by Siddiqua (03) et al, Prasad, 

J. S. R. (04) et al, Kumar, J. P. (05) et al, Mamatha, B (06) 

et al and Adeniyan, A (07). In this paper we have studied 

analytically about heat and mass transfer of oscillatory flow 

of a fluids. 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

Considering the heat and mass transfer flow of a viscous 

incompressible fluid past an infinite normal porous plate 

with transverse periodic suction oscillating with time and 

uniform free stream velocity. The plate is lying vertically 

on the 𝑥  - 𝑧  plane with 𝑥 - axis taken along the plate in the 

upward direction. The 𝑦 -axis is taken to the normal to the 

plane of the plate and directed into the fluid following 

laminarly with a uniform free stream velocity U. All the 

fluid properties are assumed constant except that the 

influence of the density variation with temperature is 

considered only in the body force term. The prescribed 

governing equations are given by: 

Continuity Equation: 

𝜕𝑣 

𝜕𝑦 
+

𝜕𝑤 

𝜕𝑧 
= 0                                      (1) 

Momentum Equations: 

𝜕𝑢 

𝜕𝑡 
+ 𝑣 

𝜕𝑢 

𝜕𝑦 
+ 𝑤 

𝜕𝑢 

𝜕𝑧 
= 𝑔𝛽 𝑇 − 𝑇 ∞ +  𝑔𝛽  𝐶 − 𝐶 

∞ + 𝑣  
𝜕2𝑢 

𝜕𝑦2    + 
𝜕2𝑢 

𝜕𝑧2                  (2) 

𝜕𝑣 

𝜕𝑡 
+ 𝑣 

𝜕𝑢 

𝜕𝑦 
+  𝑤 

𝜕𝑣 

𝜕𝑧 
=

1

𝜌

𝜕𝜌 

𝜕𝑦
+ 𝑣  

𝜕2𝑣 

𝜕𝑦2    + 
𝜕2𝑣 

𝜕𝑧2          (3) 

𝜕𝑤 

𝜕𝑡 
+ 𝑣 

𝜕𝑤 

𝜕𝑦 
+ 𝑤 

𝜕𝑤 

𝜕𝑧 
=

1

𝜌

𝜕𝜌 

𝜕𝑦
+ 𝑣  

𝜕2𝑤 

𝜕𝑦2    + 
𝜕2𝑤 

𝜕𝑧2          (4) 

Energy Equation: 

𝜕𝑇 

𝜕𝑡 
+ 𝑣 

𝜕𝑇 

𝜕𝑦 
+ 𝑤 

𝜕𝑇 

𝜕𝑧 
=  𝛼  

𝜕2𝑇 

𝜕𝑦2    + 
𝜕2𝑇 

𝜕𝑧2           (5) 
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Species Concentration Equation: 

𝜕𝐶 

𝜕𝑡 
+ 𝑣 

𝜕𝐶 

𝜕𝑦 
+ 𝑤 

𝜕𝐶 

𝜕𝑧 
=  𝐷  

𝜕2𝐶 

𝜕𝑦2    + 
𝜕2𝐶 

𝜕𝑧2           (6) 

Also, the suction velocity oscillates with time is assumed to be of the form: 

𝑉 𝑤 𝑧 , 𝑡  =  − 𝑣0  1 + cos  
𝜋𝑧 

𝐿
− 𝜔 𝑡         (7) 

Where L and (<<1) are the respective wavelength and amplitude of the suction variation defined by (7). 

The relevant boundary conditions of the problem are: 

𝑦 = 0 ∶  𝑢 = 0, 𝑣 =  𝑉 𝑤 𝑧 , 𝑡  , 𝑤 = 0, 𝑇 =  𝑇 𝑤 , 𝐶 =  𝐶 
𝑤  

𝑦  → ∞ ∶  𝑢 = 𝑈, 𝑣 =  −𝑣 0, 𝑤 = 0, 𝑇 =  𝑇 ∞ , 𝐶 =  𝐶 
∞ , 𝑃 =  𝑃 𝑤    (8) 

The non-dimensional quantities are introduced as follows: 

𝑦 =  
𝑦 

𝐿
, 𝑧 =  

𝑧 

𝐿
, 𝑢 =  

𝑢 

𝐿
, 𝑣 =  

𝑣 

𝑣0
, 𝑤 =  

𝑤 

𝑣0
, 𝑡 =  𝜔 𝑡  , 𝜔 =  𝜔 

𝐿2

𝑣
, 𝑆 = 𝑣/𝐷 

In view of the above dimensionless quantities, equations (1) to (6) become: 

From 1 ⇒
𝑣0

𝐿

𝜕𝑣

𝜕𝑦
+ 

𝑣0

𝐿

𝜕𝑤

𝜕𝑧
= 0 

⇒
𝜕𝑣

𝜕𝑦
+  

𝜕𝑤

𝜕𝑧
= 0          (9) 

From 2⇒ 
𝑢𝑣0

𝐿2  𝜔
𝜕𝑢

𝜕𝑡
+ 

𝑣0
2

𝐿
𝑣 

𝜕𝑢

𝜕𝑦
+

𝑣0
2

𝐿
𝑤 

𝜕𝑢

𝜕𝑧
= 𝑔𝛽 𝑇 𝑤 − 𝑇 ∞ 𝜃 + 𝑔𝛽 𝐶 

𝑤 − 𝐶 
∞  𝐶 +

𝑢𝑣0

𝐿2  
𝜕2𝑢

𝜕𝑦 2 +
𝜕2𝑢

𝜕𝑧 2 , 

⇒
𝑣

𝑣0𝐿
 𝜔

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
+  𝑤

𝜕𝑢

𝜕𝑧
=  

𝐿𝑔𝛽(𝑇 𝑤 − 𝑇 ∞)

𝑣0
2 𝜃 +

𝐿𝑔𝛽 (𝐶 
𝑤 − 𝐶 

∞)

𝑣0
2 𝐶 + 

𝑣

𝑣0𝐿
 
𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
  

⇒
𝜔

𝑅𝑒

𝜕𝑢

𝜕𝑡
+  𝑣

𝜕𝑢

𝜕𝑦
+  𝑤

𝜕𝑢

𝜕𝑧
= 𝐺𝑟𝜃 + 𝐺𝑚𝐶 + 

1

𝑅𝑒
 
𝜕2𝑢

𝜕𝑦 2 +
𝜕2𝑢

𝜕𝑧 2              (10) 

From 3⇒
𝑢𝑣0

𝐿2  𝜔
𝜕𝑢

𝜕𝑡
+ 

𝑣0
2

𝐿
𝑣 

𝜕𝑣

𝜕𝑦
+

𝑣0
2

𝐿
𝑤 

𝜕𝑣

𝜕𝑧
= −

1

𝜌
𝜌  

𝑣

𝐿
 

2 𝜕𝑝

𝜕𝑦

1

𝐿
+

𝑢𝑣0

𝐿2  
𝜕2𝑣

𝜕𝑦 2 +
𝜕2𝑣

𝜕𝑧 2 , 

⇒
𝑣

𝑣0𝐿
 𝜔

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑦
+  𝑤

𝜕𝑣

𝜕𝑧
= − 

𝑣

𝑣0𝐿
 

2 𝜕𝑝

𝜕𝑦
+

𝑣

𝑣0𝐿
 
𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
 ,  

⇒
𝜔

𝑅𝑒

𝜕𝑣

𝜕𝑡
+  𝑣

𝜕𝑣

𝜕𝑦
+  𝑤

𝜕𝑣

𝜕𝑧
=

1

𝑅𝑒2

𝜕𝑝

𝜕𝑦
+ 

1

𝑅𝑒
 
𝜕2𝑣

𝜕𝑦 2 +
𝜕2𝑣

𝜕𝑧 2               (11) 

From 4⇒
𝑢𝑣0

𝐿2  𝜔
𝜕𝑤

𝜕𝑡
+ 

𝑣0
2

𝐿
𝑣 

𝜕𝑤

𝜕𝑦
+

𝑣0
2

𝐿
𝑤 

𝜕𝑤

𝜕𝑧
= −

1

𝜌
𝜌  

𝑣

𝐿
 

2 𝜕𝑝

𝜕𝑦

1

𝐿
+

𝑢𝑣0

𝐿2  
𝜕2𝑤

𝜕𝑦 2 +
𝜕2𝑤

𝜕𝑧 2  ,  

⇒
𝑣

𝑣0𝐿
 𝜔

𝜕𝑤

𝜕𝑡
+ 𝑣

𝜕𝑤

𝜕𝑦
+  𝑤

𝜕𝑤

𝜕𝑧
= − 

𝑣

𝑣0𝐿
 

2 𝜕𝑝

𝜕𝑧
+

𝑣

𝑣0𝐿
 
𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
 ,  

⇒
𝜔

𝑅𝑒

𝜕𝑤

𝜕𝑡
+  𝑣

𝜕𝑤

𝜕𝑦
+  𝑤

𝜕𝑤

𝜕𝑧
=

1

𝑅𝑒2

𝜕𝑝

𝜕𝑧
+ 

1

𝑅𝑒
 
𝜕2𝑤

𝜕𝑦 2 +
𝜕2𝑤

𝜕𝑧 2                (12) 
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From 5⇒
𝑣0

𝐿
 
𝑣

𝐿
𝜔

𝜕

𝜕𝑡
+  𝑣

𝜕

𝜕𝑦
+ 𝑣0𝑤 

𝜕

𝜕𝑧
   𝑇 𝑤 − 𝑇 ∞ 𝜃 + 𝑇 ∞  

=  
𝛼

𝐿2
 

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
   𝑇 𝑤 − 𝑇 ∞ 𝜃 + 𝑇 ∞  

⇒
𝑣

𝑣0𝐿
𝜔

𝜕𝜔

𝜕𝑡
+

𝑣0(𝑇 𝑤 − 𝑇 ∞)

𝐿
𝑣
𝜕𝜃

𝜕𝑦
+

𝑣0(𝑇 𝑤 − 𝑇 ∞)

𝐿
𝑤

𝜕𝜃

𝜕𝑦
=

𝛼(𝑇 𝑤 − 𝑇 ∞)

𝐿2
+  

𝜕2𝜃

𝜕𝑦
+

𝜕2𝜃

𝜕𝑧
 , 

⇒
𝜔

𝑅𝑒

𝜕𝜃

𝜕𝑡
+  𝑣

𝜕𝜃

𝜕𝑦
+  𝑤

𝜕𝜃

𝜕𝑧
=

1

𝑅𝑒𝑃𝑟
 
𝜕2𝜃

𝜕𝑦 2 +
𝜕2𝜃

𝜕𝑧 2 ,               (13) 

From 6 ⇒
𝑣0

𝐿
 
𝑣

𝐿
𝑤

𝜕

𝜕𝑡
+ 𝑣

𝜕

𝜕𝑦
+ 𝑣0𝑤

𝜕

𝜕𝑧
   𝐶 

𝑤 − 𝑇 ∞ 𝐶 + 𝐶 
∞  

=
𝛼

𝐿2
 

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
   𝐶 

𝑤 − 𝐶 
∞ 𝐶 + 𝐶 

∞ ,  

⇒
𝑣

𝑣0𝐿
𝜔

𝜕𝐶

𝜕𝑡
+

𝑣0(𝐶 
𝑤 − 𝐶 

∞)

𝐿
𝑣
𝜕𝐶

𝜕𝑦
+

𝑣0(𝐶 
𝑤 − 𝐶 

∞)

𝐿
𝑤

𝜕𝐶

𝜕𝑦
=

𝛼(𝐶 
𝑤 − 𝐶 

∞)

𝐿2
+  

𝜕2𝐶

𝜕𝑦
+

𝜕2𝐶

𝜕𝑧
 , 

⇒
𝜔

𝑅𝑒

𝜕𝐶

𝜕𝑡
+  𝑣

𝜕𝐶

𝜕𝑦
+  𝑤

𝜕𝐶

𝜕𝑧
=

1

𝑅𝑒𝑆
 
𝜕2𝐶

𝜕𝑦 2 +
𝜕2𝐶

𝜕𝑧 2 ,               (14) 

 To solve these differential equations, the boundary conditions are assumed as: 

𝑦 = 0: 𝑢 = 0, 𝑣 𝑧 =  − 1 + 𝜀 cos 𝜋𝑧 − 𝑡  , 𝑤 = 0, 𝜃 = 1, 𝐶 = 1 

𝑦 → ∞: 𝑢 → 1, 𝑣 → −1, 𝑤 →  0, 𝜃 → 0, 𝑝 →  𝑝∞             (15) 

III. HEAT TRANSFER 

Since at the boundary the heat exchange between the fluid and the body is only due to conduction, according to Fourier’s 

Law, we have  

𝑞 𝑤 = −𝐾  
𝜕𝑇 

𝜕𝑦 
 
𝑦 =0

                       (16) 

Where 𝑦  is the direction normal to the surface of the body. With the help of (19), the coefficient of heat transfer can be 

calculated in non-dimensional form which is generally known as Nusselt number as follows: 

𝑁𝑢 =
𝑞 𝑤

𝜌𝑣0𝐶𝑝(𝑇 𝑤 − 𝑇 ∞)
=

𝐾 𝑇 𝑤 − 𝑇 ∞ 

𝜌𝑣0𝐶𝑝 𝑇 𝑤 − 𝑇 ∞ 
 
𝜕𝜃

𝜕𝑦
 
𝑦=0

1

𝐿
 

=
𝜐

𝑣0𝐿

𝐾

𝜌𝜐𝐶𝑝
 
𝜕𝜃

𝜕𝑦
 
𝑦=0

=  
𝜐

𝑣0𝐿

𝛼

𝜐
 
𝜕𝜃

𝜕𝑦
 
𝑦=0

 

=  − 
1

𝑅𝑒𝑃𝑟
 𝑅𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 

𝜕𝜃

𝜕𝑦
 
𝑦=0

, 𝛼 =
𝐾

𝜌𝐶𝑝
               (17) 

In terms of the amplitude and phase, the Nusselt number can be written as  

𝑁𝑢 = 1 + 𝜀|𝐻|cos⁡(𝜋𝑧 − 𝑡 + Φ2)                (18) 

Where  𝐻 =   𝐻𝑟
2 + 𝐻𝑖

2 , tanΦ2 = Hi/Hr  ,  
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Hr =  
π

 C4
2+D4

2   C1−π 2+D1
2 

  C1 − π  D2D4 − C2C4 + C4 C1 + RePr − D1D4 + D1 C2D4 − D2C4 + D4 C1 + RePr +

D1C4+P1C1−ππRe+Q1D1πRe+P2C1−πω−Q2D1ω1C1−π+D12π2Re2+ω2Pr , 

Hi =  
π

 C4
2 + D4

2 { C1 − π)2 + D1
2 

 −D1 D2D4 − C2C4 + C4 C1 + RePr − D1D4 

+  C1 − π  C2D4 − D2C4 + D4 C1 + RePr + D1C4  

−  P1D1πRe − D1ωP2 +  C1 − π RePrQ1 −  C1 − π ωQ2 
1

  C1 − π 2 + D1
2  π2Re2 + ω2 Pr

  

IV. MASS TRANSFER 

The relation between species transfer by convection and the concentration boundary layer may be demonstrated by 

recognizing that the molar flux associated with species transfer by diffusion, according to Fick’s law, it has the form 

𝑞 𝑚 = −𝐷  
𝜕𝐶 

𝜕𝑦 
 
𝑦=0

         (19) 

With the help of (42), the coefficient of mass transfer can be calculated in dimensionless form in terms of Sherwood number 

as follows: 

𝑆𝑕 =
𝑞 𝑚

𝑣0(𝐶 
𝑤 − 𝐶 

∞)
=

𝐷(𝐶 
𝑤 − 𝐶 

∞)

𝑣0𝐿(𝐶 
𝑤 − 𝐶 

∞)
 
𝜕𝐶

𝜕𝑦
 
𝑦=0

 

=
𝜐

𝑣0𝐿

𝐷

𝜐
 
𝜕𝐶

𝜕𝑦
 
𝑦=0

=  − 
1

𝑅𝑒𝑆
 𝑅𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 

𝜕𝐶

𝜕𝑦
 
𝑦=0

              (20) 

In terms of the amplitude and phase, the Sherwood number can be written as 

𝑆𝑕 = 1 + 𝜀|𝑀|cos⁡(𝜋𝑧 − 𝑡 + Φ3)                (21) 

Where  𝑀 =   𝑀𝑟
2 + 𝑀𝑖

2 , tanΦ3 = Mi/Mr  , 

Mr =  
π

 C5
2+D5

2   C1−π 2+D1
2 

  C1 − π  D3D5 − C3C5 + C5 C1 + ReS − D1D5 + D1 C3D5 − D3C5 + D5 C1 + ReS +

D1C5+P1C1−ππRe+Q1D1πRe+P2C1−πω−Q2D1ω1C1−π+D12π2Re2+ω2S , 

Hi =  
π

 C5
2 + D5

2 { C1 − π)2 + D1
2 

 −D1 D3D5 − C3C5 + C5 C1 + ReS − D1D5 

+  C1 − π  C3D5 − D3C5 + D5 C1 + ReS + D1C5  

−  P1D1πRe − D1ωP2 +  C1 − π ReSQ1 −  C1 − π ωQ2 
1

  C1 − π 2 + D1
2  π2Re2 + ω2 S

  

P1 = C1C2 + D1D2 − C1 π + RePr , Q1 = C1D2 − C2D1 + D1(π + RePr) 

P2 = C1D2 − D1C2 − D1 π + RePr , Q1 = D1D2 − C1C1 − C1(π + RePr) 
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V. RESULTS AND DISCUSSION 

To get ample geo- physical insight into the problem, the 

values of Prandtl number (Pr) are chosen for Mercury 

(Pr=0.025), air at 200C(Pr=0.71), water (Pr=7.0) and water 

at 40C (Pr=11.4). Also, the values of Schmidt number (S) 

are taken for Hydrogen (S=0.22), Helium (S=0.30), Water 

vapour (S=0.60), Oxygen (S=0.66) and Ammonia 

(S=0.78). There are two cases of general interest for 

Grashoff number Gr<0 due to freezing of the plate and 

Grashoff number Gr>0 due to heating of plate are being 

considered. 

The phase, tanΦ1, in the main flow direction against 

Reynolds, Prandtl, Schmidt, Grashoff number for mass 

transfer and frequency of the fluctuation has been plotted 

graphically in Fig. 1 due to freezing of the place. An 

increase in Re leads to a decrease in tanΦ1 and it is 

observed that, the frequency has no effect on tanΦ1 in case 

of large Reynolds number. Increasing Gm, Pr and S result 

in increase of the phase tanΦ1, however, in case of 

Ammonia tanΦ1fluctiates more in comparison to air at 

200C.The variation of tanΦ1against Re, Pr, S, gm and ω 

shown in Fig. 2 in case of heating of the plate. The tangent 

of the phase angle tanΦ1reduces in magnitude for thicker 

diffusing species and substantial decrease is observed near 

the plate, whereas by increasing influence of Gm, Re and 

Pr, the phase tanΦ1 increasing substantially. Moreover, 

there is a phase lead Φ1 ⟶ 450 as ω1 ⟶ 0+. 

Due to freezing of the plate Fig. 3 shows the variation of 

the amplitude |F| of the main flow skin-friction against Re, 

Pr, S, Gm and ω. Reduction in amplitude |F| is observed 

near the plate with increasing Re, Pr, S and Gm, but there is 

a reversed behaviour of |F| occur for large frequency of 

fluctuation (i.e. ω > 2.0). It is interesting to note that, all 

curves of |F| are intersect at ω = 2.0. 

 

 

 

In Fig. 4, we have studied the effect of Re, Pr, S, GM 

and ω on the amplitude |F| for externally heated plate. 

From this figure it is seen that |F| increase with Prandtl 

number and this behavious of |F| is opposite to the 

influence of Reynolds, Schmidt and Grashoff number for 

mass transfer. Again, substantial decrease occurs in 

amplitude |F|, when ω ⟶ 0+. 
Fig. 5, depicts the effect of Reynolds, frequency and 

Prandtl number on amplitude |H| of the rate of heat transfer. 

This figure clearly shows that the amplitude |H| increases 

considerably with the increase of Re, Pr and ω. It is 

remarkable that, the curves of |H| decreases sharply near 

the plate, and then very sharply increases away the plate. 

Moreover, the amplitude |H| is more in water at 40C 

(Pr=11.4) than in air at 200C (Pr=0.71). 

To study the effects of Re, Pr and ω on the tangent of 

the phase angle, tanΦ2, of the rate of heat transfer has been 

shown in Fig. 6. It is seen that the phase tanΦ2reduces in 

magnitude and extent with increase of Re, Pr and ω. Also, 

substantial increase in tanΦ2 is marked for ω ⟶ 0+ and 

when ω ⟶ +∞, the phase tanΦ2 more fluctuates for air at 

200C and water. 

The amplitude |M| of the rate of mass transfer under the 

influence of Re, S and ω is presented graphically in Fig. 7. 

It is inferred from this figure that, |M| increases slowly and 

steadily for water vapour and Ammonia, however, |M| 

increases for Reynolds number when ω ⟶ +∞. It is also 

observed that, the amplitude |M| ⟶ 1 as ω ⟶ 0+. 
Fig. 8 demonstrate the variation of the tangent of the 

phase angle, tanΦ3, against Re, S and ω. By the increasing 

of Reynolds number, the phase tanΦ3 decreases for small 

values of frequency and this effect of Reynolds number on 

tanΦ3 is reversed for large values of frequency. Also, the 

phase tanΦ3, decreases in magnitude for thicker diffusing 

foreign species and substantial decrease is observed for 

large values of ω. The phase tanΦ3 is more in Ammonia 

than in water vapour. 
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Figure 1: The phase 𝐭𝐚𝐧𝚽𝟏 of 𝝉𝒙Figure 2: The phase 𝐭𝐚𝐧𝚽𝟏 of 𝝉𝒙 

                         when Gr = 10                                                       when Gr = -10 

 

      

Figure 3: The Amplitude  𝑭  of 𝝉𝒙Figure 4: The Amplitude  𝑭  of 𝝉𝒙 

                                    when Gr = 10                                                                   when Gr = -10 
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Figure 5: The Amplitude  𝑯  of 𝑵𝒖Figure 6: The phase 𝐭𝐚𝐧𝚽𝟐 of 𝑵𝒖 

 
Figure 7: The Amplitude  𝑴  of 𝑪Figure 8: The phase 𝐭𝐚𝐧𝚽𝟑 of 𝑪 

VI. CONCLUSIONS 

The above study brings out the following results of geo-

physical interest on the free convective heat and mass 

transfer flow: When Re is too small, tanΦ1 at Gr = -10 

should increase with an increase in ω and this behaviour of 

tanΦ1 is opposite at Gr = 10. When the dominance of 

viscous effects over inertia effects is very large, it is seen 

that |H| and |M| increases Re and ω; while this behavious if 

opposite to tanΦ2. When the inertial forces and viscous 

forces become equal in magnitudes, it seems that |M| and 

tanΦ3of molar concentration are greatest in the presence of 

Hydrogen; but in the presence of Mercury, |H| of heat 

transfer is also greatest. When Re = 1, the phase tanΦ1 of 

main flow skin-friction increases with increasing GM and 

ω in presence of Mercury and Helium.  

 

 

In presence of heavier diffusing species, tanΦ1 increases 

at Gr = 10, while this effect of tanΦ1 is reversed at Gr = -

10. Near the plate, Re reduces tanΦ3 and as well as for the 

heavier diffusing species. But away the plate Re increase 

tanΦ3. This is because that the viscous force near the plate 

is more significant than away the plate. Also, as the inertial 

forces and viscous forces gradually become comparable in 

magnitudes, we may say that |F| and tanΦ2 decreases with 

increasing ω. 
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