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Abstract— The rapid advancements in integrated circuit
(IC) design hawe necessitated innovative approaches to
optimize performance while meeting multi-objective
constraints, such as power consumption, performance, and
area (PPA). Traditional methods, relying on rule-based
heuristics and simulation-heavy approaches, have become less
efficient with the increasing complexity of designs. Hybrid
artificial intelligence (Al) systems have been created to deal
with these problems. These systems combine machine learning
(ML) techniques with traditional circuit optimisation
methods. It looks at how supervised learning (e.g., Support
Vector Machines, Random Forests), uncontrolled learning
(e.g., K-means dustering, Autoencoders), and reinforcement
learning (RL) can be wused together in circuitdevel
optimisation. These hybrid systtms enhance the design
process by automating tasks like transistor sizing, layout
planning, and fault detection. The paper provides a detailed
analysis of various ML techniques, their applications in circuit
optimization, and the performance improvements they offer
owver traditional methods. Notable advancements include the
use of Graph Conwolutional Networks (GCN) in conjunction
with RL for efficient circuit design, and Bayesian optimization
combined with surrogate models for faster conwvergence.
Additionally, the paper presents a bibliometric analysis to
track the evolution of hybrid Al research in circuit design,
highlighting key publications, co-authorship networks, and
emerging research trends. This review shows how important
mixed Al systtms are becoming in modern circuit design by
giving a full picture of the most up-to-date methods. This
makes way for better, more flexible, and scalable solutions.

Keywords—Hybrid Al systems, Machine Learning, Circuit
Optimization, Reinforcement Learning, Graph Convolutional
Networks.

I. INTRODUCTION

Aspects of integrated circuits' (ICs) design and
improvement have become more difficult because of the
multi-objective challenges of modern semiconductor
devices and Moore's Law's scaling restrictions.
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Due to the expanding set of non-linear constraints and
parasitic effects, today's circuit designers have to optimise
simultaneously across power, performance and area (PPA)
in their designs [1]. Although previous methods have been
beneficial, traditional electronic design automation (EDA)
methods have largely been based on rule-based heuristics
and simulations, which are often slow and inflexible, and
are ultimately inadequate for today’s VLSI challenges. To
alleviate these challenges, researchers have developed
hybrid Al systems that integrate machine learning and
traditional methods to enhance automation, adaptive
learning, and optimization speed [2]. The core innovation
of these hybrid Al systems lies in the algorithmic
integration of ML models into the circuit design pipeline
[3]. Numerous people employ supervised learning
techniques such as support vector machines (SVMs),
random forests, and gradient boosting to predict yield,
classify performance and carry out early fault diagnosis [4].
K-means clustering, PCA, and Autoencoders are all
examples of unsupervised methods that help identify
hidden behaviours in layout data and aid in the exploration
of the design space. Recently, strategies that integrate deep
learning, coupled with reinforcement learning, have proven
highly effective for the automation of placement, floor
planning, and routing, all of which have been traditionally
viewed as tedious and reliant on heuristics [5]. One notable
example is the GCN-RL Circuit Designer, which leverages
Graph Convolutional Networks (GCNs) with RL agents to
optimize transistor sizing across various circuit topologies
[6]. This hybrid algorithm demonstrates the capability to
generalise across designs and outperforms traditional
Bayesian optimisation in both convergence speed and
adaptability. Likewise, Hu et al. presented a Bayesian
Optimisation approach supplemented by deep surrogate
models for the co-optimization of analogue circuits,
showcasing the ability of surrogate learning models to
accelerate the convergence of searches [7].
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Recent studies show that combining ML algorithms with
heuristic search methods such as PSO and GA improves
efficiency and reduces computing costs simu ltaneously [8].
For instance, using Artificial Neural Networks (ANNs) as
surrogate models within a GA framework allows for
efficient prediction and optimization of analog performance
metrics [9]. Numerous systematic reviews and survey
papers have documented the increasing relevance of these
hybrid approaches and have offered extensive taxonomies
of the applications of ML in EDA, pointing out that every
step from RT-level (RTL) synthesis to layout verification
can be optimised with the help of specialized ML
algorithms for the specific domain [10].

In parallel, researchers from the University of Minho
analyzed  optimization  strategies that  combine
metaheuristics with ML models, presenting hybrid systems
that exploit both local and global search capabilities for
more robust optimization outcomes. Graph Neural
Networks (GNNSs), in particular, have been explored in
Journal of Machine Learning Research (JMLR) as powerful
tools for solving complex circuit graph representations
through message passing and structural learning [11]. New
GNN- based frameworks, such as those proposed combine
attention mechanisms with graph learning to support layout
generation in physical design flows. These developments
underscore the pressing need for a structured review of the
algorithms underpinning hybrid Al systems in circuit
optimization [12]. This paper presents a comprehensive
analysis of ML algorithm types, their integration strategies,
comparative performance evaluations, and challenges [13].
It also incorporates a bibliometric analysis to identify key
publication trends, co-authorship networks, and emerging
research clusters offering a holistic view of this fast-
evolving interdisciplinary field.

1.1 Overview of Circuit-Level Optimization Techniques

Optimising at the circuit level is the most challenging
phase of the design of integrated circuits (IC), working on
the optimisation of the transistors, the bias settings, and the
topological arrangement to achieve the desired condition on
available design specification requirements for power,
delay, gain, and a minimal area. SPICE simulations have
been the mainstay for this process along with tuning
provided guidance by any of the strategies, either analytical
or heuristic. While the process will always offer accurate
results to a point, the level of design complexity, the
increasingly miniaturised geometries of the design
transistors, and advancing to the next level process node
will all become increasingly more challenging to achieve
higher and tighter design specifications [14].
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While using synther technology, we experienced a
significant amount of time spent scaling complex circuits
involving circuit estimation with analogue design flows
based on the designer using iterative simulations. We
noticed a considerable time sink and a drop in efficiency.
To save this time, we have developed a more efficient
system using a combination of machine learning and
traditional optimization [15]. Predictive modelling helps in
estimating circuit behaviour and, therefore, eliminates the
need for a full run simulation. One such study showed that
by using a neural network and a random forest regressor to
build surrogate models, accuracy was maintained and
simu lation calls were reduced by 80% or more [16].

Another positive opportunity involves merging Bayesian
optimisation alongside neural surrogate models. This fusion
permits advanced search capabilities within intricate design
domains, gaining the ability to converge rapidly, even with
constrained simulation budgets [17]. For higher-
dimensional problems, variable selection and subspace
optimization techniques such as dropout-enhanced
Bayesian frameworks have proven effective in analog
circuit sizing tasks [18]. Learning that is based on graphs
has ako been incorporated into the optimisation of circuits.
It is possible to perform efficient optimisation on the layout
if GNNs can properly estimate the optimal transistor sizes,
and then GNNs can be combined with reinforcement
learning to optimise layout transistor sizing [19]. One
research implemented a machine learning GCN-RL based
framework to optimise multiple circuit parameters across
diverse technology nodes and design families, outpacing
standard techniques based on black economic Optimisers
[20]. Another reinforcement learning framework, AutoCkt,
modeled the circuit design process as a Markov Decision
Process, resulting in a 40x speed improvement compared to
genetic algorithms [21].

We have applied layout-aware surrogate modelling using
graph-based embeddings in parasitic-sensitive analogue
design, which greatly advances the state of the art in
performance prediction under layout constraints [22]. In
another approach, surrogate-assisted multi-objective
optimization was used to directly evolve Pareto-optimal
analog circuit solutions with high diversity and
convergence speed [23]. It has been made possible to
combine the worldwide exploration power of neural
networks with the sample accuracy of Bayesian models in
evolutionary Bayesian optimization frameworks. These
combination methods give reliable results for analogue size
even when there are a lot of design limitations [24].
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A recent innovation integrated large language models
with Bayesian optimization to assist in analog design
reasoning and transfer learning, greatly improving the
optimization of unseen circuit topologies [25]. At last, there
is an all-encompassing assessment that groups these
methods into supervision, reinforcement, graphs, and
hybrid learning models, demonstrating distinct patterns in
surrogate- and adaptive-design techniques in developing
analog front-ends [26]. Due to these improvements, there is
a movement away from extensive simulation-based
workflows, and towards effective, intelligent, and most
importantly, hybrid Al systems that optimise for
adaptability as well as cost when it comes to computation
[27]. This part of the review talks about the classification of
the different machine learning methods that make up the
core of the mixed optimisation systems.

Il. RESEARCH METHOD

Combining improvements of circuits at the hardware
level as well as advancements in ML is a new emerging
field of research. To obtain a better understanding of how
this field operates, the researchers conducted a combination
of a detailed scoping review and a bibliometric analysis of
the field. Targeting publications from 2015-2024, the
researchers performed a comprehensive and systematic
search of the top engineering, computer science and Al
literature databases. They then meticulously collated the
year of publication, frequency and distribution of citations,
authors, and country of origin. Publications that specifically
focus on the teachings from ML in optimising circuits, as
well as the sub-areas of ML such as base learning,
reinforcement learning and graph structures, were the focus
of this research [28]. A mix of quantitative techniques such
as citation examinations and co-authorship analysis were
used to determine the value of the investigations and
impact. To understand the evolution of the field, temporal
changes were mapped and citation analysis was used to
assess impact on the field. Co-authorship networks helped
to understand the collaborations and determined principal
researchers. The researchers used the bibliometric data to
determine the significant works and novel patterns along
with sites of investigation. This comprehensive method
provides an understanding of the extent to which mixed Al
systems can be applied to optimisation at the level of
circuits [29]. It also gives useful information about where
the field might be going in the future.
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TABLEL:
YEAR-WISE PUBLICATION

Year Number of Publications
2017 1
2019 4
2020 11
2021 19
2022 35
2023 449
2024 922
2025 1059
Year-Wise Publication
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Figure 1: Year-Wise Publication

The annual settlement of publications regarding the
valuation of hybrid Al systems in the optimisation of
circuit level offers analytics of changes of Al systems in
circuit level optimisation. Back in 2017, if one were to
consider the correlation between publications and
researchers to the interdisciplinary nurtured combination of
Al systems and circuit optimisation, one single publication
produced suggests the emergence of the combination to
have developed only to the incubation levels of opportunity
[30]. In 2019, 4 publications were released, and 11 were
published the following year, which was a good sign of
steady growth. Then, in 2021, 19 publications were
released, followed by 35 publications in 2022. That was a
sign of strong interest in that field. The most notable jump
occurred in 2023, which had 449 publications published
[31].
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This continued for both 2024 and 2025, with 922 and
1059 publications, respectively, and signified the
accelerating implementation of hybrid Al systems in the
circuit-level optimisation domain. This set of data shows
that the field is growing up, with more people working on it
and coming up with new ways to make Al-aided circuit
design methods more effective and efficient [32].

TABLE2:
LEADING JOURNALSPUBLISHING RESEARCH ONHYBRID AIAND
CIRCUIT-LEVELOPTIMIZATION

Sr.N Source Documen  Citatio Mean
o} ts ns Citatio
ns
1 ACS Nano 23 1572 68.3
2 Sensors 330 5986 18.1
3 Advanced 32 903 28.2
Materials
4 Nature 40 1590 39.8
Communicatio
ns
5 Chemical 22 1707 77.6
Reviews
6 Scientific 324 1539 4.8
Reports
7 Nature 8 1668 208.5
8 Nano-Micro 18 719 39.9
Letters
9 Advanced 13 210 16.2
Science
10 Computers in 51 714 14.0
Biology and
Medicine
11 Materials 8 22 2.8
Horizons
12 Science 13 325 25.0
Advances
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Figure 2: Source Co-Citation Network Visualization of Jounals

The following table lists some of the most significant
contributors (in terms of quantity and influence) to the
literature that pertains to the intersections of hybrid Al
systems and circuit-level optimisation and integrated circuit
design research. Additionally, the data provide a previously
mentioned perspective of the influence each source seems
to hold academically, along with some insightful metrics.
ACS Nano and Chemical Reviews have published the most
documents (23 and 22 documents published, respectively)
and have also been mean cited the most per document (68.3
and 77.6 mean citations, respectively). Nature is also
noteworthy for being an influential source as it has 8
documents published with a mean of 208.5 citations. The
Sensors and Scientific Reports, which published 330 and
324 documents respectively, are also influential; however,
their mean citations are low (at least in recent times). Their
documents appear to have a wide reach and presumably a
less concentrated impact to achieve such an outcome. The
Co-Citation Network Visualisation of Journals (as
illustrated) enhances the understanding of the
interconnections these journals have in terms of their
relative research contribution. The figure of the journals
showcases co-citation (i.e., collaboration and/or citation),
which helps determine key contributors and/or academic
research in hybrid Al and circuit optimisation [33].
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TABLE3: Table 3 illustrates the main contributors to the
AUTHOR-WISE DISTRIBUTION publications related to hybrid Al systems in circuit level

Mean o_ptir_nisation in the study (py guthor) that have garnere.d

o Citations citations from other publications to help track their

Sr.No. Author ~ Documents Citations per influence on the field. It shows how many citations each
author got, how many documents they released, and how

Document o
- - many citations each document got on average. Based on
1 Li, Guogi 9 580 64.4 contributions to the field, Li, Guogi is the most prolific in
2 _Chen, 4 302 805 the publication of documents with 9 publications with an
Xiaodong ' overwhelming 580 citations, of which the average is 64.4
Tian, per publication, and 2nd of 6 publications overall, Tian,
3 Yonghong 6 508 84.7 Yonghong with 508 citations and an average of 84.7. Gao,
4 Xu, Bo 7 213 304 Wei magje an even Io_we_r numbe'r of publications, 3, but an
even higher 551 citations with an average of 183.7
S Yao, Man 3 202 67.3 citations, which speaks to the influence of the work he is
6 He, Ke 3 293 97.7 doing. Other authors, even those with a lower total of 467
7 Su, Jiangtao 3 293 97.7 citations, Cauwenberghs, Gert, and Kubendran, Rajkumar
. are doing the publication of documents with very high
8 Deng, Lei 4 340 8.0 average cgitationg of 213.3 and 317.5 respectively. anqe C%-
9 Gao, Wei 3 551 183.7 Authorship Network Visualisation of Leading Authors
10  Lee, Chengkuo 10 505 50.5 (figure) along with this information gives credence to the
n Cauwenberghs, 3 610 2133 relationships and_cr[atlon activity for other publications (_)f
Gert : these authors to illustrate the advancement of the work in
o Kubendran. ) s o Al hybrid for circuit optimisation [34].
Rajkumar ' TABLE4:
13 Fang, Wei 2 263 1315 COUNTRY-WISE DISTRIBUTION OF DOCUMENTS ANDC ITATIONS
Chaudha Sr.No Country Documents Citations Mean
14 Vishalry, 5 75 15.0 Citations
Joshi 1 Ch_ina 951 14,785 15.6
15 Siddharth 4 689 172.3 2 United 425 11,522 271
States
3 Saudi 242 2,798 11.6
kbarmahsen Arabia
4 India 349 3,608 10.3
5 United 202 5,888 29.1
Kingdom
IR 6 South 156 2,797 17.9
S Tt orea
b i) — 7 Pakistan 100 1,490 14.9
- 8  Australia 102 3,328 326
B/ 9 Germany 101 3,129 31.0
10 Canada 89 2,329 26.2
S 1 Jordan 50 375 7.5
12 Egypt 89 1,047 11.8
Figure 3: Co-Authorship Network Visualization of Leading Authors 13 Malaysia 82 875 10.7
14 Italy 76 1,575 20.7
15 Spain 63 1,422 22.6
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Figure 4: Country-Lewel Co-Authorship Network in Scientific
Publications

The Country-Wise Distribution of Documents and
Citations table highlights the global contributions to the
field of hybrid Al systems in circuit-level optimization
[35]. In the previous year, China produced the most
articles, amounting to 951, and garnered the most citations,
totaling 14,785, although the country's mean citation per
document did remain the most modest at only 15.6. This
could mean that the country dominates the quantity of
research but that not all of that research has the same level
of impact. Following China was the United States, with 425
articles and 11,522 citations, whose mean citation per
document was higher at 27.1, meaning that the research
produced by the United States was of greater influence.
Saudi Arabia and India contributed 349 and 242 articles,
respectively, yet their mean citation per document was also
lower at 11.6 and 10.6, meaning that while they are
contributing to the field, and fairly actively at that, their
influence may not be as great. The United Kingdom also
produced 202 articles but their mean citation per document
was the highest at 29.1, meaning that their research was
also of great quality, and then higher still. Together,
Australia, Germany, and Canada all contributed and
produced a good balance between articles and citations.
Australia in particular had a mean citation of 32.6, meaning
their contribution was also of great influence. Other
countries like Jordan, Egypt, and lesser so, Malaysia and
Spain, have recently made some contributions to the field
but overall had a much lower number of publications. The
Country-Level Co-Authorship Network (figure) visualizes
these collaborations and connections across countries,
showcasing the global nature of research in hybrid Al for
circuit optimization [36].
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I11. NN-BASED IC DESIGN AUTOMATION METHODS

Here, we talk in more depth about the different ideas that
have been put forward over the past six decades for
automating the creation of analogue IC the front ends.
These methods only use machine learning, specifically
supervised and reinforcement teaching with neural
networks [37]. To be thorough, we also show the works
that talk about mixed methods. Details about how each
method works, what situations it can be used in, and its
benefits are given. It has been shown that using NNs to
answer hard real-world problems works very well in many
areas, such as the recognition of speech, medical imaging
analysis, driverless cars, language processing, and picture
recognition [38]. Equations can't be used to model these
kinds of problems because the person designing them can't
know what will happen or how things will change over
time. Sometimes the person designing the model doesn't
even know how to make it. To learn, NNs need a small but
useful set of data to make a model that is close to the real
answer to a problem [39]. For the testing step, the model
also needs to be able to apply and correctly guess new
results regarding information that was not available before.
NNs are great at handling nonlinear problems because their
design is like the way the brain works and they can change
how complicated the model is by adding or taking away
layers and neurons [40]. NNs were proven to be useful in
helping to build analogue circuits for operational amplifiers
(opamps) in 2003, as shown in [41]. We will talk more
about how supervised as well as reinforcement learning
NNs can be used for designing and fitting analogue IC
front ends in the parts that follow.

3.1. Supervised Learning

First, get a collection of examples of inputs and
outcomes for the issue that is being studied. This is what
you should do before you try to come up for a rough
answer. For guided learning to work well, it is best to use a
large training sample that has been marked. This could be a
problem if it's hard to get hold of big files with labels. In
the past, people have tried to use NN directed learning to
make easy circuits [42]. For example, in [43], Along with
0.18 um CMOS transistors and a small neural network of
20 neurones that learnt to guess a few gadget sizes from
just 1500 samples, it was made. It was used to make a
current comparator with five transistors and an inverter
[44], the authors made a NN that can change the way a 4-
byte current-steering DAC works to achieve the same
goals, but in a completely distinct node (0.35 pm CM OS).
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The size of this method can be changed to fit new needs,
however it can't be applied to guess numbers for old ones.
The transient power consumption of a relaxation oscillator
was modeled in [45] using a 60-neuron time-delay NN, to
enhance the circuit’s functional model during system-level
verification. Not only did it work well to feed mixed-signal
bits that carry data, but it also used a lot of power. These
are generally talked about in terms of behavioural
languages. To make more complex analogue integrated
circuits, like those that boost and filter signals, we need
more in-depth study, bigger instruction sets, and
communication systems with greater number of levels and
neurons [46]. First, we need to agree on how to measure
the present condition of the art before we may speak about
the literature that uses trained students to handle traditional
IC design. Because of this, the following constraints are
made in this work:

« Dataset generation technique;
»  Feature selection;

* NN complexity;

« |IC fabrication process used,;

«  Types of circuits targeted;

*  Result validation method.

3.1.1. Dataset Generation Technique

The factors used for construction Xi in this paper are the
standard current and voltage levels (Ire f, Vre f) for an
analogous block, as well as the sizes of every single
transistor and the passive voice (W, L). The specs Y] tell
you how well the electronic device works by telling you
things like its gain, how much power it uses, and so on.
Getting a set of circuit planning results that include the
design area well is the first thing that needs to be done in
supervised learning to make a model which may predict Xi.
For analogue designers, setting performance goals is the
first step [45]. They then use a CAD ( computer-aided
design ) tool to construct the circuit for a lot of different
design factors, as seen in the first figure. It takes a long
time and people who know a lot about IC CAD tools to put
together this kind of information. used SPICE circuit
simu lators to generate their datasets [47].
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Figure 5: Generation of the training dataset using integrated ci rcuit
CAD simulators.

Figure 6 shows a simple source-coupled divergent pair
with a running load, an offset current mirror (two of them
devices with equal length), as well a known -value inductor
for biassing. This was done to show which a dataset looks.
Because the transistors are not straight, only the width as
well as the length of four of them need to be set. This
means that there are 7 design factors. Xi={W1, L1, W2,
L2, W3, L3, W4}
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Figure 6: Simple CMOS diffe rential pair amplifier with resistive
biasing.
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To keep things simple, let's say that the amplifier that
needs to be built only needs to be able to handle differential
voltage gain and power usage. So, Yj = {Ad, Ic}, and the
vector {Xi,Yj} is a single item in the dataset, which is a
9x9 matrix with N being the number of cases. In Table 1,
you can see two examples from the previous circuit's
information (sizes are given in pum, current is given in mA).

TABLES:
AN EXAMPLE OF A DATASET WITH XI AND YJ
No W L, W L w Ls w A le
1 2 2 3 4 0
0.1 0.2 2.
1 5.2 3 10 1 0.2 24 | 0.3 4 56 3
0.1 0304 ] 11
2 4.1 8 11 (06| 2.1 5 0 2 4

On the opposite hand, there aren't any hard and fast rules
about the amount of information that are needed for each
kind of circuit [48]. More data are usually better because
they make the model more accurate. But for analogue IC
design automated processes, the creator will only make a
fair amount of information so as to keep the job realistic
and time-effective. For example, 20,000 examples (dataset
size) were needed in [49] training the NN and guessing the
outcomes of a similar circuit that was created in, with just
9000 and 16,600 cases [50]. On the other hand, only 1600
data points were sufficient in [51]. The earlier numbers, on
the other hand, can't be immediately compared because the
files from circuit models were made in very different ways
for each study. Because of this, it is helpful when looking
into the various methods by which the teaching models
were made. Before running the simulation, the writers
changed the sizes of all the MOS transistors by hand to get
a first valid answer that worked well from the point of view
of a circuit builder [52]. The people who designed the
system made this first change. Then, the basic design
factors were changed by 5%, and each of the resulting
circuits was simulated one at a time to get information
about how well it worked and to create the dataset [53].
Also, the lengths L of all the transistors were kept at 1 um
to save room and avoid effects due to short channels. So,
the information in relied too much on a circuit state that
had already been set. they suggested a similar but different
way to make datasets: The first numbers for the design
factors (Xi0) were chosen by the circuit's designer.
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Next, Xi0 was changed randomly between #30% to
make 100 different designs. After getting the circuits, they
were all recreated, and the best circuit was chosen as the
one with the highest score [54]. To get the score, divide
the number of performance metrics in the majority by the
range of indicators in the numerator. The result gets better
as the number goes up. There were as many times of this
process as it took to make the collection. With the best
circuit from the first 100 shapes as a guide, the next 100
designs were made.  This whole process is shown in

Figure 7.

X'. 100
‘_)I

Update Initia mﬂf‘;ﬁ;’“s | Simulation +
Design parameters B I,

B pa random variation — Seorg compurtation
r X|J|E 100
Scorey | === | Scorey,
y y
Best circuit Maximum
Score

Figure 7: Description of the training-dataset-generation approach

3.2. Reinforcement Learning

An agent learn how to do a job by being praised and
criticised for it. This is called RL in machine learning. RL
doesn't need a labelled collection to train like supervised
learning does [55]. Making guesses and getting awards for
those predictions is how the training is done. It makes
sense that rewards should go down when the estimate is off
and up when it's right. Training's goal is to find a rule that
makes the total number of awards as high as possible. RL
hasn't been used a lot in IC creation yet [56]. This part
shows the past work of four separate teams that used RL to
fix problems with the size of analogue integrated circuit
designs. Before getting into the specifics, it's important to
go over the fundamental elements of RL at IC creation.
The state for a circuit is shown by a vector indicating
performance traits. The RL agent receives this vector as
input, changes the design parameters in order to carry out
an action, figures out the reward, and then either goes to the
new position if the reward has gone up or looks at other
actions that are possible if the reward has not changed
(Figure 8). The circuit model data are used to figure out
the prize.
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Figure 8: Reinforcement leaming design flow as applied to analog IC
design automation

After training a real-world agent for 30-40 hours, it did
as well as or better than human masters on a number of
circuits. At any given step, the executable would send out
out aset of digits that showed how big the transistors and
idle parts were (these are called design parameters) [57].
They would then be used by the circuit design setting to
figure out how efficiently the circuit worked. To make a
payment function, hard design boundaries and good-to-
have purposes were used. If thesuccess in the game didn't
match up with what happened in real life, the prize would
be low. If it did, it would be high. They were able to make
two-stage and three-stage frequency converters at CMOS
0.18 um, which shows that their method worked. We
looked at noise, gain, power use, AC reaction peaks, and
bandwidth to figure out how well it worked. RL had
promise in both devices because it found the best deals
faster than people could.

Deep reinforcement learning, on the other hand, was
used to find the circuit design parameters and learn about
the design space. The genetic method took 40 times longer
than this one to find good answers. The method was used
on both a simple trans capacitive amplifier and a CMOS 45
nm two-stage operational amplifier [58]. Later, it was
tested on a different working amplifier with a negative-gm
load and a 16 nm FinFET. The method found the right
answer 25 times faster on the first try than other methods.
Also, it was good at generalisation; out of the 500 different
goals it was given, 97% of them were right. It worked 96%
of the time on the second and third rounds and 100% of the
time on the fourth. It was 40 times faster than normal ways.
What was done in [59] used deep RL to guess the design
parameters of the circuit, just like in the other works. But
the authors came up with a new way to quickly find out
what the DC gain and phase margin (PM) numbers were
without having to use the circuit model. They did this by
using symbolic analysis. More levels didn't have to be sent
to the computer to get a good idea of how the circuit would
work [60]. This process got rid of the circuit's most likely
bad states.
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Early on, any set of planning factors that didn't meet the
standards for both DC gain and PM were taken out of the
loop. An op amp in CMOS 65 nm with a bent cascode was
used to test their set up. Even though there were no
numbers for convergence speedup in the data, the work was
still able to find the right size answers. A hopeful paper
was published that used a graph NN (GNN) and RL [61].
In fields like chemistry (things that materials do) and social
networks (how people talk to each other), the GNN was
good at making predictions because it knew how things that
are connected depend on each other. When the writers of
used the fact that a circuit is similar to a graph, where
points are parts and lines are links (wires), they made their
point. It was possible to move data from one circuit to
another by making an uncontrolled GNN that looked at
how the IC parts were connected and pulled out values
[62]. Things like two-stage and three-stage amplifiers
were shared by two very different systems that may have
learnt from each other. There were also some similarities
between two different production process nodes with the
same layout. For example, the CMOS 65 nm and 45 nm
nodes had the same structure. In this case, the RL method
learnt that changing the size of the transistors in the input
circuit pair could change the differential amplifier's gain
[63]. All four of the CMOS 0.18 um circuits were shown
to work properly. There were amplifiers and low-dropout
voltage settings in these systems. Getting the figure of
difference (FoM) as high as possible was important. A
factor of success (FoM) is made up of several measures of
success [64]. Finally, two-sized circuits could be moved
from one larger process node to several smaller models
with less runtime.

IV. DNN-OPT FRAMEWORK
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A. Analog Circuit Sizing: Problem Formulation

The job of sizing an analogue circuit is summed up
below as a limited optimisation problem.

minimize fp(x)
subjectto  f;(X) =0,

[1]

Where, x € D d is the parameter vector and d is the
number of design variables of sizing task. Thus, D d is the
design space. fO(x) is the objective performance metric we
aimto minimize. Without loss of generality, we denote i th
constraint by fi(x).

B. DNN-Opt Core: RL
Architecture

Figure 1 shows how DNN-Opt is put together as a
whole. The DNN-Opt design is built on an a two-stage
neural network approach and works with a circuit concept
to find the best answer. Samples are generated in the
planning area to start the flow. Next, a network of
reviewers is used for predicting how well every freshly
introduced feature will work. The actor network uses this
guess to come up with new people to simulate. This search
method works well to copy how BO acts in space exploring
[65]. A population control method is also used to improve
the sample creation process.

The Deep Deterministic Policy Gradient (DDPG)
method is used as a model for our two-stage network
design [66], which is a real-life actor-critic program made
for action areas with no breaks. In the case of analogue
circuit size, however, actor-critic methods can't be used
directly because the problem isn't a Markov Decision
Process (MDP), which is a requirement for any RL
problem [67]. Therefore, we adapt DDPG algorithm with
significant modifications tailored for analog circuit sizing.

When it comes to figuring out the size of an analogue
circuit, we will retain some of our RL code but change a lot
of it to make things easier to understand. Design: An
design is a grid of d elements, each of which represents a
different design variable [68]. It is made up of circuit
factors denoted by x. The goal of optimisation is to find
the best xopt that meets Equation 1.

i=12,..,m

Inspired Two-Stage DNN

Population: A community is a group of different shapes. In
a hybrid Al-based circuit optimization framework, the

design population matrix X € R¥*?  represents a
collection of candidate solutions, where each row
corresponds to a design vector X;.
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These design vectors encode circuit parameters that form
the optimization input [69]. For reinforcement learning
(RL)-based optimization, each design is treated as a state in
the RLenvironment: s; = X;.

To explore the design space, actions are defined as
perturbations a; € R%, resulting in a new state
X'; =X; + a;. The action-guided transitions simulate
circuit configuration adjustments during training.

In actor—critic RL algorithms, a critic network works
with the reward signal Q(s,a). Here, the critic assesses the
fitness or performance of a new design [x] _i. For
circuit sizing tasks, the critic is trained with supervised
learning using the data f(x) in the form of performance
metrics such as delay, power, or gain.

To train the critic, pseudo-samples are generated using
two sampling strategies: (1) an action-based perturbed
vector x';, and (2) the corresponding performance
scoref (x’;). This process enables the network to learn the
performance landscape across the design space efficiently.

xII-JS =[x, 4%;] = [%,X"; — x4]
&) = f(x'D)

To improve the ability of the critic network in
performance modelling, the input dimensions are increased
fromd to 2d by adding the design vector x, along with its
action perturbation, Ax. This means the input will now be
(x, Ax), which will allow the network to obtain the more
granular learnings necessary in the design space.
Experimental results using Bayesian analog circuit sizing
benchmarks have shown that using these extended pseudo-
samples improves the learning quality of the critic network
compared to using only original samples [70].

The critic network is trained using a Mean Squared Error

(MSE) loss function over a batch of N pseudo-samples,

where the predicted value is compared to the known
simu lated performance values:

(2]

£(¢) = 25N, (0p (x,, A%) — f(x, + 8x))° [3]

Here, Qg is the critic network's prediction, and f (*) is

the ground-truth SPICE-simulated performance metric
(e.g., gain, bandwidth, delay).

Once the critic network is trained, the actor network is
optimized to explore the design space and output
perturbations Ax that improve circuit performance. The
training of the actor is guided by a Figure of Merit (FoM)
function, which scores each sample based on its relative
quality with respect to other designs in the batch.
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.Q'OC(XI')) = W;‘)co(xi) + E?Ll min(l,max (0_%))
]
[4]

In this formulation:

* w; is aweight factor for the primary objective f;,

* The summation component represents a pairwise
ranking loss encouraging the actor to produce higher-
ranking designs,

* Clipping  ensures
optimization.

numerical  stability  during

A batch of N samples is ranked using this loss function
to guide the actor network's policy toward producing
optimal design perturbations Ax. The combination of critic-
based performance learning and FoM-guided ranking leads
to more robust and sample-efficient design space
exploration.

The goal of training the actor network is to find changes
to parameters Ax _k that make it work better without
breaking any design rules. To do this, a loss function is
created that blends judging ability with punishing people
who break the rules. The actor network is trained by
making the following loss function as small as possible for
a batch size of N_b:

L(6%) = 1~ X2 [Q (s, a(xx 84) 11 A - violy I ] [5]
In this equation:

o u(xy;8%) is the actor network’s
perturbation for input design x,,

e Q()is the critic’s evaluation function,

« A is a diagonal weight matrix controlling the
penalty magnitude for constraint violations,

«  viol, measures the amount by which the proposed
design exceeds allowab le boundaries.

output

To make sure the search stays in the area where the
design is possible, the total border violation for the kth
sample is found by:

viol, = max(0,x; + Ax; -ub,,..) + max(0.1b,,,, - (x; + Ax;))

(6]

e Ibect and uby.s: are the lower and upper bounds,

respectively, determined from elite designs in the
current population.
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These bounds are computed as:

by = min(x®), ub,y =max(x®) Vi=1,..,d

where x€ are elite solutions and d is the dimensionality
of the design space.

The inclusion of the boundary violation term ensures
that the actor network explores valid regions of the design
space and avoids infeasible solutions. This design-aware
optimization framework helps guide the policy network to
generate circuit parameters that are both optimal and
realizable [71].

C. DNN-Opt: Overall Framework

The DNN-Opt framework is a hybrid actor—critic
reinforcement learning architecture designed for analog
circuit optimization. First, we perform a sensitivity
analysis, which narrows down the most important features
to reduce the design space. We randomly sample a
population of exact size N_init to initialize the candidates
for the design space. We then bring the candidates into a
sequence of pseudo-sample generation, critic/actor training,
and elite selection for the o iterations of the
optimisation[72].

The first step in each iteration is to generate pseudo-
samples, followed by critic and actor network training
using the previously described loss functions. An elite
population X ¢ is then selected from the updated pool based

on a Figure of Merit (FoM) ranking. This elite set
represents high-performing circuit candidates and is used to
guide the actor network’s future predictions.

For every member x;z € X*, the actor network generates
a new design vector X, representing a candidate
improvement:

Xy = X+ p(xg) [8]

where p(X%) is the learned perturbation from the actor
network.

After generating all candidate solutions, the best-
performing candidate is selected as the representative
sample for the next optimization round. This decision is
made using the critic network’s score @(-) and the FoM
guidance g(-), formalized as:

xSl — € for k = argmax(g(Q(x¢,x —x£)))| [9]
K
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V. MACHINE LEARNING ALGORITHMS

At its core, intelligence is the ability to learn from
experience and pass on specific information from one
generation to the next. Machine learning is the study of
how to make computer programs (called "learning
systems™) that get better over time [73]. This time, the
experience comes from a process of data analysis that is
done by a special program. So, the machine learning
method uses mathematical, statistical, optimisation, and
knowledge finding methods along with programs to find
patterns in a set of data [74]. Although the machine
learning term was coined around the 1960s, , it only
gained popularity in the 21st century due to the
advancement of computational resources. Machine
learning is often used to solve problems like numerical
prediction (regression), pattern recognition
(classification), grouping, optimisation, and control. As
an example, these days they can be used in almost every
field of study: music , health [75], economics [76],[77],
industrial segments [78],[79], education [80],[81], among
many others.

We look at three types of machine learning:
unsupervised learning, reinforcement learning, and
supervised learning [82]. There are different methods
within each class based on how they get their
information, such as classification, regression, grouping,
learning of relationships, relations, differential
equations, and so on. Figure 2 shows the machine
learning techniques that were thought about.

Machine Learning Methods

Supervised Methods Unsupervised Methods

Classification

Support Vector
Machine

Regression

‘ rative |
| Dichotomiser 3 |
“ Rendom Sample: |
| Consensus |
=

Logistic Regression |

Others Methods |

Clustering

‘ Principal Component
\ Analysis J

Classification and
Regression Tree
k-Nearest Neighbor

"' Independent |
Compaonent Analysis

Others Methods |

Density-Based Spatial
Clustering of
Applications with
Noise

Self-Organizing Maps

Others Methods Others Methods

Figure 10: Machine leaming methods

The goal of the machine learning process is to come
up with a framework (model) that the can use what it
learnt from training data on samples it has never seen
before [83].
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This model needs to be easy to use and good at
finding mistakes in the information being collected.
You should test an Al system on new data to see how
effectively the model design works (mistake rate) before
you use it [84]. The assessment methods were chosen
given the amount of knowledge that was provided.
Most of the time, when a knowledge set is sufficiently
large, three sets are looked at: the training set, and these
is used to improve the highest model; the set that serves
as validation, that makes the model superior by
modifying the first model additionally general; and the
set for testing, which finds out how often the final model
gets things wrong [85]. It's important to remember that
you have to pick one of those three sets at random. This
means you need a big enough data set.

In some situations, mostly in real life, though, you
have to work with limited data because you can't always
get three separate and important data sets. Because of
this, different ways of evaluating should be used. One
choice is to utilise the pause method. There is some
material that will be used for tests and the rest will be
used for training. People often save a third during the
data for tests and use the rest for training. You could
also use k-fold cross-validation for small data sets. This
tech- nique is very useful in fixed data samples to
forecast the success rate of a learning method. In k-
fold cross-validation, the training and testing process is
done k times. Thus, consider a given data D, which is
randomly divided into k mutually exclusive subsets
Dy, in which k =1, ...,k each of approximately equal
size. In the iteration k, the Dy partition is reserved for
testing, and the remaining subsets are used to train the
model. Thus, in the first iteration, the set D, UD; UUDy
serves as the training set to attain the first model, which
is tested on Dj; the second iteration is trained on D;
UD; U.... Dk and tested on D,; and so on. In the end,
the k error estimates received from k iterations are
averaged to give rise to an overall error estimate. So, the
usual number used to guess how often a learning method
will make a mistake is k = 10. The three types of machine
learning we talked about earlier are explained below:
Learning with supervision, learning without supervision,
and learning through reinforce ment [86].

5.1 Supervised Learning Methods

Assisted learning methods try to figure out how input
attributes (also called "independent variables") relate to a
goal characteristic (also called "dependent variables™).
When it comes to maths, guided learning is a way to look
into knowledge that is already known.
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Consider the data set DS used to infer a model of the
system, in which each individual instance i represented by
x!, given by

e N is the number of data set elements,
e n, is the number of attributes (features) of each

instance x?,
1yt

ps=| [10]
XN, y¥

The data set DS lies in state space RY x R/ **. The
choice of features (or attributes, or parameters) x},

j=1,...,ny, for a given instance i, significantly affects

the output. There are two types of tasks for which
supervised learning is used: pattern classification or
regression (whose purpose is to predict the value of one or
more target attributes).

Classification

Consider the output vectory € Y, where Y stands
for M discrete classes. According to the tests in the
training set X, the classifier's job is to sort the data
into different groups, or to choose which of the M
groups each new vector xnew goes to. Many
algorithms, including Decision Tree, Support Vector,
Machine, k-Nearest Neighbour, Naive Bayes, and
others, can be used for the classification job. Figur3
shows a basic classification algorithm process. The
goal is to put a set of points (shown by the input
vector) into two groups, as shown in the input classes
vector: blue and orange.

000 00
0,0 o

e o

.00 ? .
00 s o classifier

000 0\ 0 Itsblue

Classification ;
X= input vector Algorithm — |00/ 2 ® — O Itsorange
Q{b ...(lmblue
0 Blue Q{}O{}

O itsblue
0 Orange classification ’ \ predictions

model ®

y =input classes unknow data

Figure 11: Classification algorithm procedures
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Regression

The goal of regression learning is to find out how
independent variables, also called features, (input
variables x) relate to a dependent variable, also called
result (continuous results variable y).  Fitting an
objective to the The input-output data is what the
regression job is all about. The goal is to predict
(numerical) outputs for new inputs. There are several
forms of regression, such as linear, multiple, weighted,
polynomial, nonparametric, and robust [87]. Simple
Linear Regression, Logistic regression, Multivariate
Regression, and Regression tree are some examples of
algorithms that can be used to build regression models
[88]. Figure 12 illustrates a general linear regression
algorithm procedure, in which the aim is to define a
linear function that represents the data set behavior.

predictior
'
10000 Regression @
: — —
00000 AIgonthmOg :
fiaf
(xy) = observed values QO
regresssion prediction

e Unknow data

Figure 12: Regression algorithm procedures

5.2 Unsupervised Learning Methods

In some machine leaming problems, there is little
information about how the qualities of input and output
are related [89]. So, the programs have to find things in
a data set that are alike or different. The method needs
more human insight than guided techniques because the
final choice is made by a decision-maker, who could be
someone or an entire group of people. Both guided and
unguided approaches work with information that we
need to explore and understand the data in the
application area. However, there are some important
differences between the two. One big difference is that
there is no output array of the goal variable like there is
in supervised methods. Also, independent learning is
often linked to creative activities like exploring,
understanding, and improving, which don't work well
with set steps like guided methods do [90]. Because of
this, it can't be automatic. Also, there is not a correct or
incorrect response and no easy way to tell from the
statistics whether the results are good or bad.
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Stats that describe and show things are important
parts of the process. So, unsupervised learning is
usually broken down into two groups: approaches to
clustering and dimension reduction methods [91].

Clustering Methods

As we already said, sometimes the data set isn't
labelled, so it's important to look at the unique qualities
of each piece of the information in the set. It can be said
that grouping techniques are the most popular
unstructured method. Basically, clustering is the process
of putting things into groups based on how similar they
are to each other and how different they are from each
other [92]. This procedure is very useful in engineering,
health science, humanities, economics, and other areas
[93],[94]. The evaluation of a data set’s constituent
members’ proximity and the division of the data set
into groups while taking into account the similarity
and dissimilarity between a pair of elements are both
essential steps in the clustering process. It is useful to
denote the distance between two instances x' and X' as
d(x', x)) to quantify the similarity between them.

To define the quality of the cluster, it is necessary to
use an evaluation criteria measure that is usually divided
into two categories: internal and external. The internal
quality metrics usually measure the compactness of the
clusters using some similarity measure. And, the
external measures can be useful for examining whether
the structure of the clusters matches some predefined
classification of the instances. According to [95] the
notion of “cluster” is not precisely defined, for this
reason, many clustering methods and algorithms have
been developed. These methods can be divided into 5
categories [96]: Partition- ing based, Hierarchical based,
Density-based, Grid-based and Model-based. Some
examples of clustering algorithms from different types
of clustering methods are given below: This list includes
the k-means algorithm, the fuzzy c-means algorithm
(FCM), the clustering using representatives algorithm
(CURE), the density-based spatial clustering of
applications with noise algorithm (DBSCAN), the
ordering points to identify the clustering structure
algorithm (OPTICS), the optimal grid-clustering
algorithm (OptiGrid), the gaussian mixture model
clustering algorithm, and the self-organising maps
clustering algorithm (SOMs) [97].

Figure 5 illustrates an exclusive clustering algorithm
procedure, whose objective is to divide the data set into
groups according to the data characteristics. In this case,
the term exclusive is associated with the idea that each
data point exclusively belongs to one cluster.
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Dimensionality Reduction

The complexity of an information collection is the
number of factors that can be used to learn from it. So,
reduction dimension methods pick out the most
important factors and leave out the ones that aren't
important and could mess up or delay the mining
procedure in some way. But the factors that are chosen
must keep as much of the original data set's change as
possible [98]. There are two main ways to group the
reduction dimensionality methods into groups:

* The first factor is whether the technique employs the
target variable to select input variables or not.

* The second factor is whether the technique utilizes a
subset of the original
variables or derives new variables from them to
maximize the amount of information.

The benefit of keeping the original variables makes
sense since the variables that were already in the data are
simple to understand than the variables that were made
automatically by a particular reduction method. On the
other hand, when working with large amounts of data,
using reduction dimensionality approaches is the only way
to make sure that the machine learning process works well.
Certain methods, like Independent Component Analysis
(ICA), Rough Sets-Based Feature Reduction, Basic
Component Analysis (PCA), and Backward Elimination,
can be used to reduce the number of dimensions [99].

3.3 Reinforcement Learning

Contextual learning is a way to teach machines to
learn by paying them. It is most often used for dynamic
control mechanisms, but it may also be utilised to solve
optimisation problems. According to the idea behind
reinforcement learning, if an action occurs followed by a
good outcome or an enhancement in the outcome, then
the desire to do that action gets greater, or is "enforced.”
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Reinforcement learning is a way to teach an
independent agent that acts and feels its surroundings
how to pick the best actions to reach its goals [100]. The Fo!
agent is given information about how things are right Qﬁ
now in the environment. It needs to use what it already state S¢ Q{:}Q{} action ag
knows by becoming greedy to get the most rewards, but

it also needs to look into what it can do better in the P

future. _ _ _ . Environment <
With more formalism, reinforcement learning can be st

formulated as a Markov decision process as presented in Figure 14: Reinforcement leaming schematic. Adapted from
Figure 14. At each time step t, given the current state s;
(@and current reward ry), the agent needs to learn a
strategy (i.e. the “value function”) that selects the
optimal decision or action a;. The action will have an
impact on the environment that induces the next reward
signal ri.1 (which can be positive, negative, or zero) and
also produces the next state si+;. The reinforcement
learning continues with a trial-and-error process until it
learns an optimal or suboptimal strategy [99].

Agent

There is a difference between reinforcement learning
and guided learning that needs to be made clear. Some
people say that in reinforcement learning, the algorithm
learns from what it has already done, while in supervised
learning, the data set acts as a guide and shows the
trends to the algorithms [101]. The reviewer doesn't say
anything ahead of time. Because of this, after a number
of actions have been completed and awards have been
received, it is advisable to look back at each action and
figure out which one led to the prize. This makes it
possible to record these moves and play them back later.

TABLEG:
MACHINE LEARNING ALGORITHMS IN CIRCUIT-LEVEL OPTIMIZATION

ML Algorithm Key Applications Authors Description

Supervised Learning

SVMs are used for classification and regression
[102] tasks by finding the hyperplane that best divides data
into classes or predicts continuous values.

Support Vector Classification,
Machines (SVMs) Regression

A decision tree ensemble method used for

Random Forests Class |f|ca_t|on, [103] classification and regression. It creates multiple
Regression . -
decision trees and merges their results.
Gradient Boosting Classification, 104 sequ eﬁ‘tri]apirllS ewﬁ;s; Z(:::E I?nuoedtglaéobrlrjelzlgtss r:r?c? fslsof the
Machines (GBMs) Regression [104] d v

previous one, improving prediction accuracy.

Unsupervised Learning

Clustering, Pattern A clustering algorithm that partitions data into K

K-means Clustering Recognition [105] distinct clusters based on distance from the center.
o Dimensionality PCA is u_sed_for _reducmg the dimensionality of data
Principal Component . by projecting it onto a smaller set of orthogonal
. Reduction, Feature [106] : o B
Analysis (PCA) - components while retaining the most significant
Extraction -
variance.
Autoencoders Dimensionality [107] A neural network used to learn efficient
Reduction, Data representations of data, typically for the purpose of
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Compression

reducing its dimensionality or denoising data.

Reinforcement Learning

Deep Q-Network
(DQN)

Game Al, Robotics,
Optimization

[108]

DQN uses deep learning to approximate the Q -
function, which helps in making optimal decisions in

environments requiring sequential action decisions.

Actor-Critic (AC)
Algorithms

Optimization, Decision-
Making

[109]

A reinforcement learning framework where the
"actor" makes decisions and the "critic" evaluates
them based on rewards, used in optimizing designs
or control systems.

Deep Deterministic
Policy Gradient
(DDPG)

Continuous Control,
Circuit Design

[110]

A deep RL approach used for optimizing continuous
action spaces, like analog circuit design, where
actions and states are continuous rather than
discrete.

Graph-based Learning

Graph Convolutional
Networks (G CNs)

Circuit Design,
Molecule Property
Prediction, Social

Networks

[111]

GCNs are used to process graph-structured data and
are particularly effective in applications where
relationships between entities (nodes) are important,
such as IC design and chemistry.

Hybrid Approaches

Bayesian Optimization
(BO)

Analog Circuit
Optimization, Design
Space Exploration

[112]

BO is used to optimize black-box functions, often
coupled with ML models like Gaussian Processes or
Neural Networks to predict performance and
optimize parameters iteratively.

Genetic Algorithms
(GAs)

Parameter Optimization,
Circuit Design

[113]

GAs mimic natural selection and evolve solutions
over generations to find optimal or near-optimal
solutions, often used in design optimization and

search problems.

Particle Swarm
Optimization (P SO)

Optimization Problems,
Circuit Design

[114]

A population-based optimization algorithm inspired

by the social behavior of birds flocking, used to find

optimal solutions by adjusting individual "particles"”
in aswarm.

VI

CONCLUSION

Alternatives such as hybrid Al models in the context of

Considering everything, mixed Al systems, especially
those integrating machine learning (ML) systems with
traditional circuit-level optimisation methodologies,
represent a paradigm shift in the way integrated circuits
(ICs) are designed and optimised. Even though Moore’s
Law placed a ceiling on the complexity of next-generation
IC designs, optimisation methodologies based on
heuristics, rules, and time-consuming models fall short,
mainly due to the increasing need to optimise on power,
performance and area (PPA).
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circuit design, in particular, have shown to be more
effective, more flexible and more automated than the
traditional models. In particular, guided learning,
reinforcement learning (RL), and Graph Neural Networks
(GNNs) have been very helpful in improving the design
cycle's most important jobs, like device size, layout,
placement, and routing.
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Of particular note is the way RL and graph models have

improved over the years with respect to the more
challenging optimisation tasks of a design cycle such as
cost of computation, convergence of designs, and
generalisation of designs over a varied topological
arrangement of integrated circuits, and over frees of
designs. Of note are frameworks like DNN-Opt which
combine deep learning with architectures inspired by RL in
order to enhance the sizing of circuits and design with more
efficiency to cover the enormous design constellation.
The increased publication rate, enhanced research, and
deeper international integration acknowledge Al as one of
the viable techniques to integrate with high modern IC
design workflows. His bibliometric analysis shows the
integration of Al consolidating underway thrust with
notable inputs from China, the United States, and India.
The field is actually maturing the next design of IC
instruments for hybrid Al systems to be broadened. The
fields of optimisation systems for the dynamic problems of
next-generation semiconductor devices are smart and
incorporate future affordability into the design. The
integration of circuit design continues to face the evolving
system for absolute efficiency in the integrations of the
systems to the overall solutions design.
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