
 

International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026) 

18 
 

―In Silico Molecular Docking and ADME Prediction Studies for 

the Design of Novel Antimalarial Agents‖ 
Afsar Ahmed1, Shalini Singh2 

1,2QSAR & Cheminformatics Laboratory, Department of Chemistry, Bareilly College, M.J.P. Rohilkhand University, Bareilly, 

U.P. India 

Abstract--  

Objective--Malaria continues to pose a severe threat as one 

of the most lethal infectious diseases, despite extensive efforts 

aimed at its control. The emergence of resistance to treatment 

within Plasmodium presents a major challenge for existing 

anti-malarial drugs. Currently, the rise and dissemination of 

resistance to antimalarial medications have become a notable 

concern globally. There is a challenge in identifying natural 

substances that can lead to the creation of new antimalarial 

drugs. An effective approach to tackle this problem is the 

synthesis of new compounds or the modification of existing 

anti-malarial treatments. Molecular docking analyses and 

computational design play a key role in the innovation and 

adaptation of anti-malarial medications. 

Based on its docking score and the interactions between the 

protein and ligand, the molecules were selected and 

subsequently subjected to pharmacokinetic studies to identify 

key medicinal parameters. The molecule that was docked 

using docking tools was ranked based on the binding score, 

and a high-quality relationship model was identified with 

Plasmodium PIR Protein Ectodomain among the top-scoring 

molecules. The selected molecules also exhibited optimal 

pharmacokinetic properties. 

Keywords-- Ectodomain,  docking, Plasmodium falciparum,  

malaria, pharmacokinetic drug resistance. 

I. INTRODUCTION 

Despite years of attempts to combat and manage 

malaria, it remains a widespread and lethal infectious 

disease, particularly in developing nations across Africa, 

Asia, and South America[1-2]. The illness is triggered by a 

parasite belonging to the genus Plasmodium. The primary 

species of Plasmodium include Plasmodium falciparum, 

Plasmodium vivax, Plasmodium ovale, Plasmodium 

knowlesi, and Plasmodium malariae.  P. falciparum being 

responsible for the majority of deaths [3-4]. Among the 

five types of Plasmodium parasites that lead to malaria in 

humans, Plasmodium falciparum is the most harmful 

species with the highest potential for developing drug 

resistance[5-6].   

 

Recent findings from the WHO indicate that since the 

year 2000, around 2.2 billion malaria cases and 12.7 

million deaths have been prevented, but malaria continues 

to pose a significant global health challenge, especially in 

the WHO African Region. The most recent World malaria 

report from WHO estimates 263 million malaria cases and 

597,000 deaths globally in 2023. This amounts to roughly 

11 million additional cases in 2023 compared to 2022, 

while the death toll remained nearly unchanged. About 

95% of the fatalities occurred in the WHO African Region, 

where many individuals at risk still do not have access to 

necessary services for preventing, detecting, and treating 

the disease[7]. Currently, artemisinin-based combination 

therapies (ACTs) are the primary treatment recommended 

by the World Health Organization (WHO) for 

uncomplicated falciparum malaria in all countries where it 

is endemic. Regrettably, there have been reports of the 

emergence and spread of artemisinin (ART)-resistant P. 

falciparum in Southeast Asian countries such as Thailand, 

as well as in many other regions where malaria is endemic, 

including parts of Africa [8-10]. Curcumin [1,7-bis-(4-

hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], also 

known as diferuloyl methane, is a major hydrophobic 

polyphenol derived from the rhizome (turmeric) of the herb 

Curcuma longa. Turmeric has been widely reported as a 

principal component of traditional remedies for treating 

malaria and fever in India, Nigeria, and Samoa (Odugbemi 

et al., 2007; Uhe, 1974; Shankar & Venugopal, 1999). 

Curcumin is chemically classified as a bis-α,β-unsaturated 

β-diketone that exhibits keto-enol tautomerism. In recent 

years, it has generated considerable scientific interest due 

to its wide range of therapeutic properties, including 

antioxidant, anti-inflammatory, antimicrobial, and 

anticarcinogenic activities (Aggarwal & Harikumar, 2009; 

Kunnumakkara, Anand, & Aggarwal, 2008; Ahsan et al., 

1999; Dubey et al., 2008; Liang et al., 2008). It also 

demonstrates hepatoprotective and nephroprotective 

effects, suppresses thrombosis, protects against myocardial 

infarction, and possesses hypoglycemic and antirheumatic 

properties.  
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The clinical symptoms of malaria are associated with 

blood-stage parasites and linked to a large-scale infection 

of erythrocytes [11]. In order to provide amino acids for the 

synthesis of parasite proteins and to create the space 

necessary for the parasite to grow and multiply within the 

erythrocyte, intraerythrocytic malaria parasites break 

down approximately 60–80% of hemoglobin in an acidic 

food vacuole. Eventually, this toxic heme hinders the 

parasite's resilience[12]. The parasite uses a 200 KDa 

protein complex that includes histo-aspartic 

proteases, cysteine falcipain-2 (FP-2), aspartate 

(plasmepsin II and IV), and a specific enzyme (heme 

detoxification protein) that converts toxic heme 

to "hemozoin" as a survival strategy [13]. This mechanism 

protects the parasite against oxidative damage caused by 

reactive oxygen species (ROS). In this intricate process, 

FP-2, a member of the papain family, functions as a 

cysteine protease during the erythrocytic phase of P. 

falciparum, located in the food vacuole where it degrades 

the hemoglobin molecule. The FP-2 gene is situated on 

chromosome 11. FP-2 is produced consistently during the 

erythrocytic stages of the parasite's lifecycle, with notably 

higher levels of expression observed during the trophozoite 

stage [14-15]. The absence of a highly effective vaccine for 

malaria prevention, along with the prevalent use of 

multidrug-resistant P. falciparum, has created an urgent 

demand for the discovery of lead compounds and the 

development of new alternative antimalarial medications to 

potentially circumvent issues associated with drug 

resistance [16-18].  The identification of new or novel drug 

targets, along with the development of antimalarial drugs 

possessing unique modes of action, may provide a viable 

solution to combat drug resistance in malaria and help 

reduce malaria-related mortality. As malaria is a highly 

studied disease, several potential drug targets have already 

been proposed in research. These targets can be further 

explored and validated through experimental studies for 

drug development. 

II. MATERIALS AND METHOD 

2.1 Collection of protein and ligands datasets 

The crystal structure of the Plasmodium PIR protein 

ectodomain (PDB ID: 6ZYV) was obtained in PDB format 

from the Protein Data Bank 

(https://www.rcsb.org/structure/6ZYV). The ligand used in 

the study was drawn using ChemSketch, a chemical 

drawing program available at 

https://www.acdlabs.com/resources/free-chemistry-

software-apps/chemsketch-freeware/. 

2.2 Preparation of target protein 

The crystal structure of the Plasmodium PIR protein 

ectodomain (PDB ID: 6ZYV), with a resolution of 2.15 Å, 

was obtained in PDB format from the Protein Data Bank. 

This structure contains three chains: A, B, and C. For 

docking studies, the protein structures were prepared by 

assigning hydrogens and polarities and by calculating 

Gasteiger charges. Subsequently, the structures were 

converted from PDB to PDBQT format using the 

AutoDock tool (mgltools). 

2.3 Preparation of ligand 

Derivatives of pyridylvinylquinoline-triazole were 

drawn using ChemSketch software 

(https://blog.acdlabs.com/acdlabs/rss.xml) and saved in 

MOL format. These molecules were then used for docking 

studies. Using Open Babel and custom PERL scripts, all 

ligand molecules were subsequently converted from MOL 

format to PDB format. 

2.4 Molecular docking 

To identify potential hit compounds for further drug 

discovery research, molecular docking studies were 

performed using all ligands from the organic chemical 

library against the Plasmodium PIR protein ectodomain. In 

this study, AutoDock version 4.2 was employed for the 

docking investigations. AutoDock uses a semi-empirical 

free energy force field and applies the Lamarckian Genetic 

Algorithm (LGA) for docking simulations.The docking 

grid, which encompassed the entire binding site of the 

Plasmodium PIR protein ectodomain, was manually 

defined by visualizing the protein structure. Prior to 

importing the designed derivatives, the cavity detection 

wizard was used to identify the potential binding sites. The 

Autodock Vina program further assisted in the docking 

studies. Molecular docking experiments helped determine 

the orientation and interactions between the protein target 

and the proposed derivatives of pyridylvinylquinoline-

triazole. Figure 1 presents the ribbon diagram of the 

Plasmodium falciparum PIR protein ectodomain bound to a 

derivative of pyridylvinylquinoline-triazole. Molecular 

docking was conducted on the Plasmodium PIR protein 

ectodomain using a self-developed PERL script. Fig. 1 

shows Ribbon diagram of Plasmodium PIR protein 

ectodomain 6 with the Derivatives of pyridylvinylquinoline 

triazole. The docking grid was defined with dimensions X 

= 40, Y = 40, and Z = 40, centered at coordinates X = 

12.644, Y = 11.143, and Z = 166.461.  
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Key residues within the binding site included ILE C:73, 

LEU C:66, VAL C:11, ALA C:91, GLU C:71, and MET 

C:69, along with several adjacent residues (Fig. 2). An 

organic ligand library was systematically docked into the 

active site to identify potential compounds for further drug 

development. This approach aimed to validate the 

Plasmodium PIR protein ectodomain as a promising drug 

target in malaria. Furthermore, pharmacokinetic properties 

of the top-ranked ligands were evaluated to prioritize 

candidates with favorable ADME profiles for subsequent 

experimental validation. 

2.5 Drug-likeness and ADME prediction 

The pharmacokinetic properties and drug-likeness of the 

suggested derivatives were evaluated online using the 

SwissADME tool (http://www.swissadme.ch). The 

assessment of drug-likeness was based on Lipinski's Rule 

of Five, which provides baseline standards for evaluating 

the oral bioavailability of novel molecular entities 

[19].According to Lipinski's rule, a compound is more 

likely to exhibit good absorption and permeability if it 

meets the following criteria: no more than five hydrogen 

bond donors, no more than ten hydrogen bond acceptors, a 

molecular weight below 500 Da, and a logP (iLogP) value 

not exceeding 5. In addition to Lipinski’s parameters, other 

important factors associated with poor absorption were also 

considered, such as the number of rotatable bonds (nRotb) 

and topological polar surface area (TPSA), with poor 

absorption often indicated when TPSA is less than 140 Å² 

[20]. Furthermore, several pharmacokinetic characteristics 

were evaluated, including molar refractivity (MR), 

logarithm of skin permeability (logKp), blood-brain barrier 

(BBB) penetration, permeability glycoprotein (P-gp) 

substrate status, and gastrointestinal (GI) absorption. These 

parameters help predict the in vivo behavior of the 

compounds and their potential as drug candidates[20]. 

III. RESULT AND DISCUSSION 

3.1 Analysis of docking 

Molecular docking was performed with all ligands, and 

it was deemed successful, as each ligand was positioned 

within the receptor's active site. The twelve molecules with 

the highest estimated free energy of binding (EFEB) scores 

were selected for further analysis. The EFEB values of 

these selected molecules ranged from -11.2 to -8.7 [Table 

2]. Protein-ligand complexes of the top-scoring molecules 

were examined to analyze binding interactions, the 

orientation of the docked compounds, and the interacting 

residues within the active site.  

The top-ranked molecule, ligand1, showed substantial 

interactions with active site residues ILE C:73, MET C:69, 

VAL ILE C:73 and LEU C:66 [Figure 2]. Ligand2, which 

had the second-highest EFEB score, formed hydrogen 

bonds with LYS B:13, CYS B:21, and ASP B:20 [Figure 

3]. These same residues—LYS B:13, CYS B:21, and ASP 

B:20—also displayed strong interactions with ligand3.All 

other selected compounds exhibited good patterns of 

hydrogen bonding and hydrophobic interactions as well. 

3.2 Molecular parameters 

The physicochemical characteristics were determined, 

revealing that the molecular weight of each chosen 

molecule was below 500 Da except ligand5. Each of the 

molecules listed in [Table 3] exhibited a log P value of less 

than 5. Additionally, all selected molecules had less than 5 

hydrogen bond donors and equal or less 10 hydrogen bond 

acceptors, as indicated in [Table 3]. Compared to larger 

molecules, drug molecules with molecular weights around 

500 Da are more easily transported, dispersed, and 

absorbed.[21] 

3.3 Drug-likeness and ADME prediction 

The Lipinski rule of five (Ro5) is commonly used to 

assess the drug-likeness of chemical compounds and 

potential drugs. According to this rule, pharmaceutical-

grade compounds should have a molecular weight (MW) of 

less than 500 g/mol, a logarithm of the partition coefficient 

(logP) below 5, fewer than five hydrogen bond donors 

(HBDs), and fewer than ten hydrogen bond acceptors 

(HBAs) [22]. Additionally, studies have shown that 

pharmacological flexibility and membrane permeability are 

associated with a topological polar surface area (TPSA) of 

no more than 140 Å² and a total of ten or fewer rotatable 

bonds (RotB). Compounds that fulfill these criteria have 

demonstrated improved bioavailability and favorable 

pharmacokinetic properties [23–26].Low molecular weight 

(MW) molecules are light and can easily penetrate cell 

membranes. Compounds with a molecular weight below 

500 Da (MW < 500) are generally better absorbed orally 

[27], whereas those with MW > 500 Da are typically 

absorbed through alternative pathways, such as membrane 

transport [28]. As shown in [Table 3], all the analyzed 

compounds had molecular weights below 500 Da except 

ligand5. The implicit logP (IlogP) represents the 

octanol/water partition coefficient of a molecule in two 

immiscible solvents, reflecting how the molecule dissolves 

in both solvents while maintaining its neutral state. 

Initially, IlogP was used in pharmacological and medicinal 

research.  
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It plays a vital role in drug absorption through the oral 

route [27] and facilitates interactions between drugs and 

their biological targets [29]. Octanol, due to its combined 

hydrophilic and lipophilic nature, was considered a good 

mimic of phospholipid membrane properties [30]. 

According to Lipinski’s rule of five, the predicted IlogP 

values for the compounds (Table 3) ranged between 3.13 

and 4.42, all below the threshold of Ro5. This suggests that 

the synthesized derivatives are likely to exhibit good 

absorption. Regarding hydrogen bond acceptors (HBAs), 

they are defined as heteroatoms with at least one bonded 

hydrogen atom. According to Lipinski’s rule of five (Ro5), 

the total number of hydrogen bond acceptors (HBAs), 

which includes nitrogen (N) and oxygen (O) atoms, should 

be less than 10 [27]. As shown in [Table 2], the selected 

compounds had HBA values ranging from 5 to 7, which is 

below the Ro5 threshold. Hydrogen bond donors (HBDs) 

are defined as any heteroatom with a formal positive 

charge—including the bonded oxygens—excluding pyrrole 

nitrogen, halogens, sulfur, heterochromatic oxygen, and 

higher oxidation states of nitrogen, phosphorus, and sulfur. 

Ro5 further states that the total number of hydrogen bond 

donors (OH and NH groups) should be five or fewer. As 

indicated in [Table 3], all compounds met this criterion 

with HBD values below 5. Both HBA and HBD are 

considered critical, as they influence oral absorption and 

interactions with other compounds and macromolecules 

[27]. Topological Polar Surface Area (TPSA), which is 

calculated by adding together all the polar fragments (such 

as oxygen, nitrogen, and their associated hydrogens) on a 

molecule’s surface, is a widely used descriptor in medicinal 

chemistry [31]. TPSA is primarily used to predict drug 

transport properties, including intestinal absorption and 

blood-brain barrier (BBB) penetration [32–33]. It has 

gained popularity in virtual screening and ADME 

(Absorption, Distribution, Metabolism, and Excretion) 

property prediction [34]. A TPSA value of less than 60 Å² 

is generally considered indicative of good blood-brain 

barrier penetration [35]. The TPSA values of the proposed 

derivatives (Table 3) were found to be greater than 60 Å², 

with the exception of Ligand10 and Ligand11. This 

indicates that, while most derivatives may not effectively 

cross the blood-brain barrier, Ligand10 and Ligand11 show 

potential for BBB penetration due to their lower TPSA 

values (Table 4). However, all derivatives exhibit good 

intestinal absorption, as their TPSA values remain below 

140 Å². Additionally, the total number of rotatable bonds 

(RBN) reflects the number of bonds within a molecule that 

are capable of freely rotating.  

Rotatable bonds are defined as single non-ring bonds 

attached to non-terminal heavy atoms (i.e., non-hydrogen 

atoms). It has been observed that molecules with less than 

10 rotatable bonds tend to have better oral bioavailability 

[36]. For the designed compounds, the number of rotatable 

bonds was found to be less than 10, suggesting excellent 

potential for oral availability. In the in silico ADME 

studies, several pharmacokinetic properties of the designed 

compounds were evaluated, including molar refractivity 

(MR), skin permeability (log Kp), blood-brain barrier 

(BBB) penetration, gastrointestinal (GI) absorption, 

permeability glycoprotein (P-gp) substrate properties, and 

inhibition of cytochrome P450 (CYP450) enzymes—

specifically CYP1A2, CYP2C9, and CYP2C19. Molar 

refractivity (MR) is defined as the reciprocal of the volume 

of a mole of a substance and is closely related to the total 

polarizability of that mole. It provides valuable information 

about the electronic polarizability of specific ions in 

solution [37]. High MR values are often associated with 

favorable oral bioavailability and intestinal absorption in 

drug candidates. Permeability, which predicts absorption, 

distribution, metabolism, and excretion (ADME) 

characteristics, is a critical factor in therapeutic 

development.Skin permeability (Kp) specifically measures 

a molecule’s ability to penetrate the outer layer of the skin 

[40]. It is frequently used in safety assessments to evaluate 

the potential for dermal absorption of a compound [41]. 

The acceptable range for the log Kp value of a drug is 

typically between -8.0 and -1.0 [42]. It was observed that 

the log Kp values of all the designed compounds (Table 4) 

fell within the acceptable range of -8.0 to -1.0, indicating 

suitable skin permeability. The blood-brain barrier (BBB), 

a specialized microvascular endothelial layer surrounding 

the central nervous system (CNS), serves as both a 

structural and chemical barrier that restricts the entry of 

many drugs into the brain. As a result, the effectiveness of 

newly developed drugs for treating brain-related conditions 

is often limited. Insufficient BBB penetration presents a 

significant challenge in the development of therapeutic 

agents for central nervous system disorders, as many 

promising compounds fail to reach therapeutic 

concentrations in brain tissue [43–44].Some of the 

proposed derivatives (Table 4) exhibited blood-brain 

barrier (BBB) permeability, which limits their usefulness in 

treating cerebral malaria, as such permeability is 

unnecessary or even undesirable for this condition. The 

ATP-binding cassette transporter known as permeability 

glycoprotein (P-gp) plays a key role in primary active 

efflux via carrier-mediated transport.  
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P-gp binds various substrates and is widely distributed 

throughout the body, including in the small intestine, 

blood-brain barrier capillaries, and several essential organs 

such as the liver and kidneys [45–46]. Cytochrome P450 

(CYP) enzymes are a class of proteins responsible for the 

biosynthesis and metabolism of numerous endogenous and 

exogenous compounds. These enzymes have been 

identified in a broad range of organisms, including 

microorganisms, plants, animals, and even some viruses. 

Cytochrome P450 (CYP) enzymes derive their name from 

their cellular location ("cyto"), the presence of heme 

pigment ("chrome"), and the characteristic absorption peak 

at 450 nm observed when the heme is bound to carbon 

monoxide [47–48]. These heme-containing enzymes form a 

superfamily known as CYPs, which are responsible for the 

metabolism of a wide range of xenobiotic and endogenous 

compounds in humans.There are approximately 50 CYP 

enzyme isoforms, with five major isoforms—CYP1A2, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4—accounting 

for over 90% of oxidative metabolic activity [49]. 

Inhibition of these enzymes can lead to impaired drug 

metabolism and potential drug-drug interactions. Therefore, 

evaluating the inhibitory potential of drug candidates 

against specific CYP isoforms is a critical step in the drug 

development process. The inhibitory activity of the 

suggested derivatives against three key CYP isoforms—

CYP1A2, CYP2C9, and CYP2C19—is summarized in 

Table 4. 

IV. CONCLUSION 

Pharmacokinetic and molecular docking studies were 

performed on twelve (12) substituted derivatives of 

pyridylvinylquinoline triazole using SwissADME, 

AutoDock Vina, and MGL Tools. This study represents a 

digitally driven and environmentally friendly approach to 

drug design, aligning with the principles of green 

chemistry, as no hazardous components were involved. The 

pharmacokinetic profiles of the compounds were found to 

be favorable, with none of the derivatives violating 

Lipinski's Rule of Five.  

The compounds’ biological activity may be attributed to 

hydrogen bonding and other hydrophobic interactions 

between the molecules and their targets. Given their 

excellent pharmacokinetic properties, the proposed 

derivatives show strong potential for use in the treatment of 

malaria. 
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Fig. 1 Ribbon diagram of Plasmodium PIR protein ectodomain with the Derivatives of pyridylvinylquinoline triazole. 

 

 

Fig. 2. Showing Interaction of Ligand1 with Residues 
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Fig. 3. Showing Interaction of Ligand2 with Residues 

Table1 

Structures, of the designed Derivatives of pyridylvinylquinoline triazole. 

 S.No.                                                                                     Structure                                                       

Ligand 1. 

Ligand 2    
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Ligand 3  

Ligand 4.  

Ligand 5.  

Ligand 6.  

 Ligand 7.  
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Ligand 8.  

Ligand 9.  

Ligand 10.  

Ligand 11   
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Ligand 12   

Table 2: 

Binding affinity of selected potential molecules 

S.No. Binding affinity 

((kcal/mol 
Hydrogen Bonding Hydrophobic interaction 

Ligand 1 -11.3 ILE C:73,  LEU C:66 7 
Ligand 2 -11.0 LYS B:13, CYS B:21, ASP B:20 7 
Ligand 3 -10.7 LYS B:13, CYS B:21, ASP B:20 7 
Ligand 4 -10.6 CYS C:42, TYR C:41, HIS C:127,  ASN C:121 10 
Ligand 5 -10.6 CYS C:42, TYR C:41, HIS C:127, ASN C:121 10 
Ligand 6 -10.1 ILE A:98, LEU A:99, ALA A;91 8 
Ligand 7 -10.1 ASP A:204,   GLU B:170, LYS B:162 5 
Ligand 8 -9.1 ILE C:18, ASP C:19 7 
Ligand 9 -9.1 LYS A:241 14 
Ligand 10 -8.9 ASN B:187 4 
Ligand 11 - 8.7 LYS A:241 7 
Ligand 12 - 8.7 ASN A:214 9 

 

 

 

 

 

 

 

 

 

 



 

International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 02, February 2026) 

28 
 

Table 3: 

Lipinski’s and Veber parameters of  the designed Derivatives of pyridylvinylquinoline triazole. 

S.No. .  Molecular 

weight 
LogP Hydrogen 

rotatable 

bonds 

Hydrogen 

acceptors 
Hydrogen 

donors 
Lipinski#violations TPSA 

Ligand 1 474 4.42 8 5 1 0 71.76 

Ligand 2 489.02 4.15 8 6 1 0 75.0 
Ligand 3 456.93 3.13 8 5 1 0 86.34 
Ligand 4 475.97 4.08 8 6 1 0 80.99 
Ligand 5 519.04 4.21 10 7 2 0 95.23 
Ligand 6 459.97 4.17 8 5 1 0 71.76 
Ligand 7 461.99 4.24 10 5 1 0 71.76 
Ligand 8 475.97 4.13 7 7 1 0 83.2 
Ligand 9 445.95 4.09 5 6 0 0 62.97 
Ligand 10 430.97 3.91 5 5 0 0 59.73 
Ligand 11 416.91 4.0 5 5 0 0 59.73 
Ligand 12 432.91 3.89 5 6 0 0 68.96 

 
Table 4 

Pharmacokinetics properties of  the designed Derivatives of pyridylvinylquinoline triazole. 

S.No. logKp 

(cm/s) 

GI 

Absorption 

BBB 

Permeant 

P-gp 

Substrate 

CYP1A2 

Inhibitor 

CYP2C19 

Inhibitor 

CYP2C9 

Inhibitor 

Ligand 1 -6.24 High Yes Yes No Yes Yes 

Ligand 2 -5.49 High Yes Yes No Yes Yes 

Ligand 3 -7.7 High No Yes No Yes Yes 

Ligand 4 -7.12 High No Yes No Yes Yes 

Ligand 5 -7.74 High No Yes No Yes Yes 

Ligand 6 -6.41 High Yes Yes Yes Yes Yes 

Ligand 7 -6.25 High Yes Yes Yes Yes No 

Ligand 8 -7.44 High No Yes No No Yes 

Ligand 9 -6.78 High Yes Yes Yes No Yes 

Ligand 10 -5.95 High Yes Yes Yes Yes Yes 

Ligand 11 -6.12 High Yes Yes Yes Yes No 

Ligand 12 -6.82 High Yes Yes Yes No Yes 

gastrointestinal (GI) absorption, log of skin permeability (logKp), blood-brainbarrier (BBB) penetration, Molar refractivity (MR), 

permeabilityglycoprotein(Pgp)substrate , cytochrome P450 (CYP450) enzymes:CYP1A2,CYP2C9, and CYP2C19 inhibitors 
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