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Abstract--

Objective--Malaria continues to pose a severe threat as one
of the most lethal infectious diseases, despite extensive efforts
aimed at its control. The emergence of resistance to treatment
within Plasmodium presents a major challenge for existing
anti-malarial drugs. Currently, the rise and dissemination of
resistance to antimalarial medications have become a notable
concern globally. There is a challenge in identifying natural
substances that can lead to the creation of new antimalarial
drugs. An effective approach to tackle this problem is the
synthesis of new compounds or the modification of existing
anti-malarial treatments. Molecular docking analyses and
computational design play a key role in the innovation and
adaptation of anti-malarial medications.

Based on its docking score and the interactions between the
protein and ligand, the molecules were selected and
subsequently subjected to pharmacokinetic studies to identify
key medicinal parameters. The molecule that was docked
using docking tools was ranked based on the binding score,
and a high-quality relationship model was identified with
Plasmodium PIR Protein Ectodomain among the top-scoring
molecules. The selected molecules also exhibited optimal
pharmacokinetic properties.

Keywords-- Ectodomain, docking, Plasmodium falciparum,
malaria, pharmacokinetic drug resistance.

I. INTRODUCTION

Despite years of attempts to combat and manage
malaria, it remains a widespread and lethal infectious
disease, particularly in developing nations across Africa,
Asia, and South America[1-2]. The illness is triggered by a
parasite belonging to the genus Plasmodium. The primary
species of Plasmodium include Plasmodium falciparum,
Plasmodium vivax, Plasmodium ovale, Plasmodium
knowlesi, and Plasmodium malariae. P. falciparum being
responsible for the majority of deaths [3-4]. Among the
five types of Plasmodium parasites that lead to malaria in
humans, Plasmodium falciparum is the most harmful
species with the highest potential for developing drug
resistance[5-6].
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Recent findings from the WHO indicate that since the
year 2000, around 2.2 billion malaria cases and 12.7
million deaths have been prevented, but malaria continues
to pose a significant global health challenge, especially in
the WHO African Region. The most recent World malaria
report from WHO estimates 263 million malaria cases and
597,000 deaths globally in 2023. This amounts to roughly
11 million additional cases in 2023 compared to 2022,
while the death toll remained nearly unchanged. About
95% of the fatalities occurred in the WHO African Region,
where many individuals at risk still do not have access to
necessary services for preventing, detecting, and treating
the disease[7]. Currently, artemisinin-based combination
therapies (ACTSs) are the primary treatment recommended
by the World Health Organization (WHO) for
uncomplicated falciparum malaria in all countries where it
is endemic. Regrettably, there have been reports of the
emergence and spread of artemisinin (ART)-resistant P.
falciparum in Southeast Asian countries such as Thailand,
as well as in many other regions where malaria is endemic,
including parts of Africa [8-10]. Curcumin [1,7-bis-(4-
hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], also
known as diferuloyl methane, is a major hydrophobic
polyphenol derived from the rhizome (turmeric) of the herb
Curcuma longa. Turmeric has been widely reported as a
principal component of traditional remedies for treating
malaria and fever in India, Nigeria, and Samoa (Odugbemi
et al., 2007; Uhe, 1974; Shankar & Venugopal, 1999).
Curcumin is chemically classified as a bis-a,f-unsaturated
B-diketone that exhibits keto-enol tautomerism. In recent
years, it has generated considerable scientific interest due
to its wide range of therapeutic properties, including
antioxidant,  anti-inflammatory,  antimicrobial, and
anticarcinogenic activities (Aggarwal & Harikumar, 2009;
Kunnumakkara, Anand, & Aggarwal, 2008; Ahsan et al.,
1999; Dubey et al., 2008; Liang et al., 2008). It also
demonstrates  hepatoprotective and  nephroprotective
effects, suppresses thrombosis, protects against myocardial
infarction, and possesses hypoglycemic and antirheumatic
properties.
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The clinical symptoms of malaria are associated with
blood-stage parasites and linked to a large-scale infection
of erythrocytes [11]. In order to provide amino acids for the
synthesis of parasite proteins and to create the space
necessary for the parasite to grow and multiply within the
erythrocyte, intraerythrocytic malaria parasites break
down approximately 60-80% of hemoglobin in an acidic
food vacuole. Eventually, this toxic heme hinders the
parasite's resilience[12]. The parasite uses a 200 KDa
protein complex that includes histo-aspartic
proteases, cysteine falcipain-2 (FP-2), aspartate
(plasmepsin 11 and 1V), and a specific enzyme (heme
detoxification protein) that converts toxic heme
to "hemozoin™ as a survival strategy [13]. This mechanism
protects the parasite against oxidative damage caused by
reactive oxygen species (ROS). In this intricate process,
FP-2, a member of the papain family, functions as a
cysteine protease during the erythrocytic phase of P.
falciparum, located in the food vacuole where it degrades
the hemoglobin molecule. The FP-2 gene is situated on
chromosome 11. FP-2 is produced consistently during the
erythrocytic stages of the parasite's lifecycle, with notably
higher levels of expression observed during the trophozoite
stage [14-15]. The absence of a highly effective vaccine for
malaria prevention, along with the prevalent use of
multidrug-resistant P. falciparum, has created an urgent
demand for the discovery of lead compounds and the
development of new alternative antimalarial medications to
potentially circumvent issues associated with drug
resistance [16-18]. The identification of new or novel drug
targets, along with the development of antimalarial drugs
possessing unique modes of action, may provide a viable
solution to combat drug resistance in malaria and help
reduce malaria-related mortality. As malaria is a highly
studied disease, several potential drug targets have already
been proposed in research. These targets can be further
explored and validated through experimental studies for
drug development.

Il. MATERIALS AND METHOD

2.1 Collection of protein and ligands datasets

The crystal structure of the Plasmodium PIR protein
ectodomain (PDB ID: 6ZYV) was obtained in PDB format
from the Protein Data Bank
(https://lwww.rcsh.org/structure/62YV). The ligand used in
the study was drawn using ChemSketch, a chemical
drawing program available at
https://www.acdlabs.com/resources/free-chemistry-
software-apps/chemsketch-freeware/.
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2.2 Preparation of target protein

The crystal structure of the Plasmodium PIR protein
ectodomain (PDB ID: 6ZYV), with a resolution of 2.15 A,
was obtained in PDB format from the Protein Data Bank.
This structure contains three chains: A, B, and C. For
docking studies, the protein structures were prepared by
assigning hydrogens and polarities and by calculating
Gasteiger charges. Subsequently, the structures were
converted from PDB to PDBQT format using the
AutoDock tool (mgltools).

2.3 Preparation of ligand

Derivatives of pyridylvinylquinoline-triazole  were
drawn using ChemSketch software
(https://blog.acdlabs.com/acdlabs/rss.xml) and saved in
MOL format. These molecules were then used for docking
studies. Using Open Babel and custom PERL scripts, all
ligand molecules were subsequently converted from MOL
format to PDB format.

2.4 Molecular docking

To identify potential hit compounds for further drug
discovery research, molecular docking studies were
performed using all ligands from the organic chemical
library against the Plasmodium PIR protein ectodomain. In
this study, AutoDock version 4.2 was employed for the
docking investigations. AutoDock uses a semi-empirical
free energy force field and applies the Lamarckian Genetic
Algorithm (LGA) for docking simulations.The docking
grid, which encompassed the entire binding site of the
Plasmodium PIR protein ectodomain, was manually
defined by visualizing the protein structure. Prior to
importing the designed derivatives, the cavity detection
wizard was used to identify the potential binding sites. The
Autodock Vina program further assisted in the docking
studies. Molecular docking experiments helped determine
the orientation and interactions between the protein target
and the proposed derivatives of pyridylvinylquinoline-
triazole. Figure 1 presents the ribbon diagram of the
Plasmodium falciparum PIR protein ectodomain bound to a
derivative of pyridylvinylquinoline-triazole. Molecular
docking was conducted on the Plasmodium PIR protein
ectodomain using a self-developed PERL script. Fig. 1
shows Ribbon diagram of Plasmodium PIR protein
ectodomain 6 with the Derivatives of pyridylvinylquinoline
triazole. The docking grid was defined with dimensions X
=40, Y = 40, and Z = 40, centered at coordinates X =
12.644,Y =11.143, and Z = 166.461.
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Key residues within the binding site included ILE C:73,
LEU C:66, VAL C:11, ALA C:91, GLU C:71, and MET
C:69, along with several adjacent residues (Fig. 2). An
organic ligand library was systematically docked into the
active site to identify potential compounds for further drug
development. This approach aimed to validate the
Plasmodium PIR protein ectodomain as a promising drug
target in malaria. Furthermore, pharmacokinetic properties
of the top-ranked ligands were evaluated to prioritize
candidates with favorable ADME profiles for subsequent
experimental validation.

2.5 Drug-likeness and ADME prediction

The pharmacokinetic properties and drug-likeness of the
suggested derivatives were evaluated online using the
SwissADME  tool  (http://www.swissadme.ch).  The
assessment of drug-likeness was based on Lipinski's Rule
of Five, which provides baseline standards for evaluating
the oral bioavailability of novel molecular entities
[19].According to Lipinski's rule, a compound is more
likely to exhibit good absorption and permeability if it
meets the following criteria: no more than five hydrogen
bond donors, no more than ten hydrogen bond acceptors, a
molecular weight below 500 Da, and a logP (iLogP) value
not exceeding 5. In addition to Lipinski’s parameters, other
important factors associated with poor absorption were also
considered, such as the number of rotatable bonds (nRotb)
and topological polar surface area (TPSA), with poor
absorption often indicated when TPSA is less than 140 A2
[20]. Furthermore, several pharmacokinetic characteristics
were evaluated, including molar refractivity (MR),
logarithm of skin permeability (logKp), blood-brain barrier
(BBB) penetration, permeability glycoprotein (P-gp)
substrate status, and gastrointestinal (GI) absorption. These
parameters help predict the in vivo behavior of the
compounds and their potential as drug candidates[20].

I11. RESULT AND DISCUSSION

3.1 Analysis of docking

Molecular docking was performed with all ligands, and
it was deemed successful, as each ligand was positioned
within the receptor's active site. The twelve molecules with
the highest estimated free energy of binding (EFEB) scores
were selected for further analysis. The EFEB values of
these selected molecules ranged from -11.2 to -8.7 [Table
2]. Protein-ligand complexes of the top-scoring molecules
were examined to analyze binding interactions, the
orientation of the docked compounds, and the interacting
residues within the active site.
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The top-ranked molecule, ligandl, showed substantial
interactions with active site residues ILE C:73, MET C:69,
VAL ILE C:73 and LEU C:66 [Figure 2]. Ligand2, which
had the second-highest EFEB score, formed hydrogen
bonds with LYS B:13, CYS B:21, and ASP B:20 [Figure
3]. These same residues—LYS B:13, CYS B:21, and ASP
B:20—also displayed strong interactions with ligand3.All
other selected compounds exhibited good patterns of
hydrogen bonding and hydrophobic interactions as well.

3.2 Molecular parameters

The physicochemical characteristics were determined,
revealing that the molecular weight of each chosen
molecule was below 500 Da except ligand5. Each of the
molecules listed in [Table 3] exhibited a log P value of less
than 5. Additionally, all selected molecules had less than 5
hydrogen bond donors and equal or less 10 hydrogen bond
acceptors, as indicated in [Table 3]. Compared to larger
molecules, drug molecules with molecular weights around
500 Da are more easily transported, dispersed, and
absorbed.[21]

3.3 Drug-likeness and ADME prediction

The Lipinski rule of five (Ro5) is commonly used to
assess the drug-likeness of chemical compounds and
potential drugs. According to this rule, pharmaceutical-
grade compounds should have a molecular weight (MW) of
less than 500 g/mol, a logarithm of the partition coefficient
(logP) below 5, fewer than five hydrogen bond donors
(HBDs), and fewer than ten hydrogen bond acceptors
(HBAs) [22]. Additionally, studies have shown that
pharmacological flexibility and membrane permeability are
associated with a topological polar surface area (TPSA) of
no more than 140 A2 and a total of ten or fewer rotatable
bonds (RotB). Compounds that fulfill these criteria have
demonstrated improved bioavailability and favorable
pharmacokinetic properties [23-26].Low molecular weight
(MW) molecules are light and can easily penetrate cell
membranes. Compounds with a molecular weight below
500 Da (MW < 500) are generally better absorbed orally
[27], whereas those with MW > 500 Da are typically
absorbed through alternative pathways, such as membrane
transport [28]. As shown in [Table 3], all the analyzed
compounds had molecular weights below 500 Da except
ligand5. The implicit logP (llogP) represents the
octanol/water partition coefficient of a molecule in two
immiscible solvents, reflecting how the molecule dissolves
in both solvents while maintaining its neutral state.
Initially, llogP was used in pharmacological and medicinal
research.
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It plays a vital role in drug absorption through the oral
route [27] and facilitates interactions between drugs and
their biological targets [29]. Octanol, due to its combined
hydrophilic and lipophilic nature, was considered a good
mimic of phospholipid membrane properties [30].
According to Lipinski’s rule of five, the predicted llogP
values for the compounds (Table 3) ranged between 3.13
and 4.42, all below the threshold of Ro5. This suggests that
the synthesized derivatives are likely to exhibit good
absorption. Regarding hydrogen bond acceptors (HBAS),
they are defined as heteroatoms with at least one bonded
hydrogen atom. According to Lipinski’s rule of five (Ro5),
the total number of hydrogen bond acceptors (HBAS),
which includes nitrogen (N) and oxygen (O) atoms, should
be less than 10 [27]. As shown in [Table 2], the selected
compounds had HBA values ranging from 5 to 7, which is
below the Ro5 threshold. Hydrogen bond donors (HBDs)
are defined as any heteroatom with a formal positive
charge—including the bonded oxygens—excluding pyrrole
nitrogen, halogens, sulfur, heterochromatic oxygen, and
higher oxidation states of nitrogen, phosphorus, and sulfur.
Ro5 further states that the total number of hydrogen bond
donors (OH and NH groups) should be five or fewer. As
indicated in [Table 3], all compounds met this criterion
with HBD values below 5. Both HBA and HBD are
considered critical, as they influence oral absorption and
interactions with other compounds and macromolecules
[27]. Topological Polar Surface Area (TPSA), which is
calculated by adding together all the polar fragments (such
as oxygen, nitrogen, and their associated hydrogens) on a
molecule’s surface, is a widely used descriptor in medicinal
chemistry [31]. TPSA is primarily used to predict drug
transport properties, including intestinal absorption and
blood-brain barrier (BBB) penetration [32-33]. It has
gained popularity in virtual screening and ADME
(Absorption, Distribution, Metabolism, and Excretion)
property prediction [34]. A TPSA value of less than 60 A2
is generally considered indicative of good blood-brain
barrier penetration [35]. The TPSA values of the proposed
derivatives (Table 3) were found to be greater than 60 A2,
with the exception of Ligand10 and Ligand1ll. This
indicates that, while most derivatives may not effectively
cross the blood-brain barrier, Ligand10 and Ligand11 show
potential for BBB penetration due to their lower TPSA
values (Table 4). However, all derivatives exhibit good
intestinal absorption, as their TPSA values remain below
140 A2, Additionally, the total number of rotatable bonds
(RBN) reflects the number of bonds within a molecule that
are capable of freely rotating.
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Rotatable bonds are defined as single non-ring bonds
attached to non-terminal heavy atoms (i.e., non-hydrogen
atoms). It has been observed that molecules with less than
10 rotatable bonds tend to have better oral bioavailability
[36]. For the designed compounds, the number of rotatable
bonds was found to be less than 10, suggesting excellent
potential for oral availability. In the in silico ADME
studies, several pharmacokinetic properties of the designed
compounds were evaluated, including molar refractivity
(MR), skin permeability (log Kp), blood-brain barrier
(BBB) penetration, gastrointestinal (GI) absorption,
permeability glycoprotein (P-gp) substrate properties, and
inhibition of cytochrome P450 (CYP450) enzymes—
specifically CYP1A2, CYP2C9, and CYP2C19. Molar
refractivity (MR) is defined as the reciprocal of the volume
of a mole of a substance and is closely related to the total
polarizability of that mole. It provides valuable information
about the electronic polarizability of specific ions in
solution [37]. High MR values are often associated with
favorable oral bioavailability and intestinal absorption in
drug candidates. Permeability, which predicts absorption,
distribution, metabolism, and excretion (ADME)
characteristics, is a critical factor in therapeutic
development.Skin permeability (Kp) specifically measures
a molecule’s ability to penetrate the outer layer of the skin
[40]. It is frequently used in safety assessments to evaluate
the potential for dermal absorption of a compound [41].
The acceptable range for the log Kp value of a drug is
typically between -8.0 and -1.0 [42]. It was observed that
the log Kp values of all the designed compounds (Table 4)
fell within the acceptable range of -8.0 to -1.0, indicating
suitable skin permeability. The blood-brain barrier (BBB),
a specialized microvascular endothelial layer surrounding
the central nervous system (CNS), serves as both a
structural and chemical barrier that restricts the entry of
many drugs into the brain. As a result, the effectiveness of
newly developed drugs for treating brain-related conditions
is often limited. Insufficient BBB penetration presents a
significant challenge in the development of therapeutic
agents for central nervous system disorders, as many
promising compounds fail to reach therapeutic
concentrations in brain tissue [43-44].Some of the
proposed derivatives (Table 4) exhibited blood-brain
barrier (BBB) permeability, which limits their usefulness in
treating cerebral malaria, as such permeability is
unnecessary or even undesirable for this condition. The
ATP-binding cassette transporter known as permeability
glycoprotein (P-gp) plays a key role in primary active
efflux via carrier-mediated transport.
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P-gp binds various substrates and is widely distributed
throughout the body, including in the small intestine,
blood-brain barrier capillaries, and several essential organs
such as the liver and kidneys [45-46]. Cytochrome P450
(CYP) enzymes are a class of proteins responsible for the
biosynthesis and metabolism of numerous endogenous and
exogenous compounds. These enzymes have been
identified in a broad range of organisms, including
microorganisms, plants, animals, and even some viruses.
Cytochrome P450 (CYP) enzymes derive their name from
their cellular location (“"cyto"), the presence of heme
pigment (“chrome"), and the characteristic absorption peak
at 450 nm observed when the heme is bound to carbon
monoxide [47—48]. These heme-containing enzymes form a
superfamily known as CYPs, which are responsible for the
metabolism of a wide range of xenobiotic and endogenous
compounds in humans.There are approximately 50 CYP
enzyme isoforms, with five major isoforms—CYP1A2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4—accounting
for over 90% of oxidative metabolic activity [49].
Inhibition of these enzymes can lead to impaired drug
metabolism and potential drug-drug interactions. Therefore,
evaluating the inhibitory potential of drug candidates
against specific CYP isoforms is a critical step in the drug
development process. The inhibitory activity of the
suggested derivatives against three key CYP isoforms—
CYP1A2, CYP2C9, and CYP2C19—is summarized in
Table 4.

IV. CONCLUSION

Pharmacokinetic and molecular docking studies were
performed on twelve (12) substituted derivatives of
pyridylvinylquinoline  triazole  using  SwissADME,
AutoDock Vina, and MGL Tools. This study represents a
digitally driven and environmentally friendly approach to
drug design, aligning with the principles of green
chemistry, as no hazardous components were involved. The
pharmacokinetic profiles of the compounds were found to
be favorable, with none of the derivatives violating
Lipinski's Rule of Five.
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The compounds’ biological activity may be attributed to
hydrogen bonding and other hydrophobic interactions
between the molecules and their targets. Given their
excellent pharmacokinetic properties, the proposed
derivatives show strong potential for use in the treatment of
malaria.
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Tablel
Structures, of the designed Derivatives of pyridylvinylquinoline triazole.
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Table 2:
Binding affinity of selected potential molecules
S.No. Binding affinity Hydrogen Bonding Hydrophobic interaction
((kcal/mol
Ligand 1 -11.3 ILE C:73, LEU C:66 7
Ligand 2 -11.0 LYS B:13, CYS B:21, ASP B:20 7
Ligand 3 -10.7 LYS B:13, CYS B:21, ASP B:20 7
Ligand 4 -10.6 CYS C:42, TYR C:41, HIS C:127, ASN C:121 10
Ligand 5 -10.6 CYS C:42, TYR C:41, HIS C:127, ASN C:121 10
Ligand 6 -10.1 ILE A:98, LEU A:99, ALA A;91 8
Ligand 7 -10.1 ASP A:204, GLU B:170, LYS B:162 5
Ligand 8 -9.1 ILE C:18, ASP C:19 7
Ligand 9 9.1 LYS A:241 14
Ligand 10 -8.9 ASN B:187 4
Ligand 11 -8.7 LYS A:241 7
Ligand 12 -8.7 ASN A:214 o
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Table 3:
Lipinski’s and Veber parameters of the designed Derivatives of pyridylvinylquinoline triazole.

S.No. . Molecular LogP Hydrogen Hydrogen Hydrogen | Lipinski#violations TPSA
weight rotatable acceptors donors
bonds
Ligand 1 | 474 4.42 8 5 1 0 71.76
Ligand 2 | 489.02 4.15 8 6 1 0 75.0
Ligand 3 | 456.93 3.13 8 5 1 0 86.34
Ligand 4 | 475.97 4.08 8 6 1 0 80.99
Ligand5 | 519.04 4.21 10 7 2 0 95.23
Ligand 6 | 459.97 4.17 8 5 1 0 71.76
Ligand 7 | 461.99 4.24 10 5 1 0 71.76
Ligand 8 | 475.97 4.13 7 7 1 0 83.2
Ligand 9 | 445.95 4.09 5 6 0 0 62.97
Ligand 10 | 430.97 3.91 5 5 0 0 59.73
Ligand 11 | 416.91 4.0 5 5 0 0 59.73
Ligand 12 | 432.91 3.89 5 6 0 0 68.96
Table 4
Pharmacokinetics properties of the designed Derivatives of pyridylvinylquinoline triazole.
S.No. logKp Gl BBB P-gp CYP1A2 | CYP2C19 | CYP2C9
(cm/s) Absorption | Permeant | Substrate Inhibitor Inhibitor Inhibitor
Ligand1 | -6.24 High Yes Yes No Yes Yes
Ligand2 | -5.49 High Yes Yes No Yes Yes
Ligand3 | -7.7 High No Yes No Yes Yes
Ligand4 | -7.12 High No Yes No Yes Yes
Ligand5 | -7.74 High No Yes No Yes Yes
Ligand 6 | -6.41 High Yes Yes Yes Yes Yes
Ligand 7 | -6.25 High Yes Yes Yes Yes No
Ligand8 | -7.44 High No Yes No No Yes
Ligand9 | -6.78 High Yes Yes Yes No Yes
Ligand 10 | -5.95 High Yes Yes Yes Yes Yes
Ligand 11 | -6.12 High Yes Yes Yes Yes No
Ligand 12 | -6.82 High Yes Yes Yes No Yes

gastrointestinal (GlI)
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absorption, log of skin permeability (logKp), blood-brainbarrier (BBB) penetration, Molar refractivity (MR),
permeabilityglycoprotein(Pgp)substrate , cytochrome P450 (CYP450) enzymes:CYP1A2,CYP2C9, and CYP2C19 inhibitors
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