

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

92

Parallel Computing and Algorithms for Large-Scale

Simulations
Sunil Kumawat

Department of Mathematics, Acharya Narendra Dev College, University of Delhi, India

Abstract-- Parallel Computing refers to a type of

computation in which many calculations or processes are

carried out simultaneously. Large problems can often be

divided into smaller ones, which can then be solved

concurrently, thus speeding up computation and increasing

efficiency.

Keywords--Parallel Computing, Algorithms, Large-Scale

Simulations, High Performance Computing, Efficiency

1 INTRODUCTION

Parallel computing runs on multiple CPUs. A problem is

broken into parts, which are solved concurrently. Each part

is further broken down into a series of instructions, and

instructions from each part execute simultaneously on

different CPUs.

1.1 Definition and Importance

Parallel Computing refers to a type of computation in

which many calculations or processes are carried out

simultaneously.

Large problems can often be divided into smaller ones,

which can then be solved concurrently, thus speeding up

computation and increasing efficiency.

1.1.1 Importance

• Increased Performance: Parallel computing can

significantly reduce the time required to solve complex

problems by utilizing multiple processors or cores

simultaneously.

• Scalability: It allows for the handling of larger datasets

and more complex calculations by scaling across

multiple processors or machines.

• Efficiency: By performing multiple operations at once,

it can make better use of available hardware resources,

improving overall system efficiency.

Figure 1: PARALLEL COMPUTING

1.2 Historical Background

• 1950s-1960s: Early parallel computing began with

vector processors and the development of the f i rst

parallel algorithms.

• 1970s-1980s: The development of multi-core

processors and shared-memory systems started. The

introduction of SIMD (Single Instruction, Multiple

Data) and MIMD (Mul- tiple Instruction, Multiple

Data) architectures marked significant milestones.

• 1990s-Present: The proliferation of multi-core CPUs,

GPUs, and distributed systems. The rise of big data and

machine learning has further accelerated the

development and application of parallel computing

techniques.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

93

1.3 Applications and Use Cases

• Scientific Computing: Simulations in physics,

chemistry, and biology often require parallel

computing to process vast amounts of data.

• Engineering: Computational fluid dynamics,

structural analysis, and other engineering

simulations bene t from parallelism.

• Data Analysis: Big data analytics and machine

learning algorithms use parallel computing to handle

large datasets efficiently.

• Graphics Rendering: Parallel computing is used in

rendering complex graphics and animations in real-

time.

Figure 2: Fundamentals of Parallel Computing

II. FUNDAMENTALS OF PARALLEL COMPUTING

2.1 Basic Concepts

2.1.1 Parallelism vs. Concurrency

Parallelism: Refers to the simultaneous execution of

multiple tasks or processes. It is often used to speed up

computation by dividing tasks among multiple processors.

Concurrency: Refers to the ability of a system to handle

multiple tasks or processes at the same time but not

necessarily simultaneously. Concurrency is about dealing

with lots of things at once, while parallelism is about doing

lots of things at once.

2.1.2 Types of Parallelism

• Data Parallelism: Involves distributing data across

different parallel computing nodes and performing the

same operation on each subset of data. For example,

applying a f i lter to each element of an array in

parallel.

• Task Parallelism: Involves dividing a task into smaller,

independent tasks that can be executed in parallel. For

example, dividing a complex computation into separate

functions that run concurrently.

• Instruction Parallelism: Refers to the simultaneous

execution of multiple instructions from different

threads. It's often achieved through techniques like

pipelining and super- scalar architectures in CPUs.

2.2 Parallel Architectures

2.2.1 Multi-core Processors

• Definition: Processors with multiple cores on a single

chip, where each core can execute instructions

independently. This architecture allows for true parallel

execution of multiple threads or processes.

• Advantages: Increased performance, energy

efficiency, and the ability to run multiple applications

simultaneously.

2.2.2 Distributed Systems

• Definition: Systems where computing resources are

spread across multiple machines, often connected

via a network. Each machine may have its own

memory and processing capabilities.

• Advantages: Scalability, fault tolerance, and the

ability to use resources from multiple locations.

Examples include cloud computing and grid computing

systems.

2.2.3 GPU Architectures

• Definition: Graphics Processing Units (GPUs) are

designed primarily for rendering graphics but are

increasingly used for parallel computation. They

consist of many smaller cores designed to handle

parallel tasks efficiently.

• Advantages: High throughput and efficiency for

tasks that can be parallelized, such as matrix

operations and deep learning algorithms.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

94

III. PARALLEL PROGRAMMING MODELS

3.1 Shared Memory Models

Shared Memory Models involve multiple threads or

processes accessing and manipulating a common memory

space. This model simplifies data sharing and

communication but requires mechanisms to handle

synchronization and avoid conflicts.

3.3.1 Threads and Synchronization

Threads: Threads are lightweight processes that share

the same memory space but execute independently. They

are used to perform parallel tasks within a single process.

Synchronization: To ensure consistent access to shared

data, synchronization mechanisms such as mutexes

(mutual exclusions), semaphores, and condition

variables are used. Proper synchronization is crucial to

avoid race conditions and ensure data integrity.

3.3.2 OpenMP

Definition: OpenMP (Open Multi-Processing) is an API

for parallel programming in C, C++, and Fortran. It

provides a set of compiler directives, libraries, and

environment variables to facilitate parallelism in shared

memory architectures.

Key Features:

• Pragmas: Directives inserted into the source code to

specify parallel regions, loops, and sections.

• Thread Management: OpenMP manages the creation,

synchronization, and termination of threads

automatically.

• Data Sharing: OpenMP provides constructs to

specify how data is shared or private among threads.

3.4 Distributed Memory Models

Distributed Memory Models involve multiple computing

nodes, each with its own local memory. Communication

between nodes occurs through message passing, which can

introduce overhead and complexity.

3.4.1 Message Passing Interface (MPI)

Definition: MPI is a standardized and portable message-

passing system designed for parallel programming in

distributed memory systems.

Key Features:

• Point-to-Point Communication: Allows for direct

communication between pairs of processes.

• Collective Communication: Includes operations like

broadcasting, gathering, and scattering data among

multiple processes.

• Synchronization: MPI provides mechanisms for

coordinating actions among processes, such as barriers

and locks.

3.5 Hybrid Models

Hybrid Models combine different parallel programming

models to leverage their respective strengths. A common

hybrid model is MPI+ OpenMP, which uses MPI for

distributed memory systems and OpenMP for shared

memory systems within each node.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

95

3.5.1 MPI+ OpenMP

Definition: This model involves using MPI for

communication between nodes in a distributed system and

OpenMP for parallelism within each node. It combines the

advantages of both shared and distributed memory

approaches.

Advantages:

• Scalability: Can handle large-scale problems by using

MPI for distributed computing and OpenMP for

efficient multi-core utilization.

• Flexibility: Allows for ne-grained control over

parallelism and resource management.

IV. PARALLEL ALGORITHMS FOR LARGE-SCALE

SIMULATIONS

4.1 Overview of Simulation Types

4.1.1 Numerical Simulations

Definition: Numerical simulations use mathematical

models and computational techniques to solve problems

that are di cult or impossible to address analytically.

Examples: Fluid dynamics, structural mechanics, and

climate modeling.

4.1.2 Agent-Based Simulations

Definition: Agent-based simulations involve modeling

systems as a collection of autonomous agents that interact

with each other and their environment according to

predefined rules.

Examples: Social simulations, economic modeling, and

traffic f l o w analysis.

4.1.3 Monte Carlo Simulations

Definition: Monte Carlo simulations use random

sampling to estimate numerical results and analyze

complex systems.

Examples: Risk analysis, f i nancial forecasting, and

reliability testing.

4.2 Parallel Algorithms for Numerical Simulations

4.2.1 Matrix Operations

Definition: Matrix operations such as matrix

multiplication and inversion are fundamental in numerical

simulations.

Parallel Algorithms: Techniques like block

decomposition and parallel matrix multiplication

algorithms (e.g., Cannon's algorithm) can significantly

speed up these operations.

4.2.2 Fourier Transforms

Definition: Fourier transforms convert signals from the

time domain to the frequency domain, which is crucial for

analyzing periodic phenomena.

Parallel Algorithms: The Fast Fourier Transform (FFT)

algorithm can be parallelized using techniques such as

divide-and-conquer and data decomposition.

4.2.3 Solvers for PDEs (Partial Differential Equations)

Definition: PDEs describe a wide range of physical

phenomena, including heat conduction and fluid f l ow.

Parallel Algorithms: Techniques include domain

decomposition methods, parallel iterative solvers (e.g.,

Conjugate Gradient, Multigrid methods), and f i nite

element methods.

4.3 Parallel Algorithms for Monte Carlo Simulations

4.3.1 Random Number Generation

Definition: Random number generation is essential for

Monte Carlo simulations to ensure unbiased sampling.

Parallel Algorithms: Methods such as parallel random

number generators and pseudo-random number streams

can be used to enhance performance.

4.3.2 Statistical Analysis

Definition: Statistical analysis involves summarizing and

interpreting the results of Monte Carlo simulations.

Parallel Algorithms: Techniques for parallel statistical

analysis include parallel histograms,

regression analysis, and variance reduction methods.

4.4 Agent-Based Simulations

4.4.1 Swarm Intelligence

Definition: Swarm intelligence involves the collective

behavior of decentralized, self-organized systems, often

used to model complex phenomena.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

96

Examples: Optimization algorithms like Particle

Swarm Optimization (PSO) and Ant Colony

Optimization (ACO).

4.4.2 Scalability Issues

Definition: Scalability issues arise when simulations

become too large or complex to handle efficiently with

existing computational resources.

Challenges: Managing data communication, load

balancing, and maintaining performance as the number of

agents or the complexity of interactions increases.

V. PERFORMANCE METRICS AND OPTIMIZATION

5.1 Measuring Performance

5.1.1 Speedup

Definition: Speedup measures how much faster a parallel

algorithm or system performs com- pared to a sequential

version of the same algorithm. It is defined as:

where:

Tsequential is the time taken by the sequential algorithm.

Tparallel is the time taken by the parallel algorithm.

Ideal Speedup: In an ideal scenario, speedup equals the

number of processors used, i.e., n processors would give a

speedup of n.

5.1.2 Efficiency

Definition: Efficiency measures how effectively the

parallel system utilizes its resources. It is calculated as:

where n is the number of processors. Efficiency

indicates how close the parallel system's performance is to

the ideal case.

High Efficiency: High efficiency means that the

parallel system is making good use of available

resources with minimal overhead.

5.1.3 Scalability

Definition: Scalability refers to the system's ability to

maintain performance improvements as the number of

processors or resources increases. It can be categorized

into:

• Strong Scalability: Measures how the solution

time changes with the number of processors for a

f i xed problem size.

• Weak Scalability: Measures how the solution time

changes with the number of processors when the

problem size grows proportionally.

5.2 Optimization Techniques

5.2.1 Load Balancing

Definition: Load balancing involves distributing

computational tasks evenly across available processors to

avoid idle time and ensure efficient resource utilization.

Techniques:

• Static Load Balancing: Assigns tasks to processors

based on predefined criteria before execution

begins.

• Dynamic Load Balancing: Adjusts the distribution

of tasks during execution to respond to changing

loads and system states.

5.2.2 Minimizing Communication Overhead

Definition: Communication overhead refers to the time and

resources spent on exchanging data between parallel

processes or nodes.

Techniques:

• Data Localization: Reduce the amount of data

exchanged by keeping related data close to the

processing unit.

• Efficient Communication Patterns: Use collective

communication operations (e.g., broadcasting,

reducing) to minimize communication costs.

• Asynchronous Communication: Use non-blocking

communication to overlap computation and

communication.

5.2.3 Cache Optimization

Definition: Cache optimization aims to make efficient use

of CPU caches to reduce memory access latency and

improve performance.

Techniques:

• Data Locality: Arrange data structures to

maximize spatial and temporal locality, ensuring

that frequently accessed data resides in the cache.

• Blocking/Tiling: Break down computations into

smaller blocks that t into cache to improve cache

reuse.

• Cache-aware Algorithms: Design algorithms that

consider cache architecture and minimize cache

misses.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

97

VI. CHALLENGES IN PARALLEL COMPUTING

6.1 Scalability Issues

Definition: Scalability issues arise when a parallel

system's performance does not improve proportionally

with the addition of more processors or resources.

6.1.1 Examples

Amdahl's Law: Highlights the limitations in speedup due

to the portion of the sequential part of a computation. The

theoretical speedup is limited by the fraction of the

computation that cannot be parallelized.

Bottlenecks: Resource contention, communication

overhead, and synchronization can limit scalability.

6.2 Deadlocks and Race Conditions

6.2.1 Deadlocks

Definition: A deadlock occurs when two or more

processes are unable to proceed because each is waiting

for resources held by the others, creating a standstill.

Prevention and Detection:

• Prevention: Design systems to avoid conditions

that lead to deadlocks (e.g., using a lock hierarchy).

• Detection: Implement algorithms to identify and

resolve deadlocks when they occur (e.g., resource

allocation graphs).

6.2.2 Race Conditions

Definition: A race condition occurs when the outcome of

a program depends on the sequence or timing of

uncontrollable events, leading to inconsistent results.

Prevention:

• Synchronization: Use locks, semaphores, and other

synchronization mechanisms to control access to

shared resources.

• Atomic Operations: Ensure operations on shared

data are indivisible and cannot be interrupted.

6.3 Debugging and Pro ling

6.3.1 Debugging

Definition: Debugging in parallel computing involves

identifying and f i xing errors that occur in parallel

programs, which can be more complex due to concurrent

execution.

Tools and Techniques:

• Parallel Debuggers: Tools like TotalView or

Intel VTune can help trace and debug parallel

applications.

• Logging: Use detailed logging to track the

execution of parallel tasks and identify issues.

6.3.2 Profiling

Definition: Pro ling involves analyzing the performance

of parallel programs to identify bottlenecks and

inefficiencies.

Tools and Techniques:

• Performance Profilers: Tools like gprof, Perf, or

Intel VTune provide insights into CPU usage,

memory access patterns, and communication

overhead.

• Visualization: Use pro ling tools to visualize

execution time, data transfers, and processor

utilization.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

98

VII. CASE STUDIES AND REAL-WORLD APPLICATIONS

7.1 Scientific Research

Description: Parallel computing plays a crucial role in

scientific research by handling large-scale simulations,

complex calculations, and data analysis tasks.

7.1.1 Case Study: Large Hadron Collider (LHC)

The LHC at CERN uses parallel computing to analyze the

massive amounts of data generated by particle collisions. The

data is distributed across a global network of computing

centers, utilizing grid computing to process and analyze

results efficiently.

7.1.2 Case Study: Climate Modeling

Climate models simulate atmospheric and oceanic

processes to predict climate change. These models require

extensive computation to handle vast datasets and complex

equations.

Supercomputers like IBM's Blue Gene and the NOAA's

GFS (Global Forecast System) lever- age parallel computing

to improve accuracy and forecast capabilities.

7.2 Weather Forecasting

Description: Weather forecasting relies on parallel

computing to process vast amounts of meteorological

data and run complex simulation models.

7.2.1 Case Study: Numerical Weather Prediction (NWP)

NWP models, such as those used by the European Centre

for Medium-Range Weather Forecasts (ECMWF) and the

National Weather Service (NWS), use parallel computing to

handle data from satellites, weather stations, and other

sources to produce accurate and timely forecasts.

7.2.2 Case Study: Hurricane Forecasting

Forecasting models for hurricanes, like the Hurricane

Weather Research and Forecasting (HWRF) model, utilize

parallel computing to simulate and predict storm paths,

intensities, and impacts, improving preparedness and

response strategies.

7.3 Financial Modeling

Description: In nance, parallel computing is used for

risk assessment, portfolio optimization, and high-

frequency trading.

7.3.1 Case Study: Monte Carlo Simulations for Risk

Management

Financial institutions use parallel Monte Carlo simulations

to model and assess risks associated with portfolios,

derivatives, and other f i nancial instruments.

These simulations help in making informed investment

decisions and managing f i nancial risk.

7.3.2 Case Study: High-Frequency Trading (HFT)

HFT rms use parallel computing to process and analyze

large volumes of market data in real- time. Algorithms for

trading strategies are executed across multiple processors to

take advantage of microsecond-level trading opportunities.

7.4 Healthcare and Genomics

Description: Parallel computing accelerates research in

healthcare and genomics by handling large-scale data

analysis and simulations.

7.4.1 Case Study: Genomic Sequencing

The Human Genome Project and subsequent genomic

studies use parallel computing to process and analyze DNA

sequences. Algorithms for sequence alignment, mutation

detection, and variant analysis are run on high-performance

computing clusters to handle the vast amounts of data

generated.

7.4.2 Case Study: Drug Discovery

Parallel computing aids in drug discovery by simulating

molecular interactions and screening chemical compounds.

High-throughput computing is used to model protein-ligand

interactions, predict drug efficacy, and analyze biological

data.

VIII. FUTURE TRENDS AND DEVELOPMENTS

8.1 Quantum Computing

Description: Quantum computing leverages the

principles of quantum mechanics to perform certain

types of computations much faster than classical

computers.

8.1.1 Principles

Quantum computers use qubits, which can represent

multiple states simultaneously, enabling them to solve

complex problems more efficiently.

8.1.2 Applications

Potential applications include cryptography, optimization

problems, and simulation of quantum systems. Quantum

computing has the potential to revolutionize elds like

material science, pharmaceuticals, and f i nancial modeling.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

99

8.2 Neuromorphic Computing

Description: Neuromorphic computing mimics the

structure and function of the human brain to build more

efficient and adaptive computing systems.

8.2.1 Principles

Neuromorphic systems use artificial neurons and synapses

to process information in a way that resembles neural

networks in the brain. This approach can lead to energy-

efficient and highly parallel processing.

8.2.2 Applications

Potential applications include artificial intelligence (AI),

machine learning, and robotics. Neuro- morphic computing

aims to improve tasks such as pattern recognition, sensory

processing, and decision-making.

8.3 Advances in Hardware and Software

Description: Continuous advancements in hardware and

software drive the evolution of parallel computing

capabilities.

8.3.1 Hardware Advances

• Processor Technology: Developments in multi-

core CPUs, GPUs, and specialized processors (e.g.,

TPUs) enhance parallel computing performance.

• Interconnects: Innovations in interconnect

technologies, such as high-bandwidth memory

(HBM) and advanced network fabrics (e.g.,

InfiniBand), improve communication between

parallel computing nodes.

• Memory Hierarchy: Advances in memory

technologies, including non-volatile memory and

3D memory stacks, o er improved performance and

capacity.

8.3.2 Software Advances

• Programming Models: New programming models

and frameworks, such as unified memory models and

domain-specific languages, simplify parallel

programming and improve productivity.

• Parallel Libraries: Development of advanced

libraries and tools (e.g., NVIDIA CUDA, OpenCL)

provides more efficient ways to leverage parallel

hardware.

• AI and Machine Learning: Integration of parallel

computing with AI and machine learning

frameworks accelerates model training and

inference, driving advances in areas like natural

language processing and computer vision.

IX. Conclusion

9.1 Summary of Key Points

• Introduction to Parallel Computing: Parallel

computing involves executing multiple

computations simultaneously, which enhances

performance and scalability. It has evolved from

early vector processors to modern multi-core CPUs

and distributed systems.

• Fundamentals: Key concepts include parallelism vs.

concurrency, types of parallelism (data, task,

instruction), and various architectures like multi-

core processors, distributed systems, and GPUs.

• Parallel Programming Models: Shared memory

models (e.g., threads, OpenMP) and distributed

memory models (e.g., MPI) address different

aspects of parallelism. Hybrid models like MPI +

OpenMP combine these approaches for enhanced

performance.

• Parallel Algorithms: For large-scale simulations,

parallel algorithms address numerical simulations

(matrix operations, Fourier transforms, PDE

solvers), Monte Carlo simulations (random number

generation, statistical analysis), and agent-based

simulations (swarm intelligence, scalability issues).

• Performance Metrics and Optimization: Metrics

such as speedup, efficiency, and scalability

measure performance, while optimization techniques

like load balancing, minimizing communication

overhead, and cache optimization improve parallel

program efficiency.

• Challenges: Scalability issues, deadlocks, race

conditions, and debugging/pro ling complexities are

significant challenges in parallel computing,

requiring effective strategies for resolution.

• Case Studies and Real-World Applications:

Parallel computing is vital in scientific research

(e.g., LHC, climate modeling), weather

forecasting, f i nancial modeling (e.g., Monte

Carlo simulations, HFT), and healthcare/genomics

(e.g., genomic sequencing, drug discovery).

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026)

100

• Future Trends: Quantum computing, neuromorphic

computing, and advances in hardware and software

are shaping the future of parallel computing, with

potential impacts on a wide range of applications

and technologies.

9.2 Future Directions

9.2.1 Enhanced Scalability

Ongoing research aims to address scalability issues in

parallel systems, including improving algorithms and

architectures to handle ever-growing datasets and complex

computations.

9.2.2 Integration with AI

Parallel computing will increasingly integrate with AI and

machine learning, enabling faster model training and more

sophisticated analytics.

9.2.3 Quantum and Neuromorphic Advances

Continued advancements in quantum computing and

neuromorphic computing will likely lead to breakthroughs in

problem-solving capabilities and energy efficiency.

Acknowledgement

I am writing to express my sincere appreciation and

gratitude for your invaluable contribution to the project

Parallel Computing and Algorithms for Large-Scale

Simulations that was recently under the guidance of Vice

Chancellor of the University of Delhi Prof. Yogesh Singh

and Principal of Acharya Narendra Dev College Prof. Ravi

Toteja. Your dedication, expertise, and commitment have

played a pivotal role in the success of this project.

Also, I want to express my gratitude to my parents and

friends for their invaluable assistance in getting this project

f i nished in the allotted time. Lastly, I want to express my

gratitude to God for guiding me through all of the challenges.

Day by day, I've felt your guidance.

Once again, thank you for your exceptional contribution

to this project. I look forward to the opportunity to

collaborate with you on future endeavors.

REFERENCES

[1] Michael J. Quinn, Parallel Programming in C with MPI and

OpenMP. A comprehensive guide on parallel programming
techniques using MPI and OpenMP.

[2] Thomas Rauber and Gudula Runger, Parallel Computing: Theory and
Practice. This book provides a thorough overview of parallel
computing theory and practical approaches.

[3] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar,
Introduction to Par-allel Computing. A detailed introduction to
parallel computing concepts, algorithms, and architectures.

[4] J. Hennessy and D. Patterson, Amdahl's Law in the Multicore Era.

Discusses the implications of Amdahl's Law on modern multicore
systems.

[5] Maurice Herlihy and Nir Shavit, The Art of Multiprocessor

Programming. Explores concur- rent programming techniques and
data structures for multiprocessor systems.

[6] R. Gupta and K. Schwan, Scalable Parallel Computing: A Survey.

Provides an overview of scalability challenges and solutions in
parallel computing.

[7] OpenMP Official Website. Available at:
https://www.openmp.org/. Offers documentation, tutorials, and
resources for learning OpenMP.

[8] MPI Official Website. Available at: https://www.mpi-
forum.org/. Provides information on the MPI standard,
documentation, and resources.

[9] NVIDIA CUDA Documentation. Available at:

https://docs.nvidia.com/cuda/. Includes documentation and resources
for programming with NVIDIA CUDA.

https://www.openmp.org/
https://www.mpi-forum.org/
https://www.mpi-forum.org/
https://docs.nvidia.com/cuda/

