
 

International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026) 

52 
 

A Review of Hybrid AI-Driven Methods for Circuit-Level 

Design Automation and Performance 
Umesh Balkishan Phiske

1
, Dr. Goplakrishna D. Dalvi

2
 

1
Research Scholar, Electronics and Telecommunication Department, ALARD School of Interdisciplinary Research, 

ALARD University, Pune, India 
2
HOD, Electronics and Telecommunication Department, ALARD School of Interdisciplinary Research, ALARD 

University, Pune, India 

Abstract— The rapid advancements in integrated circuit 

(IC) design have necessitated innovative approaches to 

optimize performance while meeting multi-objective 

constraints, such as power consumption, performance, and 

area (PPA). Traditional methods, relying on rule-based 
heuristics and simulation-heavy approaches, have become less 

efficient with the increasing complexity of designs. Hybrid 

artificial intelligence (AI) systems have been created to deal 

with these problems. These systems combine machine learning 

(ML) techniques with traditional circuit optimisation 
methods. It looks at how supervised learning (e.g., Support 

Vector Machines, Random Forests), uncontrolled learning 

(e.g., K-means clustering, Autoencoders), and reinforcement 

learning (RL) can be used together in circuit-level 

optimisation. These hybrid systems enhance the design 
process by automating tasks like transistor sizing, layout 

planning, and fault detection. The paper provides a detailed 

analysis of various ML techniques, their applications in circuit 

optimization, and the performance improvements they offer 

over traditional methods. Notable advancements include the 
use of Graph Convolutional Networks (GCN) in conjunction 

with RL for efficient circuit design, and Bayesian optimization 

combined with surrogate models for faster convergence. 

Additionally, the paper presents a bibliometric analysis to 

track the evolution of hybrid AI research in circuit design, 
highlighting key publications, co-authorship networks, and 

emerging research trends. This review shows how important 

mixed AI systems are becoming in modern circuit design by 

giving a full picture of the most up-to-date methods. This 

makes way for better, more flexible, and scalable solutions.   

Keywords—Hybrid AI systems, Machine Learning, Circuit 
Optimization, Reinforcement Learning, Graph Convolutional 

Networks. 

I. INTRODUCTION 

Aspects of integrated circuits' (ICs) design and 

improvement have become more d ifficu lt because of the 

multi-objective challenges of modern semiconductor 

devices and Moore's Law's scaling restrictions.  

 

Due to the expanding set of non-linear constraints and 

parasitic effects, today's circuit designers have to optimise 

simultaneously across power, performance and area (PPA) 

in their designs  [1]. Although previous methods have been 

beneficial, tradit ional electronic design automation (EDA) 

methods have largely been based on rule-based heuristics 

and simulations, which are often slow and inflexible, and 

are ultimately inadequate for today’s VLSI challenges. To 

allev iate these challenges, researchers have developed 

hybrid AI systems that integrate machine learn ing and 

traditional methods to enhance automation, adaptive 

learning, and optimizat ion speed [2]. The core innovation 

of these hybrid AI systems lies in the algorithmic 

integration of ML models into the circu it design pipeline 

[3]. Numerous people employ supervised learning 

techniques such as support vector machines (SVMs), 

random forests, and gradient boosting to predict yield, 

classify performance and carry out early fault d iagnosis [4]. 

K-means clustering, PCA, and Autoencoders are all 

examples of unsupervised methods that help identify 

hidden behaviours in layout data and aid in the explorat ion 

of the design space. Recently, strategies that integrate deep 

learning, coupled with rein forcement learning, have proven 

highly effect ive for the automation of p lacement, floor 

planning, and routing, all of which have been traditionally  

viewed as tedious and reliant on heuristics [5]. One notable 

example is the GCN-RL Circu it Designer, which leverages 

Graph Convolutional Networks (GCNs) with RL agents to 

optimize transistor sizing across various circuit topologies 

[6]. This hybrid algorithm demonstrates the capability to 

generalise across designs and outperforms traditional 

Bayesian optimisation in both convergence speed and 

adaptability. Likewise, Hu et al. presented a Bayesian 

Optimisation approach supplemented by deep surrogate 

models for the co-optimization of analogue circuits, 

showcasing the ability of surrogate learning models to 

accelerate the convergence of searches [7].  
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Recent studies show that combining ML algorithms with  

heuristic search methods such as PSO and GA improves 

efficiency and reduces computing costs simultaneously[8]. 

For instance, using Artificial Neural Networks (ANNs) as 

surrogate models within a GA framework allows for 

efficient predict ion and optimization of analog performance 

metrics [9]. Numerous systematic reviews and survey 

papers have documented the increasing relevance of these 

hybrid approaches and have offered extensive taxonomies 

of the applications of ML in EDA, pointing out that every 

step from RT-level (RTL) synthesis to layout verificat ion 

can be optimised with the help of specialized ML 

algorithms for the specific domain [10].  

In parallel, researchers from the University of Minho 

analyzed optimizat ion strategies that combine 

metaheuristics with ML models, presenting hybrid systems 

that explo it both local and global search capabilities for 

more robust optimization outcomes. Graph Neural 

Networks (GNNs), in particu lar, have been exp lored in  

Journal of Machine Learning Research (JMLR) as powerful 

tools for solving complex circuit graph representations 

through message passing and structural learning [11]. New 

GNN‑ based frameworks, such as those proposed combine 

attention mechanisms with graph learning to support layout 

generation in physical design flows. These developments 

underscore the pressing need for a structured review of the 

algorithms underpinning hybrid AI systems in circuit  

optimization [12]. This paper presents a comprehensive 

analysis of ML algorithm types, their integration strategies, 

comparative performance evaluations, and challenges [13]. 

It also incorporates a bibliometric analysis to identify key 

publication trends, co-authorship networks, and emerg ing 

research clusters offering a holistic view of this fast-

evolving interdisciplinary field. 

1.1 Overview of Circuit-Level Optimization Techniques 

Optimising at the circuit level is the most challenging 

phase of the design of integrated circuits (IC), working on 

the optimisation of the transistors, the bias settings, and the 

topological arrangement to achieve the desired condition on 

available design specificat ion requirements for power, 

delay, gain, and a min imal area. SPICE simulat ions have 

been the mainstay for this  process along with tuning 

provided guidance by any of the strategies, either analytical 

or heuristic. While the process will always offer accurate 

results to a point, the level of design complexity, the 

increasingly miniaturised geometries of the design 

transistors, and advancing to the next level process node 

will all become increasingly more challenging to achieve 

higher and tighter design specifications [14].  

While using synther technology, we experienced a 

significant amount of time spent scaling complex circuits 

involving circu it estimat ion with analogue design flows 

based on the designer using iterative simulations. We 

noticed a considerable time sink and a drop in efficiency. 

To save this time, we have developed a more efficient 

system using a combination of machine learning and 

traditional optimization [15]. Pred ictive modelling helps in 

estimating circuit behaviour and, therefore, eliminates the 

need for a full run simulation. One such study showed that 

by using a neural network and a random forest regressor to 

build surrogate models, accuracy was maintained and 

simulation calls were reduced by 80% or more [16]. 

Another positive opportunity involves merg ing Bayesian 

optimisation alongside neural surrogate models. This fusion 

permits advanced search capabilities within intricate design 

domains, gaining the ability to converge rapidly, even with 

constrained simulation budgets [17]. For higher-

dimensional problems, variab le selection and subspace 

optimization techniques such as dropout-enhanced 

Bayesian frameworks have proven effective in analog 

circuit sizing tasks [18]. Learning that is based on graphs 

has also been incorporated into the optimisation of circuits. 

It is possible to perform efficient optimisation on the layout 

if GNNs can properly estimate the optimal transistor sizes, 

and then GNNs can be combined with reinforcement 

learning to optimise layout transistor sizing [19]. One 

research implemented a machine learning GCN-RL based 

framework to optimise multip le circu it parameters across 

diverse technology nodes and design families, outpacing 

standard techniques based on black economic Optimisers 

[20]. Another reinforcement learning framework, AutoCkt, 

modeled the circuit design process as a Markov Decision 

Process, resulting in a 40× speed improvement compared  to 

genetic algorithms [21]. 

We have applied layout-aware surrogate modelling using 

graph-based embeddings in parasitic-sensitive analogue 

design, which greatly advances the state of the art in 

performance prediction under layout constraints [22]. In  

another approach, surrogate-assisted mult i-objective 

optimization was used to directly evolve Pareto-optimal 

analog circuit solutions with high diversity and 

convergence speed [23]. It has been made possible to 

combine the worldwide explorat ion power of neural 

networks with the sample accuracy of Bayesian models in 

evolutionary Bayesian optimization frameworks.  These 

combination methods give reliable results for analogue size 

even when there are a lot of design limitations [24].  
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A recent innovation integrated large language models 

with Bayesian optimizat ion to assist in analog design 

reasoning and transfer learning, greatly improving the 

optimization of unseen circuit topologies [25]. At last, there 

is an all-encompassing assessment that groups these 

methods into supervision, reinforcement, graphs, and 

hybrid learning models, demonstrating distinct patterns in 

surrogate- and adaptive-design techniques in developing 

analog front-ends [26]. Due to these improvements, there is 

a movement away from extensive simulat ion-based 

workflows, and towards effective, intelligent, and most 

importantly, hybrid AI systems that optimise for 

adaptability as well as cost when it comes to computation 

[27]. This part of the review talks about the classification of 

the different machine learn ing methods that make up the 

core of the mixed optimisation systems. 

II. RESEARCH METHOD 

Combin ing improvements of circuits at the hardware 

level as well as advancements in ML is a new emerg ing 

field of research. To obtain a better unders tanding of how 

this field operates, the researchers conducted a combination 

of a detailed scoping review and a bib liometric analysis of 

the field. Targeting publications from 2015-2024, the 

researchers performed a comprehensive and systematic 

search of the top engineering, computer science and AI 

literature databases. They then meticulously collated the 

year of publication, frequency and distribution of citations, 

authors, and country of origin. Publications that specifically  

focus on the teachings from ML in optimising circu its, as 

well as the sub-areas of ML such as base learning, 

reinforcement learn ing and graph structures, were the focus 

of this research [28]. A mix of quantitative techniques such 

as citation examinations and co-authorship analysis were 

used to determine the value of the investigations and 

impact. To understand the evolution of the field, temporal 

changes were mapped and citation analysis was used to 

assess impact on the field. Co-authorship networks helped 

to understand the collaborations and determined principal 

researchers. The researchers used the bibliometric data to 

determine the significant works and novel patterns along 

with sites of investigation. This comprehensive method 

provides an understanding of the extent to which mixed AI 

systems can be applied to optimisation at the level of 

circuits [29]. It also gives useful information about where 

the field might be going in the future. 

 

 

 

TABLE 1:  

YEAR-WISE PUBLICATION 

Year Number of Publications  

2017 1 

2019 4 

2020 11 

2021 19 

2022 35 

2023 449 

2024 922 

2025 1059 

 

 

Figure 1: Year-Wise Publication 

The annual settlement of publicat ions regarding the 

valuation of hybrid AI systems in the optimisation of 

circuit  level offers analytics of changes of AI systems in  

circuit  level optimisation. Back in 2017, if one were to 

consider the correlat ion between publications and 

researchers to the interdisciplinary nurtured combination of 

AI systems and circuit optimisation, one single publication 

produced suggests the emergence of the combination to 

have developed only to the incubation levels of opportunity 

[30]. In 2019, 4 publications were released, and 11 were 

published the following year, which was a good sign of 

steady growth. Then, in 2021, 19 publicat ions were 

released, followed by 35 publications in 2022. That was a 

sign of strong interest in that field. The most notable jump 

occurred in 2023, which had 449 publications published 

[31].  
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This continued for both 2024 and 2025, with 922 and 

1059 publications, respectively, and signified the 

accelerating implementation of hybrid AI systems in the 

circuit -level optimisation domain. This set of data shows 

that the field is growing up, with more people working on it  

and coming up with new ways to make AI-aided circuit  

design methods more effect ive and efficient [32]. 

TABLE 2:  

LEADING JOURNALS PUBLISHING RESEARCH ON HYBRID AI AND 

CIRCUIT-LEVEL O PTIMIZATION 

Sr.N

o 

Source Documen

ts 

Citatio

ns 

Mean 

Citatio

ns  

1 ACS Nano 23 1572 68.3 

2 Sensors 330 5986 18.1 

3 Advanced 

Materials 

32 903 28.2 

4 Nature 

Communicat io

ns 

40 1590 39.8 

5 Chemical 

Reviews 

22 1707 77.6 

6 Scientific 

Reports 

324 1539 4.8 

7 Nature 8 1668 208.5 

8 Nano-Micro 

Letters 

18 719 39.9 

9 Advanced 

Science 

13 210 16.2 

10 Computers in 

Biology and 

Medicine 

51 714 14.0 

11 Materials 

Horizons 

8 22 2.8 

12 Science 

Advances 

13 325 25.0 

 

 

Figure 2: Source Co-Citation Network Visualization of Journals 

The following table lists some of the most significant  

contributors (in terms of quantity and influence) to the 

literature that pertains to the intersections of hybrid AI 

systems and circuit-level optimisation and integrated circuit  

design research. Additionally, the data provide a previously 

mentioned perspective of the influence each source seems 

to hold academically, along with some insightful metrics. 

ACS Nano and Chemical Reviews have published the most 

documents (23 and 22 documents published, respectively) 

and have also been mean cited the most per document (68.3 

and 77.6 mean citations, respectively). Nature is also 

noteworthy for being an influential source as it has 8 

documents published with a mean of 208.5 citations. The 

Sensors and Scientific Reports, which published 330 and 

324 documents respectively, are also influential; however, 

their mean citations are low (at least in recent times). Their 

documents appear to have a wide reach and presumably a 

less concentrated impact to achieve such an outcome. The 

Co-Citation Network Visualisation of Journals (as 

illustrated) enhances the understanding of the 

interconnections these journals have in terms of their 

relative research contribution. The figure of the journals 

showcases co-citation (i.e., collaboration and/or citation), 

which helps determine key contributors and/or academic 

research in hybrid AI and circuit optimisation [33]. 
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TABLE 3:  

AUTHOR-WISE DISTRIBUTION 

Sr.No. Author Documents Citations 

Mean 

Citations 

per 

Document 

1 Li, Guoqi 9 580 64.4 

2 
Chen, 

Xiaodong 
4 322 80.5 

3 
Tian, 

Yonghong 
6 508 84.7 

4 Xu, Bo  7 213 30.4 

5 Yao, Man 3 202 67.3 

6 He, Ke 3 293 97.7 

7 Su, Jiangtao 3 293 97.7 

8 Deng, Lei 4 340 85.0 

9 Gao, Wei 3 551 183.7 

10 Lee, Chengkuo 10 505 50.5 

11 
Cauwenberghs, 

Gert  
3 640 213.3 

12 
Kubendran, 

Rajkumar 
2 635 317.5 

13 Fang, Wei 2 263 131.5 

14 
Chaudhary, 

Vishal 
5 75 15.0 

15 
Joshi, 

Siddharth 
4 689 172.3 

 

Figure 3: Co-Authorship Network Visualization of Leading Authors 

 

 

 

Table 3 illustrates the main contributors to the 

publications related to hybrid AI systems in circuit level 

optimisation in the study (by author) that have garnered 

citations from other publications to help track their 

influence on the field. It shows how many citations each 

author got, how many documents they released, and how 

many citations each document got on average. Based on 

contributions to the field, Li, Guoqi is the most prolific in  

the publication of documents with 9 publications with an 

overwhelming 580 citations, of which the average is 64.4 

per publication, and 2nd of 6 publications overall, Tian, 

Yonghong with 508 citations and an average of 84.7. Gao, 

Wei made an even lower number of publications, 3, but an 

even higher 551 citations  with an average of 183.7 

citations, which speaks to the influence of the work he is 

doing. Other authors, even those with a lower total of 467 

citations, Cauwenberghs, Gert, and Kubendran, Rajkumar 

are doing the publication of documents with very high 

average citations of 213.3 and 317.5 respectively. The Co-

Authorship Network Visualisation of Lead ing Authors 

(figure) along with this informat ion gives credence to the 

relationships and citation activity for other publications of 

these authors to illustrate the advancement of the work in  

AI hybrid for circuit optimisation [34]. 

TABLE 4:  

COUNTRY-WISE DISTRIBUTION OF DOCUMENTS AND C ITATIONS 

Sr.No Country Documents Citations Mean 

Citations  

1 China 951 14,785 15.6 

2 United 

States 

425 11,522 27.1 

3 Saudi 

Arabia 

242 2,798 11.6 

4 India 349 3,608 10.3 

5 United 

Kingdom 

202 5,888 29.1 

6 South 

Korea 

156 2,797 17.9 

7 Pakistan 100 1,490 14.9 

8 Australia  102 3,328 32.6 

9 Germany  101 3,129 31.0 

10 Canada 89 2,329 26.2 

11 Jordan 50 375 7.5 

12 Egypt 89 1,047 11.8 

13 Malaysia 82 875 10.7 

14 Italy 76 1,575 20.7 

15 Spain 63 1,422 22.6 
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Figure 4: Country-Level Co-Authorship Network in Scientific 
Publications 

The Country-Wise Distribution of Documents and 

Citations  table highlights the global contributions to the 

field of hybrid AI systems in circuit-level optimizat ion 

[35]. In the previous year, China produced the most 

articles, amounting to 951, and garnered the most citations, 

totaling 14,785, although the country's mean citation per 

document did remain the most modest at only 15.6. Th is 

could mean that the country dominates the quantity of 

research but that not all of that research has the same level 

of impact. Following China was the United States, with 425 

articles and 11,522 citat ions, whose mean citation per 

document was higher at 27.1, meaning that the research 

produced by the United States was of greater influence. 

Saudi Arabia and India contributed 349 and 242 art icles, 

respectively, yet their mean citation per document was also 

lower at 11.6 and 10.6, meaning that while they are 

contributing to the field, and fairly actively at that, their 

influence may not be as great. The United Kingdom also 

produced 202 articles but their mean citation per document 

was the highest at 29.1, meaning that their research was 

also of great quality, and then higher still. Together, 

Australia, Germany, and Canada all contributed and 

produced a good balance between articles and citations. 

Australia in particular had a mean citation of 32.6, meaning 

their contribution was also of great influence. Other 

countries like Jordan, Egypt, and lesser so, Malaysia and 

Spain, have recently made some contributions to the field  

but overall had a much lower number of publications . The 

Country-Level Co-Authorship Network (figure) v isualizes 

these collaborations and connections across countries, 

showcasing the global nature of research in hybrid AI for 

circuit optimization [36]. 

III. NN-BASED IC DESIGN AUTOMATION METHODS 

Here, we talk in more depth about the different ideas that 

have been put forward over the past six decades for 

automating the creation of analogue IC the front ends.  

These methods only use machine learn ing, specifically  

supervised and reinforcement teaching with neural 

networks [37]. To be thorough, we also show the works 

that talk about mixed methods.  Details about how each 

method works, what situations it can be used in, and its 

benefits are given.  It has been shown that using NNs to 

answer hard real-world problems works very well in many 

areas, such as the recognition of speech, medical imaging 

analysis, driverless cars, language processing, and picture 

recognition [38].  Equations can't be used to model these 

kinds of problems because the person designing them can't 

know what will happen or how things will change over 

time. Sometimes the person designing the model doesn't 

even know how to make it.  To learn, NNs need a small but 

useful set of data to make a model that is close to the real 

answer to a problem [39].  For the testing step, the model 

also needs to be able to apply and correctly guess new 

results regarding information that was not available before. 

NNs are great at handling nonlinear problems because their 

design is like the way the brain works and they can change 

how complicated the model is by adding or taking away 

layers and neurons [40].  NNs were proven to be useful in  

helping to build analogue circuits for operational amplifiers 

(opamps) in 2003, as shown in [41]. We will talk more 

about how supervised as well as reinforcement learn ing 

NNs can be used for designing and fitting analogue IC 

front ends in the parts that follow. 

3.1. Supervised Learning  

First, get a collection of examples of inputs and 

outcomes for the issue that is being studied. This is what 

you should do before you try to come up for a rough 

answer.  For guided learning to work well, it is best to use a 

large training sample that has been marked. This could be a 

problem if it's hard to get hold of big files with labels. In  

the past, people have tried to use NN directed learning to 

make easy circuits [42]. For example, in [43], Along with 

0.18 µm CMOS transistors and a small neural network of 

20 neurones that learnt to guess a few gadget sizes from 

just 1500 samples, it was made.  It was used to make a 

current comparator with five trans istors and an inverter 

[44], the authors made a NN that can change the way a 4-

byte current-steering DAC works to achieve the same 

goals, but in a completely distinct node (0.35 µm CMOS).    
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The size of this method can be changed to fit new needs, 

however it can't be applied to guess numbers for old ones. 

The transient power consumption of a relaxation oscillator 

was modeled in [45] using a 60-neuron time-delay NN, to 

enhance the circuit’s functional model during system-level 

verification. Not only did it work well to feed mixed-signal 

bits that carry data, but it also used a lot of power. These 

are generally talked about in terms of behavioural 

languages.   To make more complex analogue integrated 

circuits, like those that boost and filter signals, we need 

more in-depth study, bigger instruction sets, and 

communicat ion systems with greater number of levels and 

neurons [46].   First, we need to agree on how to measure 

the present condition of the art before we may speak about 

the literature that uses trained students to handle traditional 

IC design.   Because of this, the following constraints are 

made in this work:  

• Dataset generation technique; 

• Feature selection;  

• NN complexity;  

• IC fabrication process used;  

• Types of circuits targeted;  

• Result validation method. 

3.1.1. Dataset Generation Technique  

The factors used for construction Xi in this paper are the 

standard current and voltage levels (Ire f, Vre f) for an  

analogous block, as well as the sizes of every single 

transistor and the passive voice (W, L).  The specs Yj tell 

you how well the electronic device works by telling you 

things like its gain, how much power it uses, and so on.   

Getting a set of circu it planning results that include the 

design area well is the first thing that needs to be done in 

supervised learning to make a model which may predict Xi.   

For analogue designers, setting performance goals is the 

first step [45]. They then use a CAD ( computer-aided 

design ) tool to construct the circuit for a lot of different 

design factors, as seen in the first figure.   It takes a long 

time and people who know a lot about IC CAD tools to put 

together this kind of information. used SPICE circuit  

simulators to generate their datasets [47]. 

 

Figure 5: Generation of the training dataset using integrated circuit 
CAD simulators. 

Figure 6 shows a simple source-coupled divergent pair 

with a running load, an offset current mirror (two of them 

devices with equal length), as well a known -value inductor 

for biassing. This was done to show which a dataset looks.   

Because the transistors are not straight, only the width as 

well as the length of four of them need to be set. This 

means that there are 7 design factors.  Xi = {W1, L1, W 2, 
L2, W 3, L3, W4}. 

 

Figure 6: Simple CMOS differential pair amplifier with resistive 
biasing. 
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To keep things simple, let 's say that the amplifier that 

needs to be built only needs to be able to handle differential 

voltage gain and power usage. So, Yj = {Ad, Ic}, and the 

vector {Xi,Yj} is a single item in the dataset, which is a 

9x9 matrix with N being the number of cases. In Table 1, 

you can see two examples from the previous circuit's 

informat ion (sizes are given in µm, current is given in mA).  

TABLE 5:  

AN EXAMPLE OF A DATASET WITH XI AND YJ 

No

. 

W

₁  
L₁  

W

₂  

L

₂  

W

₃  
L₃  

W

₄  

A

 l
IC 

1 5.2 
0.1

3 
10 0.2 2.4 0.3 

0.2

4 
56 

2.

3 

2 4.1 
0.1

8 
11 0.6 2.1 

0.3

5 

0.4

0 

11

2 
4 

… … … … … … … … … … 

On the opposite hand, there aren't any hard and fast rules 

about the amount of information that are needed for each 

kind of circu it [48].  More data are usually better because 

they make the model more accurate. But for analogue IC 

design automated processes, the creator will only make a 

fair amount of information so as to keep the job realistic 

and time-effective. For example, 20,000 examples (dataset 

size) were needed in [49] training the NN and guessing the 

outcomes of a similar circuit  that was created in, with just 

9000 and 16,600 cases [50]. On the other hand, only 1600 

data points were sufficient in [51]. The earlier numbers, on 

the other hand, can't be immediately compared because the 

files from circuit models were made in very different ways 

for each study.  Because of this, it is helpful when looking 

into the various methods by which the teaching models 

were made.  Before running the simulation, the writers 

changed the sizes of all the MOS transistors by hand to get 

a first valid  answer that worked well from the point of view 

of a circuit builder [52].  The people who designed the 

system made this first change.  Then, the basic design 

factors were changed by 5%, and each of the resulting 

circuits was simulated one at a time to get informat ion 

about how well it worked and to create the dataset [53].  

Also, the lengths L of all the transistors were kept at 1 µm 

to save room and avoid effects due to short channels.  So, 

the information in relied too much on a circuit state that 

had already been set.  they suggested a similar but different 

way to make datasets:  The first numbers for the design 

factors (Xi0) were chosen by the circuit's designer.   

Next, Xi0 was changed randomly between ±30% to  

make 100 different designs.  After getting the circuits, they 

were all recreated, and the best circuit was chosen as the 

one with the highest score [54].  To get the score, divide 

the number of performance metrics in the majority by the 

range of indicators in the numerator.  The result gets better 

as the number goes up.   There were as many times of this 

process as it took to make the collection.  With the best 

circuit from the first 100 shapes as a guide, the next 100 

designs were made.   This whole process is shown in 

Figure 7. 

 

Figure 7: Description of the training-dataset-generation approach 

3.2. Reinforcement Learning 

An agent learn how to do a job by being praised and 

criticised for it. Th is is called RL in machine learning.  RL 

doesn't need a labelled collection to train like supervised 

learning does [55].  Making guesses and getting awards for 

those predictions is how the training is done.  It makes 

sense that rewards should go down when the estimate is off 

and up when it's right.  Training's goal is to find a rule that 

makes the total number of awards as high as possible.  RL 

hasn't been used a lot in IC creation yet [56].  This part 

shows the past work of four separate teams that used RL to 

fix problems with the size of analogue integrated circuit 

designs.  Before getting into the specifics, it's important to 

go over the fundamental elements of RL at IC creation.  

The state for a circuit is shown by a vector indicating 

performance traits.  The RL agent receives this vector as 

input, changes the design parameters in order to carry out 

an action, figures out the reward, and then either goes to the 

new position if the reward has gone up or looks at other 

actions that are possible if the reward has not changed 

(Figure 8).  The circuit model data are used to figure out 

the prize.  
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Figure 8: Reinforcement learning design flow as applied to analog IC 
design automation 

After train ing a real-world  agent for 30–40 hours, it d id  

as well as or better than human masters on a number of 

circuits.  At any given step, the executable would send out 

out a set of digits that showed how big the transistors and 

idle parts were (these are called design parameters) [57].   

They would then be used by the circuit design setting to 

figure out how efficiently the circuit worked.   To make a 

payment function, hard design boundaries and good-to-

have purposes were used.   If the success in the game didn't 

match up with what happened in real life, the prize would  

be low. If it did, it would be high.   They were ab le to make 

two-stage and three-stage frequency converters at CMOS 

0.18 µm, which shows that their method worked.  We 

looked at noise, gain, power use, AC reaction peaks, and 

bandwidth to figure out how well it worked. RL had 

promise in both devices because it found the best deals 

faster than people could.  

Deep reinforcement learning, on the other hand, was 

used to find the circuit design parameters and learn about 

the design space. The genetic method took 40 times longer 

than this one to find good answers.  The method was used 

on both a simple trans capacitive amplifier and a CMOS 45 

nm two-stage operational amplifier [58].  Later, it was 

tested on a different working amplifier with a negative-gm 

load and a 16 nm FinFET.  The method found the right 

answer 25 times faster on the first try than other methods. 

Also, it was good at generalisation; out of the 500 different 

goals it was given, 97% of them were right.  It worked 96% 

of the time on the second and third rounds and 100% of the 

time on the fourth. It was 40 times faster than normal ways. 

What was done in [59] used deep RL to guess the design 

parameters of the circuit, just like in the other works. But 

the authors came up with a new way to quickly find out 

what the DC gain and phase margin (PM) numbers were 

without having to use the circuit model. They did this by 

using symbolic analysis.  More levels didn't have to be sent 

to the computer to get a good idea of how the circuit would 

work [60]. This process got rid of the circuit's most likely  

bad states.   

Early on, any set of planning factors that didn't meet the 

standards for both DC gain and PM were taken out of the 

loop.  An op amp in CMOS 65 nm with a bent cascode was 

used to test their set up.  Even though there were no 

numbers for convergence speedup in the data, the work was 

still able to find the right size answers. A hopeful paper 

was published that used a graph NN (GNN) and RL [61]. 

In fields like chemistry (things that materials do) and social 

networks (how people talk to each other), the GNN was 

good at making predictions because it knew how things that 

are connected depend on each other. When the writers of  

used the fact that a circuit is similar to a graph, where 

points are parts and lines are links (wires), they made their 

point. It was possible to move data from one circuit  to 

another by making an uncontrolled GNN that looked at  

how the IC parts were connected and pulled out values 

[62].   Things like two -stage and three-stage amplifiers 

were shared by two very different systems that may have 

learnt from each other.  There were also some similarit ies 

between two different production process nodes with the 

same layout. For example, the CMOS 65 nm and 45 nm 

nodes had the same structure.   In this case, the RL method 

learnt that changing the size of the transistors in the input 

circuit pair could change the differential amplifier's gain 

[63].   All four of the CMOS 0.18 µm circuits were shown 

to work properly. There were amplifiers and low-dropout 

voltage settings in these systems.  Getting the figure of 

difference (FoM) as high as possible was important.  A 

factor of success (FoM) is made up of several measures of 

success [64].   Finally, two-sized circuits could be moved 

from one larger process node to several smaller models 

with less runtime. 

IV. DNN-OPT FRAMEWORK 

 

Figure 9: DNN-Opt Framework 
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A. Analog Circuit Sizing: Problem Formulation  

The job of sizing an analogue circuit is summed up 

below as a limited optimisation problem. 

                                                     

[1] 

Where, x ∈ D d is the parameter vector and d is the 

number of design variables of sizing task. Thus, D d is the 

design space. f0(x) is the objective performance metric we 

aim to min imize. Without loss of generality, we denote i th 

constraint by fi(x). 

B. DNN-Opt Core: RL Inspired Two-Stage DNN 

Architecture 

Figure 1 shows how DNN-Opt is put together as a 

whole.   The DNN-Opt design is built on an a two-stage 

neural network approach and works with a circuit concept 

to find the best answer.   Samples are generated in the 

planning area to start the flow.  Next, a  network of 

reviewers is used for predicting how well every freshly 

introduced feature will work.  The actor network uses this 

guess to come up with new people to simulate.  This search 

method works well to copy how BO acts in space exp loring 

[65].  A population control method is also used to improve 

the sample creation process.  

The Deep Deterministic Policy Gradient (DDPG)  

method is used as a model for our two-stage network 

design [66], which is a real-life actor-crit ic program made 

for action areas with no breaks. In the case of analogue 

circuit size, however, actor-critic methods can't be used 

directly because the problem isn't a Markov Decision 

Process (MDP), which is a requirement for any RL 

problem [67]. Therefore, we adapt DDPG algorithm with 

significant modifications tailored for analog circu it sizing.  

When it comes to figuring out the size of an analogue 

circuit, we will retain some of our RL code but change a lot 

of it to make things easier to understand.  Design: An 

design is a grid of d elements, each of which represents a 

different design variable [68]. It is made up of circuit  

factors denoted by x.  The goal of optimisation is to find 

the best xopt that meets Equation 1.  

Population: A community is a group of different shapes. In 

a hybrid AI-based circuit optimizat ion framework, the 

design population matrix  represents a 

collection of candidate solutions, where each row 

corresponds to a design vector .  

These design vectors encode circuit parameters that form 

the optimization input [69]. For reinforcement learn ing 

(RL)-based optimization, each design is treated as a state in 

the RL environment: . 

To explore the design space, actions are defined as 

perturbations , resulting in a new state 

. The action-guided transitions simulate 

circuit configuration adjustments during training.  

In actor–critic RL algorithms, a critic network works  

with the reward signal Q(s,a). Here, the critic assesses the 

fitness or performance of a new design 〖x^'〗_i. For 

circuit sizing tasks, the critic is trained with supervised 

learning using the data f(x) in the form of performance 

metrics such as delay, power, o r gain.  

To train the crit ic, pseudo-samples are generated using 

two sampling strategies: (1) an action-based perturbed 

vector , and (2) the corresponding performance 

score . This process enables the network to learn the 

performance landscape across the design space efficiently.  

                 [2] 

To improve the ability of the critic network in  

performance modelling, the input dimensions are increased 

from d  to 2d by adding the design vector x, along with its 

action perturbation, Δx. This means the input will now be 

(x, Δx), which will allow the network to obtain the more 

granular learnings necessary in the design space. 

Experimental results using Bayesian analog circuit sizing 

benchmarks have shown that using these extended pseudo-

samples improves the learning quality of the critic network 

compared to using only original samples [70]. 

The crit ic network is trained using a Mean Squared Error  

(MSE) loss function over a batch of  pseudo-samples, 

where the predicted value is compared to the known 

simulated performance values: 

          [3] 

Here,  is the critic network's prediction, and  is 

the ground-truth SPICE-simulated performance metric 

(e.g., gain, bandwidth, delay).  

Once the critic network is trained, the actor network is  

optimized to explore the design space and output 

perturbations  that improve circuit performance. The 

training of the actor is guided by a Figure of Merit (FoM) 

function, which scores each sample based on its relative 

quality with respect to other designs in the batch. 
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[4] 

In this formulat ion: 

•  is a weight factor for the primary objective , 

• The summation component represents a pairwise 

ranking loss encouraging the actor to produce higher-

ranking designs, 

• Clipping ensures numerical stability during 
optimization. 

A batch of  samples is ranked using this loss function 

to guide the actor network's policy toward producing 

optimal design perturbations . The combination of crit ic-

based performance learning and FoM-guided ranking leads 

to more robust and sample-efficient design space 

exploration. 

The goal of training the actor network is to find changes 

to parameters Δx_k that make it work better without 

breaking any design rules. To do this, a loss function is 

created that blends judging ability with punishing people 

who break the rules. The actor network is trained by 

making the following loss function as small as possible for 

a batch size of N_b: 

   [5] 

In this equation: 

•  is the actor network’s output 

perturbation for input design , 

•  is the crit ic’s evaluation function, 

•  is a diagonal weight matrix controlling the 

penalty magnitude for constraint violations, 

•  measures the amount by which the proposed 

design exceeds allowable boundaries. 

To make sure the search stays in the area where the 

design is possible, the total border v iolation for the kth 

sample is found by: 

 

                                                                                  [6] 

  and  are the lower and upper bounds, 

respectively, determined from elite designs in the 

current population. 

These bounds are computed as: 

                                        

[7] 

where  are elite solutions and  is the dimensionality 

of the design space. 

The inclusion of the boundary violation term ensures 

that the actor network explores valid regions of the design 

space and avoids infeasible solutions. This design-aware 

optimization framework helps guide the policy network to 

generate circuit parameters that are both optimal and 

realizable [71]. 

C. DNN-Opt: Overall Framework  

The DNN-Opt framework is a hybrid actor–crit ic  

reinforcement learning architecture designed for analog 

circuit optimization. First, we perform a sensitivity 

analysis, which narrows down the most important features 

to reduce the design space. We randomly sample a 

population of exact size N_init to initialize the candidates 

for the design space. We then bring the candidates into a 

sequence of pseudo-sample generation, critic/actor training, 

and elite selection for the o iterations of the 

optimisation[72]. 

The first step in each iteration is to generate pseudo-

samples, followed by critic and actor network train ing 

using the previously described loss functions. An elite 

population  is then selected from the updated pool based 

on a Figure of Merit (FoM) ranking. This elite set 

represents high-performing circu it candidates and is used to 

guide the actor network’s future predictions. 

For every member , the actor network generates 

a new design vector , representing a candidate 

improvement: 

                  [8] 

where  is the learned perturbation from the actor 

network. 

After generating all candidate solutions, the best-

performing candidate is selected as the representative 

sample for the next optimization round. This decision is 

made using the critic network’s score  and the FoM 

guidance , formalized as: 

   [9] 
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V. MACHINE LEARNING ALGORITHMS  

At its core, intelligence is the ab ility  to learn from 

experience and pass on specific informat ion from one 

generat ion to the next . Machine learn ing is the study of 

how to make computer programs (called " learn ing  

systems") that get better over t ime [73].  Th is time, the 

experience comes from a process of data analys is that is  

done by a special p rogram.  So , the machine learn ing  

method uses mathemat ical, statistical, opt imisat ion , and  

knowledge find ing methods along with programs to find  

patterns in  a set of data [74]. A lthough the machine 

learn ing term was co ined around the 1960s, , it on ly  

gained  popularity  in the 21st century  due to  the 

advancement o f computat ional resources. Machine 

learn ing is often used to solve prob lems like numerical 

pred ict ion (regression), pattern recognit ion  

(classificat ion), g rouping, optimisat ion, and contro l.  As  

an example, these days they can be used in almost every  

field of study: music , health [75], economics [76],[77], 

industrial segments [78],[79], education [80],[81], among  

many  others. 

We look at three types of machine learn ing:  

unsupervised learn ing, rein forcement learn ing , and  

supervised learn ing [82].  There are d ifferent methods  

with in each class based on how they get their 

in format ion , such as classificat ion , regression , grouping , 

learn ing of relat ionships, relations, d ifferent ial 

equations, and so on.  Figure 2 shows the machine 

learn ing techn iques that were thought about .  

 

Figure 10: Machine learning methods 

The goal o f the machine learn ing process is to come  

up with a framework (model) that the can use what it  

learnt from train ing data on samples it has never seen  

before [83].    

This model needs to be easy to use and good at 

finding mistakes in the informat ion being co llected .   

You should test an AI system on new data to  see how 

effect ively the model design works (mistake rate) before 

you use it [84].   The assessment methods were chosen  

given the amount of knowledge that was provided .   

Most of the t ime, when  a knowledge set is sufficient ly  

large, three sets are looked at: the train ing  set, and these 

is used to improve the h ighest model;  the set that serves  

as validat ion , that makes the model superior by  

modify ing  the first model add itionally  general; and  the 

set for testing, which finds out how often the final model 

gets things wrong [85].   It 's important to remember that  

you have to p ick one o f those th ree sets at random. This  

means you  need  a b ig  enough  data set.  

In some situations, mostly in  real life, though, you  

have to work with limited data because you can't always  

get three separate and  important data sets.  Because o f 

this, d ifferent ways of evaluat ing should be used.  One 

choice is to utilise the pause method.  There is some 

material that  will be used for tests and the rest will be 

used for train ing .  People often  save a th ird during the 

data for tests and use the rest for train ing.  You cou ld  

also use k-fo ld  cross-validat ion  fo r s mall data sets. This  

tech- n ique is very  usefu l in  fixed  data  samples to  

forecast the success rate of a learn ing method . In k-

fo ld cross-validat ion, the train ing and test ing process is 

done k times. Thus, consider a given data  D, which is  

randomly div ided into k mutually exclusive subsets 

Dk, in which k = 1, ..., k  each of approximately  equal 

size. In  the iterat ion k , the Dk part ition  is reserved  fo r 

testing, and  the remain ing subsets are used to train the 

model. Thus, in the first iterat ion , the set D2 ∪D3 ∪∪Dk  

serves as the train ing  set to attain the first model, which  

is tested on D1; the second iterat ion is trained on D1  

∪D3 ∪…. Dk and tested on D2; and so on. In the end , 

the k error estimates received from k iterat ions are 

averaged to give rise to an overall error estimate. So, the 

usual number used to guess how often a learning method 

will make a mistake is k = 10. The three types of machine 

learning we talked about earlier are explained below: 

Learn ing with supervision, learning without supervision, 

and learning through reinforcement [86]. 

5 .1  Supervised  Learning  Methods 

Assisted learning methods try to figure out how input 

attributes (also called "independent variables") relate to a 

goal characteristic (also called "dependent variables").  

When it comes to maths, guided learning is a way to look 

into knowledge that is already known.  
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Consider the data set  used to infer a model of the 

system, in which each individual instance is represented by 

, given by 

  is the number of data set elements, 

  is the number of attributes (features) of each 

instance , 

                                     [10] 

The data set  lies in state space . The 

choice of features (or attributes, or parameters) , 

, for a g iven instance , significantly affects 

the output. There are two types of tasks for which  

supervised learning is used: pattern classification or 

regression (whose purpose is to predict the value of one or 

more target attributes). 

Classification 

Cons ider the output vector y ∈ Y, where Y stands  

fo r M d is crete classes. Accord ing to the tests in the 

train ing set X, the class ifier's job is to s ort the data 

into d ifferent g roups, o r to choose which of the M 

groups each new vector xnew goes to . Many  

algorithms, includ ing Decision T ree, Support Vector, 

Machine, k-Nearest Neighbour, Naive Bayes , and  

others , can be used fo r the classificat ion job . Figur3 

shows a bas ic class ificat ion algorith m process. The 

goal is to put  a set o f po ints (shown by the input  

vector) into two groups, as shown in the input classes  
vector: b lue and orange . 

 

Figure 11: Classification algorithm procedures 

 

 

Regression 

The goal of regression learn ing is to find out how 

independent variab les, also called features, (input  

variab les x) relate to a dependent variab le, also called  

result (cont inuous results variab le y ).  Fitt ing an  

object ive to the The input -output data is what the 

regression job is all about . The goal is to pred ict  

(numerical) outputs for new inputs. There are several 

forms of regression, such as linear, mult ip le, weighted , 

polynomial, nonparametric, and robust [87]. Simple 

Linear Regression, Logistic regression, Mult ivariate  

Regression , and Regression tree are some examples of 

algorithms that  can be used to bu ild  regression models  

[88]. Figure 12 illustrates a general linear regression  

algorithm procedure, in which the aim is to define a 

linear funct ion  that represents the data set behav ior.  

 
Figure 12: Regression algorithm procedures 

5 .2  Unsupervised  Learning  Methods 

In some machine learn ing prob lems, there is little  

in format ion about how the qualit ies of input and output 

are related [89].  So , the p rograms have to find  things in  

a data set that are alike o r different .  The method needs 

more human insight than gu ided  techn iques because the 

final cho ice is made by  a decision -maker, who cou ld  be 

someone or an entire group  of peop le.  Both gu ided  and  

unguided approaches work with in format ion that we 

need to exp lore and  understand the data in  the 

applicat ion area. However, there are some important  

differences between the two.  On e big d ifference is that 

there is no output array  of the goal variab le like there is  

in supervised  methods.  A lso, independent learn ing  is  

often linked to creat ive activ it ies like exp loring , 

understanding , and improving, which don 't work well 

with set steps like gu ided methods do [90].  Because of 

this, it can 't be automat ic.  A lso, there is not a correct o r 

incorrect response and no easy way to tell from the 

statistics whether the results are good or bad.   
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Stats that describe and show th ings are important  

parts of the process.  So, unsuperv ised learn ing is  

usually  broken down into two  groups : approaches to  

clustering  and d imens ion reduct ion  methods [91]. 

Clustering Methods 

As we already said , sometimes the data set isn't  

labelled , so it's important to look at the unique qualit ies  

of each piece of the informat ion in the set.  It can be said  

that grouping techn iques are the most popular 

unstructured method.  Basically , clustering is the process 

of putting things into groups based on how similar they  

are to each other and how d ifferent they are from e ach  

other [92]. Th is procedure is very usefu l in engineering , 

health science, humanities, economics, and other areas  

[93],[94]. The evaluat ion o f a data s et ’s const ituent  

me mbers ’ p roximity and the d iv is ion o f the data set  

into g roups while taking  into account the similarity  

and d iss imi larity between a pair o f ele ments are bo th  

essent ial steps in the clustering process. It is useful to 

denote the distance between two instances x
i
 and x

j
 as  

d(x
i
, x

j
) to quant ify  the s imilarity between  them.  

To define the quality of the cluster, it is necessary to  

use an evaluat ion criteria measure that is usually d iv ided  

into two categories: internal and external. The internal 

quality metrics usually measure the compactness of the 

clusters us ing some similarity measure. And, the 

external measures can be useful fo r examin ing whether 

the structure of the clusters matches some predefined  

classificat ion of the instances. Accord ing to [95] the 

notion o f ―cluster‖ is not precisely defined , for this  

reason, many clustering methods and algorithms have 

been developed. These methods can be d iv ided into 5 

categories [96]: Part it ion - ing based, Hierarch ical based, 

Dens ity-based , Grid-based and Model-based . Some 

examples of clustering algorithms from d ifferent types 

of clustering methods are g iven below: This list includes  

the k-means algorithm, the fuzzy c -means algorithm 

(FCM), the clustering  using representatives algorithm 

(CURE), the dens ity-based  spatial clustering o f 

applicat ions with no ise algorithm (DBSCAN), the 

ordering  po ints to ident ify  the clustering  structu re 

algorithm (OPTICS), the optimal grid -clustering  

algorithm (Opt iGrid), the gaussian mixture model 

clustering algorithm, and the self-o rgan ising maps  

clustering  algorithm (SOMs) [97]. 

Figure 5 illustrates an exclusive clustering algorithm 

procedure, whose ob jective is to d iv ide the data set into  

groups accord ing to the data characteristics. In th is case, 

the term exclus ive is associated with the idea that each  

data po int exclus ively belongs to  one cluster.  

 

Figure 13: Exclusive clustering algorithm procedures 

Dimensionality Reduction 

The complexity of an in format ion co llection is the 

number o f facto rs that can  be used to  learn from it .  So , 

reduct ion d imens ion methods p ick out the most 

important factors and leave out the ones that aren 't  

important and cou ld mess up or delay the min ing  

procedure in  some way .  But the factors that are chosen  

must keep as much  of the o riginal data set 's change as  

possible [98].  There are two main ways to group the 

reduct ion d imens ionality methods into g roups:  

• The first facto r is whether the technique employs the 

target  variab le  to  select input variab les or not.  
• The second factor is whether the technique utilizes a  

subset of the original 

variab les or derives new variab les from them to  

maximize the amount o f in format ion. 

The benefit of keeping the original variab les makes  

sense since the variables that were already in the data are 

simple to understand than the variables that were made 

automatically by a particu lar reduction method.  On the 

other hand, when working with large amounts of data, 

using reduction dimensionality approaches is the only way 

to make sure that the machine learning process works well.  

Certain methods, like Independent Component Analysis 

(ICA), Rough Sets-Based Feature Reduction, Basic 

Component Analysis (PCA), and Backward Elimination, 

can be used to reduce the number of d imensions  [99]. 

3 .3  Rein forcement  Learning  

Contextual learn ing is a way to teach machines to  

learn by  pay ing them. It is most often  used for dynamic 

contro l mechan is ms, but  it may  also be ut ilised to so lve 

optimisat ion prob lems.  Accord ing to the idea beh ind  

reinforcement learn ing , if an act ion occurs fo llowed by a 

good outcome or an enhance ment in the outcome, then  

the desire to do that act ion  gets greater, or is "enforced ."   
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Reinforcement learn ing is a way to teach an  

independent agent  that acts and feels its surroundings  

how to pick the best actions to reach its goals [100].  The 

agent is g iven  in format ion about how things are right  

now in the environment . It needs to use what it already  

knows by becoming greedy to get the most rewards, but  

it also needs to look into what it can do better in the  

future. 

With more formalis m, rein forcement learn ing can be  

formulated as a Markov decision p rocess as presented in  

Figure 14. At each time step t, given the current state st 

(and current reward  rt), the agent  needs to learn  a 

strategy (i.e . the ―value funct ion‖) that selects the 

optimal decision o r action at. The action will have an  

impact on the environment that induces the next reward  

signal rt+1 (which can be posit ive, negat ive, or zero) and  

also produces the next state st +1. The rein forcement  

learn ing cont inues with a t rial-and-error process until it  

learns an  optimal o r suboptimal strategy  [99]. 

 

Figure 14: Reinforcement learning schematic. Adapted from 

There is a d ifference between rein forcement learning  

and guided learn ing that needs to be made clear.  Some 

people say that in rein forcement learn ing, the algorithm 

learns from what it has already done, while in superv ised  

learn ing, the data set acts as a gu ide and  shows the 

trends to the algorithms  [101].  The rev iewer doesn't say  

anything ahead of t ime.  Because o f th is, after a number 

of actions have been completed and awards have been  

received , it is advisab le to look back at each act ion and  

figure out which one led to the prize.  Th is makes it  

possible to  record these moves and p lay  them back later.  

TABLE 6:  
MACHINE LEARNING ALGORITHMS IN CIRCUIT-LEVEL OPTIMIZATION 

ML Algorithm Key Applications  Authors  Description  

Supervised Learning 

Support Vector 

Machines (SVMs) 

Class ification, 

Regression 
[102] 

SVMs are used for classification and regression 

tasks by finding the hyperplane that best divides data 

into classes or predicts continuous values.  

Random Forests 
Class ification, 

Regression 
[103] 

A decis ion tree ensemble method used for 

classification and regression. It creates multiple 

decision trees and merges their results. 

Gradient Boosting 

Machines (GBMs) 

Class ification, 

Regression 
[104] 

An ensemble technique that builds models 

sequentially, where each model corrects errors of the 

previous  one, improving prediction accuracy.  

Unsupervised Learning 

K-means Clustering 
Clustering, Pattern 

Recognition 
[105] 

A clustering algorithm that partitions data into K 

distinct clusters based on distance from the center.  

Principal Component 

Analysis (PCA) 

Dimens ionality 

Reduction, Feature 

Extraction 

[106] 

PCA is used for reducing the dimensionality of data 
by projecting it onto a smaller set of orthogonal 

components while retaining the most significant 

variance.  

Autoencoders  Dimens ionality 

Reduction, Data 
[107] A neural network used to learn efficient 

representations of data, typically for the purpose of 
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Compression reducing its dimensionality or denoising data.  

Reinforcement Learning 

Deep Q-Network 

(DQN) 

Game AI, Robotics, 

Optimization 
[108] 

DQN uses deep learning to approximate the Q -
function, which helps in making optimal decisions in 

environments requiring sequential action decis ions.  

Actor-Critic (AC) 

Algorithms 

Optimization, Decision-

Making 
[109] 

A reinforcement learning framework where the 

"actor" makes decisions and the "critic" evaluates 

them based on rewards, used in optimizing designs 

or control systems.  

Deep Det erministic 

Policy Gradient 

(DDPG) 

Continuous Control, 

Circuit Design 
[110] 

A deep RL approach used for optimizing continuous 

action spaces, like analog circuit des ign, where 

actions and states are continuous rather than 

discrete.  

Graph-base d Learning 

Graph Convolutional 

Networks (GCNs) 

Circuit Design, 

Molecule Property 

Prediction, Social 

Networks  

[111] 

GCNs are used to process graph-structured data and 

are particularly effective in applications where 

relationships between entities (nodes) are important, 

such as IC design and chemistry. 

Hybrid Approaches  

Bayesian Optimization 

(BO) 

Analog Circuit 

Optimization, Design 

Space Exploration 

[112] 

BO is used to optimiz e black-box functions, often 

coupled with ML models like Gauss ian Processes or 

Neural Networks to predict performance and 

optimize parameters iteratively.  

Genetic Algorithms 

(GAs) 

Parameter Optimization, 

Circuit Design 
[113] 

GAs mimic natural selection and evolve solutions 

over generations to find optimal or near-optimal 

solutions, often us ed in design optimization and 

search problems.  

Particle Swarm 

Optimization (PSO) 

Optimization Problems, 

Circuit Design 
[114] 

A population-based optimization algorithm inspired 
by the social behavior of birds flocking, used to find 

optimal solutions by adjusting individual "particles" 

in a swarm. 

VI. CONCLUSION 

Considering everything, mixed AI systems, especially  

those integrating machine learn ing (ML) systems with 

traditional circu it-level optimisation methodologies, 

represent a paradigm shift in the way integrated circuits 

(ICs) are designed and optimised. Even though Moore’s 

Law placed a ceiling on the complexity of next -generation 

IC designs, optimisation methodologies based on 

heuristics, rules, and time-consuming models fall short, 

mainly due to the increasing need to optimise on power, 

performance and area (PPA).  

Alternatives such as hybrid AI models in the context of  

circuit design, in particu lar, have shown to be more 

effective, more flexible and more automated than the 

traditional models. In particular, guided learning, 

reinforcement learning (RL), and Graph Neural Networks 

(GNNs) have been very helpful in improving the design 

cycle's most important jobs, like device size, layout, 

placement, and routing.  
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Of particu lar note is the way RL and graph models have 

improved over the years with respect to the more 

challenging optimisation tasks of a design cycle such as 

cost of computation, convergence of designs, and 

generalisation of designs over a varied topological 

arrangement of integrated circuits, and over frees of 

designs. Of note are frameworks like DNN-Opt which  

combine deep learning with architectures inspired by RL in  

order to enhance the sizing of circuits and design with more 

efficiency to cover the enormous design constellation.  

The increased publication rate, enhanced research, and 

deeper international integration acknowledge AI as one of 

the viable techniques to integrate with high modern IC 

design workflows. His bibliometric analysis shows the 

integration of AI consolidating underway thrust with 

notable inputs from China, the United States, and India. 

The field is actually maturing the next design of IC 

instruments for hybrid AI systems to be broadened. The 

fields of optimisation systems for the dynamic problems of 

next-generation semiconductor devices are smart  and 

incorporate future affordability into the design. The 

integration of circuit design continues to face the evolving 

system for absolute efficiency in the integrations of the 

systems to the overall solutions design. 
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