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Abstract-- In this paper we discussed the concept of 

geometry, differential geometry and Finsler Geometry.in 

modern times geometric have been extended they sometimes 

show a high level of abstraction and complexity. The geometry 

which deals with the help differential calculus is called 

differential geometry. In the present era the models of Finsler 

geometry have much importance in applications. we have 

discussed here some special Finsler spaces which have much 

importance applications.  Therefore, we give some special 

Finsler spaces which are based on their metrics, torsion 

tensors and curvature tensors. 
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I. A BRIEF HISTORICAL DEVELOPMENT OF FINSLER 

GEOMETRY 

Finsler geometry is a kind of differential geometry, 

which was originated by P. Finsler [9] in 1918.  Main focus 

of Finsler in his dissertation was to geometrize calculus of 

variations, the idea given by his teacher Caratheodory. The 

terms of Finsler geometry were present in the epoch-

making lecture of B. Riemann which he delivered in June 

1854, at Gottingen University.  In the lecture Riemann had 

discussed various possibilities by means of which an n-

dimensional space may be equipped with the metric before 

coming to the square root metric.   

He had thought over cubic and quartic metrics also, but 

he gave up them due to the difficulty of assigning 

geometrical meaning to various differential invariants; 

furthermore, the computation was very complicated.  

Consequently, he concluded that the theory of such 

generalized metrics (cubic and quartic) would hardly 

contribute to the progress of geometry.  We quote the 

following from the famous lecture of Riemann delivered in 

1854: 

"Investigations of this more general class would actually 

require no essential different principles but it would be 

rather time consuming and throw relatively no light on the 

study of space, especially since results cannot be expressed 

geometrically." 

Finsler geometry is usually considered as a 

generalization of the Riemannian geometry in which the 

space consists of tangent bundles instead of collection of 

points.  Finsler spaces differ from Riemannian spaces with 

the fact that in the former the metric depends on direction 

also.  Riemann's main attention was on a metric where the 

distance ds between two neighboring points represented by 

the co-ordinates xi and xi + dxi defined by 

 

),n,........,3,2,1j,i(dxdx)x(gds ji
ij   

where the coefficients ijg  are functions of coordinates 

ix  and .0)g(det ij   This quadratic differential 

form is called a Riemannian metric and space with such 

metric is called a Riemannian space. 

There are two approaches of Finsler Space out of which 

one is considered as Riemannian metric generalization. 

Finsler Space is a space where metric function is given by 

).dxy(),y,x(L)dx.....,dx,dx,dx,x,x.....,x,x,x(Lds n3211n321   

We are concerned with the generalized metric 

)y,x(Lds   which gives the distance between two 

points xi and xi + dxi .  Riemann had also discussed that the 

positive fourth root of a fourth order differential form 

)dxdxdxdxgds( nmji
ijmn

4   might serve as 

a metric.   

These functions have three properties in common: 

i. they are positive definite; 

ii. they are homogeneous of first degree in the 

differentials; 

iii. they are convex in the differentials. 
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It would seem natural, therefore, to introduce a further 

generalization to the effect that the distance between two 

neighboring points 
ix  and ii dxx   be defined by 

some function )dxx(L ii  i.e. )dx,x(LdS ii , 

where L satisfies above three properties.  Riemann asserted 

that the differential geometry based on such generalized 

metric would develop in a way similar to the case of 

Riemannian geometry. 

Due to Riemann's comments, mathematicians did not try 

to study such generalized spaces for more than 60 years.  In 

1918, a 24 years old German named Paul Finsler [9] tried 

to study such spaces and submitted his thesis to Gottingen 

University.  His approach of studying this geometry was 

based on calculus of variations.  He put the idea of calculus 

of variations with special reference to new geometrical 

background, which was given by his teacher Caratheodory. 

The history of development of Finsler geometry can be 

divided into the following four periods: 

First period : 1924 - 1933, 

Second period : 1934 - 1950, 

Third period : 1951 - 1963, 

Fourth period : 1963 - till date. 

The study of Finsler spaces in India was started around 

1960 under the leadership of Prof. R.S. Mishra, Prof. R.N. 

Sen and Prof. K.S. Amur.  Some important Indian 

mathematicians in this fields are Prof. U.P. Singh, Prof. 

H.D. Pande, Prof. R.B. Mishra, Prof. M.D. Upadhyay, Prof. 

R.S. Sinha, Prof. B.B. Sinha, Prof. Ram Hit, Dr. B.N. 

Prasad, Asstt. Professor P.C. Yadav, Prof. H.S. Shukla, 

Prof. T.N. Pandey, Prof. P.N. Pandey, Prof. S.C. Rastogi, 

Prof. C.S. Bagewadi, S.K. Narasimhamurthi, Dr. A.K. 

Dwivedi and some foreign Finslerians are Prof. Z. Shen, 

H.S. Park, I.Y. Lee, Alkou Tadashi, P.L. Antonelli, R. 

Miron, H. Akabar Zadeh etc. 

Now, I will discuss some preliminary concepts of Finsler 

geometry which have been used in the present thesis. 

II. HOMOGENEOUS FUNCTION, CURVE, LINE-ELEMENT & 

TANGENT BUNDLE 

A.  Homogeneous function is a function with multiplicative 

scaling behaviour.  If the argument is multiplied by a 

factor, then the result is multiplied by some power of 

this factor.  More precisely, if WTM:f   is a 

function between two vector spaces over a field F, and k 

is an integer then f is said to be homogeneous of degree 

k in y if )y,x(fc)cy,x(f k  for all 

nonzero Fc   and Vy  . 

Let R be a region of n-dimensional differentiable 

manifold 
nM  which is covered completely by a co-

ordinate system, such that any point P of R is represented 

by a set of n real independent variables 

),n.........,3,2,1i(x i   called the co-ordinates 

of the point.  A transformation of co-ordinates is 

represented by a set of n-equations 

(2.1) )n.........,2,1i(),x...,...,x,x(xx n21ii   

which shows that the co-ordinates 
ix  of a point P of M n are represented in the new co-ordinate system by new variables 

ix

.  We assume that the functions of (2.1) are at least 

ix

 of class C2 and 

(2.2)  .0
xi

ix
det 












 

A set of points of R whose co-ordinates may be expressed as functions of a single parameter 't' is regarded as a curve of Mn.  

Thus the equations 

(2.3) )t(xx ii   

define a curve C of 
nM .  If the functions (2.3) are of class C1, we shall regard the entity whose components are given by 

(2.4)   
dt

dx
y

i
i   
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as the tangent vector to C.  We called the combination )y,x( ii
 a line-element of C. 

B.  Tangent bundle : The tangent bundle [3] of a differentiable manifold 
nM  is the union of the tangent spaces of 

nM , that 

is 
Mx

xMTTM


 , where MTx  denotes the tangent space to 
nM  at the point x.  So, an element of TM can be thought 

of as a pair (x, y), where x is a point in 
nM  and y is a tangent vector to 

nM  at x.  The set of coordinates 











ix

 defines a 

basis of the tangent space. 

The infinitesimal distance between two points )x(P i
 and )dx,x(Q ii

 of curve (2.3) lying on Manifold 
nM  is 

defined by 
ji

ij
ii dxdx)y,x(g)dx,x(Lds  .  The arc PQ becomes tangent at x on Manifold 

nM . 

III. FINSLER SPACE 

Let Mn be n-dimensional manifold, TM tangent bundle of Mn, 











ix

 the basis of tangent spaces at (x), and 

dt

dx
)y(y

i
i  . A function ),0[TM:L   of the line-elements )yx( ii

 defined on 
nM  is called 

fundamental function if it satisfies the following three conditions: 

(a) The function )y,x(L ii
 is positively homogeneous of degree one in yi i.e. 

3.1  0k),y,x(kL)ky,x(L iiii   

That is, the arc length of curve is independent of the choice of parameter t. 

(b) The function )y,x(L ii
 is positive if not all yi vanish simultaneously, i.e. 

3.2  0)y,x(L ii   with  
i

2i 0)y(  

That is, the distance between two distinct points is positive. 

(c) The quadratic form 

(3.3)  
ji

ji

ii
jiii

ji

yx

yxL
yxL 






 ),(
),(

22
2

 

is assumed to be positive definite for any variable 
i . 
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That is, )y,x(L ii
 is a convex function in 

iy . 

The manifold Mn equipped with the fundamental function L is called a Finsler space [3].  It is denoted by Fn or (
nM , L). 

Some examples of Finsler spaces are Normed vector spaces, Euclidean spaces, Riemannian spaces, Randers spaces, .... 

From Euler's theorem on homogeneous functions, we have 

(3.4)   )y,x(Ly)y,x(L i
i 



 

and 

(3.5)   0y)y,x(L i
ji 



 

We put 

(3.6)   )y,x(L
2

1
)y,x(g 2

jiij



  

Using the theory of quadratic forms and the condition (c), we deduce from (3.4) that 

(3.7)   0|)y,x(g|)y,x(g ij   

for all line-elements )y,x( ii
. 

If the function L is of particular form 

(3.8)   
jik

ij
ii dxdx)x(g)dx,x(L  , 

where the coefficients )x(g k
ij  are independent of 

idx , the metric defined by this function is called Riemannian metric 

and the manifold 
nM  is called a Riemannian space.  Throughout the present thesis, the n-dimensional Finsler space will be 

denoted by 
nF  or (

nM , L), whereas n-dimensional Riemannian space will be denoted by Rn. 

IV. PHYSICAL MOTIVATION 

In a perfectly homogenous and isotropic medium, geometry is Euclidean, and shortest paths are straight lines. In an 

inhomogeneous space, geometry is Riemannian and the shortest paths are geodesics.  If a medium is not only inhomogeneous, 

but also unisotropic one, has innate directional structure, the appropriate geometry is Finslerian[13], [14] and the shortest paths 

are correspondingly Finsler-geodesics.  As a consequence the fundamental metric tensor depends on both position and direction.  

This is also a natural model for high angular resolution diffusion images. 

Finsler geometry has its genesis in integral of the form 
b

a
dt)y,x(L , where 

dt

dx
yy,xx

i
ii  .  Let us find 

out some contexts in which this integral arises. 
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(a) Suppose x stands for position, y for velocity.  Then L(x, y) would have the meaning of speed and t would play the role of 

time; in this case the integral 
b

a
dt)y,x(L  measures distance travelled. 

(b) In an unisotropic medium (rays and wave fronts are not orthogonal to each other) the speed of light depends on its direction 

of travel.  At each location x, visualize y as an arrow that emanates from x.  We denote the time that light takes to travel 

from x to the top of y and call the result L(x,y).  The integral 
b

a
dt)dx,x(L  represents total time that light takes to 

traverse in given path in this medium. 

(c) It is well-known that the time taken by man in climbing up and going down on same length of the slope of a mountain are 

distinct.  It means time measures function  L(x (t), y (t)) also depends on direction.  This fundamental function L together 

with slope of mountain TM (Tangent bundle) is Finsler space. 

(d) Cost of transportation function not only depends on distance but also on direction, except some other physical perturbation 

such as friction, air resistance etc.  This function can be regarded as fundamental function of Finsler space. 

(e) (Mathematical ecology) Suppose x stands for the state of coral reef, and y displacement vector from the state x to new state 

x + dx, then L(x, dx) represents the energy one needs in order to develop from the state x to the neighbouring state x + dx.  

Hence the integral 
b

a
dt)dx,x(L  represents the total energy cost of a given path of evolution. 

From above contexts we see that the world is Finslerian and Finsler geometry has wide applications in theory of relativity, 

control theory, thermodynamics, optics, ecology and mathematical biology. 

V. TANGENT SPACE, INDICATRIX AND COTANGENT SPACES 

We consider a change of local co-ordinates as represented by the equation (2.1).  Along the curve (2.3) referred to an 

invariant parameter t, the new components of the tangent vector 
dt

dx
y

i
i



  are obtained by differentiating the relation. 

(5.1)   ))t(x(xx iii 
  

with respect to t, which gives 

(5.2)   i

i

i
i y

x

x
y









 

or, in terms of differentials, 

(5.3)   .dx
x

x
dx i

i

i
i







  

Here dxi is interpreted as the components of a displacement in Mn from a point P(xi) to a point Q(xi + dxi).  If the point 

)x(P i
 is fixed, i.e. the coefficients 

i

i

x

x






 of the transformation (5.3) are fixed, this relation represents a linear 

transformation of the dxi onto the dxi.  The same is true for the variables 
iy  and 

iy

 in the transformation (5.2).  Therefore, 

the n entities of this kind may be taken to define the elements of an n-dimensional linear vector space. 
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A system of n quantities 
iX  whose transformation law under (2.1) is equivalent to that of the yi is called a contravariant 

vector attached to the point P(xi) of 
nM .  Such contravariant vectors constitute the elements of a vector space.  The totality of 

all contravariant vectors attached to P(xi) of 
nM  is the tangent space denoted by )x(Tor)P(T i

nn  

A.  Indicatrix : 

We consider the function )y,x(L ii
 defined for all line-elements )y,x( ii

 over the region R of Mn.  The equation, 

1)y,x(L ii  ,       (xi fixed, yi variable) 

Represents an (n - 1)-dimensional locus in Tn(P), i.e., a hypersurface.  This hypersurface plays the role of unit sphere in the 

geometry of the vector space Tn(P) and is called Indicatrix [28]. 

B.  Cotangent space : 

Let 
nM  be a smooth manifold and let x be a point in Mn.  Let TxM be the tangent space at x.  Then cotangent space at x is 

defined as the dual space of TxM denoted by MT
*
x  or 

*
x )MT( .  Concretely, elements of the cotangent space are linear 

functional on TxM.  That is, every element MTf
*
x  is a linear map 

RMT:f x  where 
R  is set of positive 

real numbers.  The elements of MT
*
x  are called cotangent vectors. 

VI. PULL-BACK TANGENT BUNDLE, NON-LINEAR CONNECTION, DECOMPOSITION OF T(TM-0) AND  T*(TM-0) : 

A. Pull-back tangent bundle ( * T M) :  Let Mn be an n-dimensional manifold.  Suppose TxM is the tangent space at Mx  , 

and 
Mx

xMTTM


  the tangent bundle of M.  Each element of T M has the form (x, y), where Mx   and 

MTy x .  Let }0{|0 MTTM  .  The natural projection MTM:   is given by x)y,x(  . 

The pull-back tangent bundle TM*  is a vector bundle over TM0 whose fiber 

TM*v at 0MT  is MTx , where x)(  . 

Then }MT,MTy)v,y,x{(TM* x0x    .  The natural basis for TM*  is }|),(|{ xivi
x


   

for all i = 1, 2, ... ...n. 

B.  Non-linear connection: A non-linear connection on a manifold Mn is a collection of locally defined 1 - homogeneous 

function 
i
jN  on (TM-0) satisfying transformation rules 

(6.1)   
j

ji

h
j

ij

h
h

ji

j

y
xx

x
N

x

x
N

x

x













 2

2

1
 and 
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(6.2)   
j

i
i
j

y

G
N




 . 

C.  Decomposition of T(TM - 0): The vector spaces span }n......,2,1i:
x

{ yi





 depend on local coordinates.  

Therefore, we cannot say about "
x

"
i


 direction in T(TM-0).  However, when Mn is equipped with a non-linear connection 

i
jN , let 

(6.3)  )0(|),(|| 








 TMT

y
yxN

xx k

k

iyiyi


, 

where yri

r

yi xx

x

dx 






 . Thus 2n-dimensional vector spaces )0TM(Tp  has n-dimensional subspaces, 

TMV p  = span }
y

{ yj


 and 

TMH p span }
x

{ yi


 and these are independent of local coordinates.  Let us define 

0TMp
pTMVVTM



  

and 
0TMp

pTMHHTM


 , then HTMVTM)0TM(T  . The vectors in VTM are called vertical 

vectors and vectors in HTM are called horizontal vectors.  The tangent of a geodesic is always a horizontal vector; geodesic 

spray G(x, y) is horizontal for all )0TM()y,x(  . 

D.  Decomposition of T* (TM-0): On TM the 1-forms dxi and dyi satisfying law of transformation 

(6.4)  
y

r

r

i

y
i x

x

x
dx 




  

(6.5)  
y

sr

sr

i2

y
r

r

i

y
i xdy

xx

x
y

x

x
dy









 . 

Let y
jk

iy
i

y
i dx)y,x(Ndyy  , where 

y
r

r

i

y
i y

x

x
y 




 .  The 2n-dimensional vector spaces, T* 

(TM-0) has two n-dimensional subspaces TM*Vp  span }y{ p
i  and TM*H p  span }y{ p

j  and these are 

independent of local coordinates.  Then pointwise TMHTMV)0TM(T ***   co-vectors in V*TM are called 

vertical co-vectors and co-vectors in H*TM are called horizontal co-vectors. 
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VII. METRIC TENSOR AND CARTON TORSION TENSOR 

From equation (3.6) we can easily see that the quantities gij defined by it form the components of a covariant tensor of rank 2; 

also gij(x, y) are positively homogeneous of degree zero in yi and symmetric in their indices.  Due to homogeneity condition - (a) 

of section 1.3 for the function L (x, y), we have 

(7.1)  
ji

ij
2 yy)y,x(g)y,x(L   

By condition - (c) of section 1.3 it follows that inverse of matrix gij exists.  Thus, if gij denotes the inverse of gij, then 

(7.2)  ,)y,x(g)y,x(g k
i

jk
ij   

where 
k
i  is well known Kronecker delta.  Therefore the tensor whose covariant and contravariant components are gij(x, y) 

and gij(x, y) respectively, is called the metric tensor or the first fundamental of the Finsler space Fn. 

Cartan torsion tensor : 

Let MTy,Mx x  and L be the fundamental function on Manifold Mn.  Define 

RMTMTMT:c xxxy   by 
kii

ijky wvucwvuc ),,( . The family }{ ijkcc   for all ,MTy x  is called 

Cartan torsion.  The tensor ),( yxCijk  defined by 

(7.3)  
2

kjiijkijk L
4

1
g

2

1
)y,x(C



  

is positively homogeneous of degree -1 in yi and is symmetric in all their indices.  This tensor is called Cartan's C-tensor and 

satisfies 

(7.4)  0y)y,x(Cy)y,x(Cy)y,x(C k
ijk

j
ijk

i
ijk   

(7.5)  0y)C(y)C(y)C( k
ijkh

j
ijkh

i
ijkh   

VIII. MAGNITUDE OF A VECTOR. THE NOTION OF ORTHOGONALITY 

The metric tensor gij(x, y) may be used in two different ways, in defining the magnitude of a vector and also the angle 

between two vectors. 

Let 
iX  be a vector, then the scalar X given by 

(8.1)  
ji

ij
2 XX)X,x(g(X   

is called the magnitude of this vector. 

If 
iY  is another vector, then the ratio, 
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(8.2)  
),(),(

),(
),(cos

iiii

jiii

ij

yxLxxL

yxxxg
YX   

is called the 'Minkowskian cosine' corresponding to the (ordered) pair of directions 
iX ,  

iY  (Rund[27]).  It is obvious from 

(8.2) that Minkowskian cosine is non-symmetric in 
iX  and 

iY . 

Let 
iX  be a vector and 

iY  an arbitrary fixed direction, then the scalar 

(8.3)  
ji

ij XX)y,x(g  

is called the square of magnitude of the vector 
iX  for the pre-assigned direction 

iY .  If 
iY  is another vector, then the 

ratio, 

(8.4)  
ji

ij
ji

ij

ji
ij

YX)y,x(gYX)y,x(g

YX)y,x(g
)Y,X(cos   

is called the cosine of 
ii Y,X  for the direction 

iy . 

It is to be noted that the concepts of magnitude of vector and the cosine between two vectors given by (8.3) and (8.4) 

respectively stand at each point of the space in a pre-assigned direction 
iy  which has been called the element of support.  Also 

the cosine given by (8.4) is symmetric in 
iX  and 

iY  (Berwald [4], Synge [31]). 

To distinguish between the two magnitudes we call the magnitude given by (8.1) as the Minkowskian magnitude of 
iX  and 

that given by (8.3) the magnitude of 
iX . 

The equations (8.2) and (8.4) are used to define the orthogonality in Fn.   

The vector is said to be orthogonal with respect to 
iX  if 

(8.5)  0YX)X,x(g ji
ij   

Thus according to this definition if 
iY  is orthogonal with respect to 

iX  then it is not necessary that 
iX  is also orthogonal 

with respect to 
iY . 

The vectors 
iX  and 

iY  are said to be orthogonal (for a pre-assigned 
iy ) if  

(8.6)  0YX)y,x(g ji
ij   

This definition of orthogonality is symmetric in 
iX  and 

iY . 
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IX. CONNECTIONS AND COVARIANT DIFFERENTIATIONS 

Any quantity in a Finsler space is function of line element (x, y).  If S(x, y) is a scalar field in a Finsler space then 
ix

s




 are 

not components of a covariant vector.  If we have a non-linear connection )y,x(N i
j , we can obtain the covariant vector 

field of the components. 












j

j
iiiii
y

N
xx

where,
x

s
S








 

Further, if we have quantities )y,x(F ijk  which obey the transformation rule similar to Christoffel symbols, the covariant 

derivatives 
i
kjK  of a Finsler tensor field of (1, 1)-type is defined by 

(9.1)  
r
jk

i
r

i
rk

r
jk

i
ji

kj FKKK
x

K
F 




 

On the other hand, the partial derivatives of components of a tensor field 
i
jK  with respect to 

ky  give a new tensor field, 

but we shall modify them as 

(9.2)  
r
jk

i
r

i
rk

r
jk

i
j

k
i
j CKCK

y

K
F 




 , 

where )y,x(C i
jk  are components of a tensor field of (1, 2)-type. The collection 

i
jk

i
j

i
jk C,N,F(  constitute a Finsler 

connection, and covariant derivatives given by (9.1) and (9.2) are called h- and v-covariant derivatives of 
i
jK  respectively. 

A.  Finsler connection: Suppose 
i
jN  is a non-linear connection on Mn and 

i
jk

i
jk C,F  are respectively 0 & -1 degree 

homogeneous functions in yi from (TM - 0) to )M(,R 
 the set of vector field on manifold Mn.  A Finsler connection is a 

mapping 

)X()X,Y(),M(T)M()0TM(Tp:)C,N,F( Y)p(
i
jk

i
j

i
jk    

satisfying the properties 

(1)   is linear over R in X and Y (but not necessarily in y). 

(2)  If )M(Cf   and )0MT(y x   then in local coordinates. 
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f(
x 




















, 

and xm

i
jkyjyi x

)y(Cf)
x

f(
x 











 . 

For all )M(X   and   does not depend on the local coordinates. 

For any Finsler connection )C,N,F( i
jk

i
j

i
jk  we have five torsion tensors and three curvature tensors : hh, hv and vv-

curvatures [Riemannian curvature (f), Berwaldian Curvature (B) and third curvature (Q)] which are given by 

(9.3)  (h)h-torsion : 
i
kj

i
jk

i
jk FFT   

(9.4)  (v)v-torsion : 
i
kj

i
jk

i
jk CCS   

(9.5)  (h)hv-torsion:
i
jkC  as the vertical connection 

i
jkC  

(9.6)  (v)h-torsion : 
j

i
k

k

i
ji

jk
x

N

x

N
R








  

(9.7)  (v)hv-torsion : 
i
kj

i
jk

i
jk FNP 



 

(9.8)  h-curvature : 

  
m
jk

i
hm

i
mk

m
hj

i
mk

m
hjj

i
hk

k

i
hji

hjk FCFFFF
x

F

x

F
R 








 

(9.9)  hv-curvature : 
m
jk

i
hm

i
jhk

i
hjk

i
hjk PCCFP 



 

(9.10)  v-curvature : 
i
mj

m
hk

i
mk

m
hj

i
hkj

i
hjk

i
hjk CCCCCCS 



 

The deflection tensor field 
i

jD  of a Finsler connection F  is given by 

(9.11)  
i
j

i
jk

ki
j NFyD  . 

When a Finsler metric is given, various Finsler connections are determined from the metric.  The well known examples are 

Cartan's connection, Rund's connection and Berwald's connection. 
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B.  Cartan's Connection:  We are concerned with a Finsler space )L,M(F nn   which is to be endowed with the Cartan's 

connection )C,,(C i
jk

i*
k0

i*
jk   constructed from the fundamental function )y,x(L . According to the theory of 

Finsler connections due to M. Matsumoto ([17], [18]), the C  is determined from the axiomatic stand- point as follows : 

There exists a unique Finsler connection )C,N,F(F i
jk

i
j

i
jk  which satisfies the following five conditions : 

(C1) 0g kij   

(C2) (h)h-torsion : 0T ijk   

(C3) Deflection tensor field 0D i
j   

(C4) 0g kij   

(C5) (v)v-torsion : 0S ijk   

This connection is called the Cartan's connection and is denoted by 

  )C,,(C i
jk

i*
k0

i*
jk  . 

The last two conditions C4 and C5 give 

(9.12)  
h

jkihi
jk

y

g
g

2

1
C




  

This shows that vertical connection of C  and Cartan's  C-tensor are identical 

The first three conditions C1, C2 and C3 give 

(9.13)  ]
x

g

x

g

x

g
[g

2

1
F

h

jk

j
kh

k

jhihi*
jk

i
jk












  

(9.14)  ,20

*

0

mi

km

i

k

i

k

i

j GCN    

where 

(9.15)  
i
00

i

2

1
G   

and 
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(9.16)  ]
x

g

x

g

x

g
[g

2

1
h

jk

j
kh

k

jhihi
jk














  

is the Christoffel symbol of (Mn, L).  Here '0' denotes contraction with 
iy . 

It is easy to verify from the axiomos C1, C3 and equation (9.1), that 

(9.17) a)  ,0yih   b)  ,0L
h
   c)  0l ih   

where 
il  is a unit vector in the direction of element of support 

iy , i.e. 

                                       
)y,x(L

y
l

i
i   

Since ijkC  is an indicatory tensor, therefore, from (9.2) we have 
i
hh

iy  .  Thus in view if (9.1) and condition C1, we 

have ,| iii lLL 


 where 
j

iji lgl  .  It may also be verified that 

(9.18) a)  ,hLl i
j

1
j

i   b)  ,hLl ij
1

ji
   c)  0l ji   

 d)  0h kij    e)  )hlhl(Lh kijjki
1

kij  
, 

where ijh  is the angular metric tensor defined by 

(9.19)  jiijij llgh   

and jk
iki

j hgh   

C.  Rund's Connection:  The Rund's connection of a Finsler space )L,M(F nn   is a Finsler connection which is obtained 

from Cartan's connection C  by the C-process [18].  The C-process is characterized by expelling the torsion tensor 
i
jkC .  

Thus the first two connection coefficients of the Rund's connection R  are the same as those of the Cartan's connection 

C , while the third is equal to zero.  Thus the Rund's connection R  of the Finsler space Fn is given by R  = 

)0,,( i*
k0

i*
jk  .  The torsion tensors of R  are such that 
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(9.20) 












.0S,CofthatassametheP

,0C,CofthatassametheR,0T

i
jk

i
jk

i
jk

i
jk

i
jk

 

The curvature tensors of R  are as follows : 

(9.21) 












r
jk

i
hr

i
jhk

i
hjk

i
hjk

r
jk

i
hr

i
hjk

i
hjk

PCCPF:Fcurvaturehv).b

RCRK:Kcurvatureh).a
 

while the v-curvature tensor 
i
hjkS  of R  vanishes identically.  We note that h-covariant differentiations with respect to 

C  and R  coincide with each other. Furthermore 
i
jkC  in (9.21) is the Cartan's C-tensor jhk

ihi
jk CgC  , which is 

not the vertical connection of R  as it vanishes for R . 

The h-curvature K and hv-curvature F of R  may be given in terms of connection coefficients as  

(9.22) 






















.).

).

*

****
**

i

hjj
i

hjk

i

mj

m

hk

i

mk

m

hjj

i

hk

k

i

hji

hjk

Fb

xx
Ka









 

D.  Berwald's Connection:  The Berwald's connection of a Finsler space )L,M(F nn   is a Finsler connection which is 

obtained from Rund's connection R  by the P1-process [18].  The P1 process is characterized by expelling the torsion tensor 

i
jkP .  The Berwald's connection of Finsler space Fn is denoted by )0,G,G(B i

j
i
jk , where 

(9.23)  a)  
i

kj
i

jk GG


  b)  
i

j
i*
j0

i
j GG



  

The Berwald's connection B  is uniquely determined from metric function L(x, y) of Fn by the following five axioms : 

(B1) 0L i   

(B2) (h) h-torsion:  0T ijk    

(B3) Deflection :  0D i
j   

(B4) (v) hv-torsion : 0P ijk   
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(B5) (h) hv-torsion : 0C i
jk   

Thus the torsion tensors of B  are such that  

(9.24) 












.0S,RofthatassametheP

0C,RofthatassametheR,0T

i
jk

i
jk

i
jk

i
jk

i
jk

 

The v-connection coefficients 
i
jkG  of B  are related to those of by 

(9.25)  
i
0jk

i*
jk

i
jk CG  . 

The curvature tensors of B  are as follows  

(9.26) 




















i
0jhk

i
hjk

i
hjk

i
0jh

i
0jr

r
0jh

i
0kr

i
j0hk

i
k0hj

i
hjk

i
hjk

CFG:Gcurvaturehv)b

CCCC

CCKH:Hcurvatureh)a

 

The v-curvature tensor 
i
hjkS  of B  vanishes identically. 

The simpler forms of 
i
hjkH  and 

i
hjkG  of B  may be given by 

(9.27)  
i
jkh

i
hjk

i
jkh

i
hjk GG,RH



  

It is to be noted that B  is neither h-metrical nor  v-metrical in general : 

  ,Cg,C2g ijkk.ij0ijk)k(ij   

where h- and v-covariant derivatives with respect to B  are denoted by ( ) and '.' respectively. 

X. GEODESICS AND PATHS IN A FINSLER SPACE 

The geodesics of a Finsler space are the curves of minimum or maximum arc-length between any two points of the space.  

The differential equations of a geodesic in a Finsler space is given by [18] 

(10.1)  ,0
ds

dx
,xG2

ds

xd i

2

i2









  
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where is the arc-length of the curve )s(xx ii   and 

(10.2)  
kji

jk
i yyG2   or 

(10.3)  )FFy(gG2 rjr
jiri 



. 

Here Lagrangian function L is defined on TM by  

)y,x(L
2

1
)y,x(F 2 , 

where RTM:F   is the Finsler function. 

Let Mn be a manifold with a Finsler connection )C,N,F(F i
jk

i
j

i
jk .  A curve C of the tangent bundle T(M) over Mn 

is called an h-path if C is the projection of an integral curve of an h-basic vectors field )v(Bh  corresponding to a fixed 

nVv   [18]. 

(10.4)  

 

 
















.0
dt

dx

dt

dx
)t(y),t(xF

dt

xd

0
dt

dx
)t(y),t(xN

dt

dy

kj
i
jk2

i2

j
i
j

i

 

Geodesic spray : 

Geodesic spray G   (TM - 0), the set of vector fields on (TM-0), is locally defined as 

(10.5)  yi

i
yi

i
y |

y
)y,x(G2|

x
y|G









  

Here G does not depend on local coordinates and Gi is defined by (10.3). 

XI. SPECIAL FINSLER SPACES 

In Riemannian geometry we have many interesting 

theorems such that if a Riemannian space is assumed to 

have special geometrical properties, or to satisfy special 

tensor equations, or to admit special tensor fields, then the 

space reduces to one of well-known space forms, for 

instance, Euclidean space, spheres, topological spheres, 

projective spaces and so on. 

 

On the other hand, in Finsler geometry we have special 

Finsler spaces, namely, Riemannian spaces and 

Minkowskian spaces, but there are various kinds of 

Riemannian spaces and Minkowskian spaces. As a 

consequence we have an important problem to classify all 

the Minkowskian spaces.  It is easy to write down concrete 

forms of fundamental function L(x, y) which are interesting 

as a function, for instance, a Randers metric, Kropina 

metric, generalized Kropina metric, Matsumoto metric and 

cubic metric. 
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It is essential for the progress of Finsler geometry to find 

Finsler spaces, which are quite similar to Riemannian 

spaces, but not Riemannian and Minkowskian spaces, 

which are analogous to flat spaces, but not flat.   

In the present section, we are mainly concerned with 

special tensor equations satisfied by torsion, curvature and 

other important tensors. In the following, we give some 

definitions of special Finsler spaces and their 

corresponding result. 

(A)  Riemannian space : 

A Finsler space  )y,x(L,MF nn   is said to be a Riemannian space if its fundamental function L(x, y) is written as 

.yy)x(g)y,x(L ji
ij

2   

Among Finsler spaces, the class of all the Riemannian spaces is characterized by 0Cijk   i.e. vertical connection 
v  of 

the Cartan's connection C  is flat. 

(B)  Locally Minkowskian space : 

A Finsler space )y,x(L,M(F nn   is called locally Minkowskian space if there exists a co-ordinate system )x( i
 

in which L is a function of 
iy  only [18]. 

A Finsler space is locally Minkowskian if and only if 

For C  : 0CR h
kij

h
ijk   

For R  : 0FK h
ijk

h
ijk   

For B  : 0GH h
ijk

h
ijk   

(C)  Berwald space : 

If the connection coefficient 
i
jkG  of the Berwald's connection B  given by 

i
kj

i
jk GG



  

are functions of position alone, the space is called a Berwald space [18]. 

A Finsler space is Berwald space if and only if 

For C  : 0Chkij   

For R  : 0Fhijk   
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For B  : 0Gh
ijk   

(D)  Landsberg space 

A Finsler space is called a Landsberg space [18] if the Berwald connection B  is h-metrical i.e. 0g )k(ij  . 

In terms of the Cartan's connection C , a Landsberg space is characterized by  

(a) 0P ijk  , or (b) 0Phijk   

(E)  C-reducible Finsler space: 

A Finsler space of dimension n, more than two, is called C-reducible if ijkC  is written in the form [18] : 

)Ch(
1n

1
C kij)ijk(ijk 


  

where 
jk

ijki gCC   is the torsion vector ijh , is the angular metric tensor given by jiijij llgh   and )ijk(  is the 

sum of cyclic permutation of i, j, k. 

(F)  Semi C-reducible Finsler space: 

A Finsler space of dimension n, more than two, is called semi C-reducible if ijkC  is written in the form [18] : 

,CCC
C

q
)Ch(

1n

p
C kji2kij)ijk(ijk 


   

where ji
ij2 CCgC   and p + q = 1. 

(G)  Quasi C-reducible Finsler space : 

A Finsler space of dimension n, more than two, is called quasi C-reducible if there exists a symmetric Finsler tensor field 

ijA , satisfying 0A 0i  , in trms of which is written in the form [18] : 

)CA(C kij)ijk(ijk  . 

(H)  P-reducible Finsler space : 

A Finsler space of dimension n, more than two, is called P-reducible if (v)hv-torsion tensor ijkP  of  C  is written in the 

form ([12], [22]): 

)Ch(
1n

1
P 0kij)ijk(ijk 


  
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(I)  C2-like Finsler space : 

A Finsler space if called C2-like Finsler space [23] if 

kji2ijk CCC
C

1
C   

(J)  C3-like Finsler space : 

A Finsler space is called C3-like Finsler space [25] if 

}bCCah{SC kjikij)ijk(ijk   

where ka  and kb  are components of arbitrary covariant vectors such that 0ba 00   and )ijk(S  denotes the cyclic 

sum of i, j, k. 

(K)  S3-like Finsler space : 

A Finsler space 
nF  with fundamental function L(x, y) is called S3-like Finsler space [18] if v-curvature tensor hijkS  of 

C  is written in the form  

},hhhh{SSL ijhkikhjhijk
2   

where S is a scalar and function of position alone. 

(L)  S4-like Finsler space : 

A Finsler space 
nF  is called S4-like Finsler space [25] if v-curvature tensor hijkS  of C  is written in the form  

,MhMhMhMhSL hkijijhkhjikikhjhijk
2   

where ijM  are components of a symmetric covariant tensor of second order and are (-2)p-homogeneous in 
iy  satisfying 

.0M j0   

(M)  R3-like Finsler space : 

A Finsler space of dimension more than three, is called R3-like Finsler space [20] if h-curvature tensor hijkR  of C  is 

written in the form 

hkijijhkhjikikhjhijk LgLgLgLgR   

where .gR
1n

1
randRR),g

2

r
R(

1n

1
L ik

ik
h
ikhikikikik





  
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(N)  Finsler space of scalar curvature : 

A Finsler space of scalar curvature K is characterized by [18] : 

,hKLR ij
2

j0i   

where ijkR  are components of (v)h-torson tensor of C  defined by (9.6). 

(O)  One-form : 

A one-form on a differentiable manifold is a smooth section of the cotangent bundle.  It is a smooth mapping of the total 

space of the tangent bundle of M to R whose restriction to each fiber is a linear functional on the tangent space.  Symbolically, 

RMT:,RTM: xTxMx    where x  is linear. 

In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates: 
i

ix dxb  

where the ib  are smooth functions (Fibers over x).  It is an order-1 covariant tensor field. 

Examples : 

1. The second element of a three-vector is given by the one-form [0, 1, 0[.  That is, the second element of [x, y, z] is [0,1,0] . 

[x,y,z] = y. 

2. The mean element of an n-vector is given by the one-form [1/n, 1/n, ..., 1/n].  That is, mean [1/n, 1/n, 1/n].v 

XII. INTRINSIC FIELDS OF ORTHONORMAL FRAMES  

Berwald theory of two-dimensional Finsler space is 

developed based on the intrinsic field of orthonormal frame 

which consists of the normalized supporting element 
il  

and unit vector orthonormal to 
il .  Following the idea, 

Moor introduced in a three-dimensional Finsler space, the 

intrinsic field of orthonormal frame which consists of the 

normalized supporting element 
il , the normalized torsion 

vector CC i |  and a unit vector orthogonal to them and 

developed a theory of three-dimensional Finsler spaces.  

Generalizing the Berwald's and Moor's ideas, Miron and 

Matsumoto ([18], [20], [24]) developed a theory of intrinsic 

orthonormal frame fields on n-dimensional Finsler space as 

follows. 

Let L(x, y) be the fundamental function of an n-

dimensional Finsler space and introduce Finsler tensor 

fields of (0, 2i-1) type, i = 1, 2, ....,n by 

 

2
iiii......ii L...

2

1
L

12211221 


 
 . 

Then we get a sequence of covariant vectors 

.g......ggLL 223221

223221

j.jjj
j.j....jiji)




 

  

Definition 1 : If (n-1) covariant vectors ,L i)  i = 1, 2, ....,n-1 are linearly independent, the Finsler space is called strongly non-

Riemannian. 
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Assume that above n-covectors i)L  are linearly independent and put 
ii

)1
i
)1 lL/Le  .  Here and in the following we 

use raising and lowering of indices as j)1
iji

)1 LgL  . 

Further put j)1i)1ijij)1 eegN   and matrix ij)1)1 NN   is of rank (n-1).  Second vector )2e  is introduced by  

,L/Le 2
i
)2

i
)2   

where L2 is the length of 
i
)2L  relative to 

iy . 

Next we put 
i
)3

i
j)2

i
)3j)2i)2ij)1ij)2 LNE,eeNN   and so third vector )3e  is defined by 

,E/Ee 3
i
)3

i
)3   

where E2 is the length of 
i
)2E  relative to 

iy .  The repetition of above process gives a vector ,e )1r   r=1, 2, ......, n-1 

defined by  

,E/Ee 1r
i

)1r
i

)1r    

where 1r
j

)1r
i
j)r

i
)1r E,LNE    is the length of 

i
)1rE   relative to 

iy  and .eeNN j)2i)rij)1rij)r    

Definition 2 : The orthonormal frame {ei}, i = 1, 2, ....., n as above defined in every co-ordinate neighborhood of a strongly non-

Riemannian Finsler space is called the 'Miron Frame'. 

Consider the Miron frame {e}.  If a tensor 
i
jT  of (1, 1)-type, for instance, is given then  

,eeTT j)
i
)

i
j   

where the scalars T  are defined as  

.eeTT j
)ai)a

i
j  

These scalars T  are called the scalar components 
i
jT  of with respect to Miron frame. 

Let  )H  be scalar components of the h-covariant derivatives 
i
j)e and L/V )  be scalar components of the v-

covariant derivatives 
i
j)e  with respect to C  of the vector 

i
)ae belonging to the Miron frame.  Then  
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,eeVe,eeHe j)
i
))

i
j)j)

i
))

i
j)    

where the scalars  )H  and  )V  satisfy the following relations [18] : 

 )))1 HH,0H   

  ))
11

) VV,V   

Definition 3 : The scalars  )H  and  )V  are called connections scalars. 

If L/C  be the scalar components of the (h)hv-torsion tensor 
i
jkC  i.e., 

,eeeCLC k)j)
i
)

i
jk   

then we have [13] : 

Proposition 12.1 : 0C.........C,LCC,0C 321    for 3n  , where C is the length of 
iC . 

Now, we consider scalar components of covariant derivatives of a tensor field, for instance, 
i
jT . Let ;T  and LT /;  be 

the scalar components of h-and v-covariant derivatives with respect to C  respectively of a tensor 
i
jT  i.e., 

(12.1) k)j)
i
),

i
kj eeeTT   and 

(12.2) k)j)
i
),k

i
j eeeTLT  , then we have [34]. 

(12.3)   ))
k
)k, HTHTe)T(T   and 

(12.4)  ))
k
)k; VTVTe)T(LT   . 

The scalar components  ,T  and  ;T  are called h-and v-scalar derivative of T  respectively. 

Two dimensional Finsler space : 

The Miron frame }e,e{ )2)1  is called the Berwald frame.  The first vector 
i
)1e  is the normalized supporting element 

L/yl ii   and the second vector 
ii

)2 me   is the unit vector orthogonal to 
il .  If 

iC  has non-zero length C, the 

C/Cm ii  . The connection scalars  )H  and  )V  of a two-dimensional Finsler space are such that [18] 
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 12
2)1)) H,0V,0H   , which implies 

(12.5) 
j

i
j

i
j

i
j

ii
j

i
j mlLm,mmLl,0m,0l  . 

There is only one surviving scalar components of 
ijkLC  namely 222C .  If we put 

222CI  .  Then 

kjiijk mmImLC  . 

The scalar I is called the main scalar of a two-dimensional Finsler space. 
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