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Abstract-- In this paper we discussed the concept of
geometry, differential geometry and Finsler Geometry.in
modern times geometric have been extended they sometimes
show a high level of abstraction and complexity. The geometry
which deals with the help differential calculus is called
differential geometry. In the present era the models of Finsler
geometry have much importance in applications. we have
discussed here some special Finsler spaces which have much
importance applications. Therefore, we give some special
Finsler spaces which are based on their metrics, torsion
tensors and curvature tensors.
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I. A BRIEF HISTORICAL DEVELOPMENT OF FINSLER
GEOMETRY

Finsler geometry is a kind of differential geometry,
which was originated by P. Finsler [9] in 1918. Main focus
of Finsler in his dissertation was to geometrize calculus of
variations, the idea given by his teacher Caratheodory. The
terms of Finsler geometry were present in the epoch-
making lecture of B. Riemann which he delivered in June
1854, at Gottingen University. In the lecture Riemann had
discussed various possibilities by means of which an n-
dimensional space may be equipped with the metric before
coming to the square root metric.

ds = \/g; (x)dx'dx’

where the coefficients gg are functions of coordinates

x' and det (g;) # O. This quadratic differential

form is called a Riemannian metric and space with such
metric is called a Riemannian space.

We are concerned with the generalized metric
ds=L(x,y) which gives the distance between two

points X' and x' + dx'. Riemann had also discussed that the
positive fourth root of a fourth order differential form

(ds™ = Gy, dx' dx’ dx™ dx™) Might serve as
a metric.
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He had thought over cubic and quartic metrics also, but
he gave up them due to the difficulty of assigning
geometrical meaning to various differential invariants;
furthermore, the computation was very complicated.
Consequently, he concluded that the theory of such
generalized metrics (cubic and quartic) would hardly
contribute to the progress of geometry. We quote the
following from the famous lecture of Riemann delivered in
1854:

"Investigations of this more general class would actually
require no essential different principles but it would be
rather time consuming and throw relatively no light on the
study of space, especially since results cannot be expressed
geometrically.”

Finsler geometry is usually considered as a
generalization of the Riemannian geometry in which the
space consists of tangent bundles instead of collection of
points. Finsler spaces differ from Riemannian spaces with
the fact that in the former the metric depends on direction
also. Riemann's main attention was on a metric where the
distance ds between two neighboring points represented by
the co-ordinates x' and x' + dx' defined by

There are two approaches of Finsler Space out of which
one is considered as Riemannian metric generalization.
Finsler Space is a space where metric function is given by

dxn):L(x: y)’ (y = dx)

These functions have three properties in common:
i. they are positive definite;
ii. they are homogeneous of first degree
differentials;
iii. they are convex in the differentials.

in the
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It would seem natural, therefore, to introduce a further
generalization to the effect that the distance between two
neighboring points x* and x* + dx* be defined by
some function L(x‘dx’) ie. dS = L(x',dx").
where L satisfies above three properties. Riemann asserted
that the differential geometry based on such generalized
metric would develop in a way similar to the case of
Riemannian geometry.

Due to Riemann's comments, mathematicians did not try
to study such generalized spaces for more than 60 years. In
1918, a 24 years old German named Paul Finsler [9] tried
to study such spaces and submitted his thesis to Gottingen
University. His approach of studying this geometry was
based on calculus of variations. He put the idea of calculus
of variations with special reference to new geometrical
background, which was given by his teacher Caratheodory.
The history of development of Finsler geometry can be
divided into the following four periods:

First period : 1924 - 1933,
Second period : 1934 - 1950,
Third period : 1951 - 1963,
Fourth period : 1963 - till date.

The study of Finsler spaces in India was started around
1960 under the leadership of Prof. R.S. Mishra, Prof. R.N.
Sen and Prof. K.S. Amur. Some important Indian
mathematicians in this fields are Prof. U.P. Singh, Prof.
H.D. Pande, Prof. R.B. Mishra, Prof. M.D. Upadhyay, Prof.
R.S. Sinha, Prof. B.B. Sinha, Prof. Ram Hit, Dr. B.N.

i

o1 L2 .
(2.1) x'=x"(x,x%,...... ,x), (i

Prasad, Asstt. Professor P.C. Yadav, Prof. H.S. Shukla,
Prof. T.N. Pandey, Prof. P.N. Pandey, Prof. S.C. Rastogi,
Prof. C.S. Bagewadi, S.K. Narasimhamurthi, Dr. A.K.
Dwivedi and some foreign Finslerians are Prof. Z. Shen,
H.S. Park, 1.Y. Lee, Alkou Tadashi, P.L. Antonelli, R.
Miron, H. Akabar Zadeh etc.

Now, | will discuss some preliminary concepts of Finsler
geometry which have been used in the present thesis.

Il. HOMOGENEOUS FUNCTION, CURVE, LINE-ELEMENT &
TANGENT BUNDLE

A. Homogeneous function is a function with multiplicative
scaling behaviour. If the argument is multiplied by a
factor, then the result is multiplied by some power of

this factor. More precisely, if f - TM — W isa

function between two vector spaces over a field F, and k
is an integer then f is said to be homogeneous of degree

kinyif f(x,cy)=c f(x,y) for al
nonzero ¢ EF and y €V .

Let R be a region of n-dimensional differentiable

manifold M ™ which is covered completely by a co-
ordinate system, such that any point P of R is represented
by a set of n real independent variables
x (i=1,2,3,......... n ), called the co-ordinates

of the point. A transformation of co-ordinates is
represented by a set of n-equations

which shows that the co-ordinates X' of a point P of M " are represented in the new co-ordinate system by new variables

x" . We assume that the functions of (2.1) are at least x" of class C? and

(2.2) det(ail.j = 0.
oxt

A set of points of R whose co-ordinates may be expressed as functions of a single parameter 't' is regarded as a curve of M".

Thus the equations

2.3) xt=x'(t)

define a curve C of M ™. If the functions (2.3) are of class C*, we shall regard the entity whose components are given by

i

i dx
(2.4) Yy :E
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as the tangent vector to C. We called the combination (x‘ s yl) a line-element of C.

B. Tangent bundle : The tangent bundle [3] of a differentiable manifold M™ is the union of the tangent spaces of Mn, that

is TM = UTXM , Where TxM denotes the tangent space to M™" atthe point x. So, an element of TM can be thought
xeM

0

of as a pair (X, y), where x is a point in M" and y is a tangent vector to M™ atx. The set of coordinates (F defines a
X

basis of the tangent space.

The infinitesimal distance between two points P(x‘) and Q{xl,dx‘) of curve (2.3) lying on Manifold M" is

defined by ds = L(xi, dxi) = \/gg (x, y)dxidxj . The arc PQ becomes tangent at x on Manifold M".

I11.  FINSLER SPACE

Let M" be n-dimensional manifold, TM tangent bundle of M", (Fj the basis of tangent spaces at (x), and
X

y=(y')= % A function L :TM —[0,0) of the line-elements (X'y") defined on M™ is called

fundamental function if it satisfies the following three conditions:
(@) The function L (xi s yi) is positively homogeneous of degree one in y' i.e.
31 L(x',ky')=kL(x',y"), k>0

That is, the arc length of curve is independent of the choice of parameter t.
(b) The function L (xi, yi) is positive if not all y' vanish simultaneously, i.e.
3.2 L(x',y")>0with D (y')?#0

That is, the distance between two distinct points is positive.

(c) The quadratic form
62 LZ (XI ' yl)
ox' oy

is assumed to be positive definite for any variable fl .

(33) 810 (X, y)EE = gl

631
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Thatis, L (x',y") isa convex functionin y".

The manifold M" equipped with the fundamental function L is called a Finsler space [3]. It is denoted by F" or (Mn , L).
Some examples of Finsler spaces are Normed vector spaces, Euclidean spaces, Riemannian spaces, Randers spaces, ....

From Euler's theorem on homogeneous functions, we have

(34) i L(x,y)y' =L(x,y)
and
(3.5) 0i0; L(x,y)y =0
We put
1 ° °
(36) gj (x,y) = 5010 L’ (x,y)

Using the theory of quadratic forms and the condition (c), we deduce from (3.4) that
(3.7) g(x)y)zlgy (x)y)|>0

for all line-elements (xl,y‘).

If the function L is of particular form

(3.9) L(x',dx')=,/g;(x" )Jdx'dx’

where the coefficients g; (xk) are independent of dx', the metric defined by this function is called Riemannian metric

and the manifold M ™ is called a Riemannian space. Throughout the present thesis, the n-dimensional Finsler space will be

denoted by F" or (Mn , L), whereas n-dimensional Riemannian space will be denoted by R".

IV. PHYSICAL MOTIVATION

In a perfectly homogenous and isotropic medium, geometry is Euclidean, and shortest paths are straight lines. In an
inhomogeneous space, geometry is Riemannian and the shortest paths are geodesics. If a medium is not only inhomogeneous,
but also unisotropic one, has innate directional structure, the appropriate geometry is Finslerian[13], [14] and the shortest paths
are correspondingly Finsler-geodesics. As a consequence the fundamental metric tensor depends on both position and direction.
This is also a natural model for high angular resolution diffusion images.

b . . t
Finsler geometry has its genesis in integral of the form J.a L(x,y)dt, where x= x', y :yl ZE. Let us find

out some contexts in which this integral arises.
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Suppose x stands for position, y for velocity. Then L(x, y) would have the meaning of speed and t would play the role of

b
time; in this case the integral J. L(x,y) dt measures distance travelled.
a

In an unisotropic medium (rays and wave fronts are not orthogonal to each other) the speed of light depends on its direction
of travel. At each location x, visualize y as an arrow that emanates from x. We denote the time that light takes to travel

b
from x to the top of y and call the result L(X,y). The integral J L (x, dx) dt represents total time that light takes to
a

traverse in given path in this medium.

It is well-known that the time taken by man in climbing up and going down on same length of the slope of a mountain are
distinct. It means time measures function L(x (t), y (t)) also depends on direction. This fundamental function L together
with slope of mountain TM (Tangent bundle) is Finsler space.

Cost of transportation function not only depends on distance but also on direction, except some other physical perturbation
such as friction, air resistance etc. This function can be regarded as fundamental function of Finsler space.

(Mathematical ecology) Suppose x stands for the state of coral reef, and y displacement vector from the state x to new state
X + dx, then L(x, dx) represents the energy one needs in order to develop from the state x to the neighbouring state x + dx.

b
Hence the integral J L (x, dx) dt represents the total energy cost of a given path of evolution.
a

From above contexts we see that the world is Finslerian and Finsler geometry has wide applications in theory of relativity,
control theory, thermodynamics, optics, ecology and mathematical biology.

V. TANGENT SPACE, INDICATRIX AND COTANGENT SPACES

We consider a change of local co-ordinates as represented by the equation (2.1). Along the curve (2.3) referred to an

i
invariant parameter t, the new components of the tangent vector yi' = dx are obtained by differentiating the relation.
dt
(5.1) x" =x'(x'(t))
with respect to t, which gives
., axi’ .
i i
(5.2) Yy = o y
or, in terms of differentials,
ir
(53) dx’ = 9% gy,
ox"

Here dx' is interpreted as the components of a displacement in M" from a point P(x") to a point Q(x' + dx"). If the point

P(x;) is fixed, ie. the coefficients

ox*

_of the transformation (5.3) are fixed, this relation represents a linear
ox"

’

transformation of the dx' onto the dx'. The same is true for the variables yl and yl in the transformation (5.2). Therefore,
the n entities of this kind may be taken to define the elements of an n-dimensional linear vector space.
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A system of n quantities X ' whose transformation law under (2.1) is equivalent to that of the y' is called a contravariant
vector attached to the point P(x') of M™ . Such contravariant vectors constitute the elements of a vector space. The totality of

all contravariant vectors attached to P(x") of M™" isthe tangent space denoted by Tn ( P ) or Tn ( x! )
A. Indicatrix :

We consider the function L(xl, yl) defined for all line-elements (xl, yl) over the region R of M". The equation,

L(x',y")=1  (<fixed,y variable)

Represents an (n - 1)-dimensional locus in T,(P), i.e., a hypersurface. This hypersurface plays the role of unit sphere in the
geometry of the vector space T,(P) and is called Indicatrix [28].

B. Cotangent space :
Let M™ be a smooth manifold and let x be a point in M". Let T,M be the tangent space at x. Then cotangent space at X is

* *
defined as the dual space of T,M denoted by Tx M or ( TxM ) . Concretely, elements of the cotangent space are linear
functional on T,M. That is, every element f € T, M isalinear map f : T,.M —> R" where R" is set of positive

*
real numbers. The elements of Tx M are called cotangent vectors.

VI. PuLL-BACK TANGENT BUNDLE, NON-LINEAR CONNECTION, DECOMPOSITION OF T(TM-0) AND T*(TM-0):

A. Pull-back tangent bundle (11 * 7 M) . Let M" be an n-dimensional manifold. Suppose TM is the tangent space at X € M,

and TM = UTXM the tangent bundle of M. Each element of T M has the form (x, y), where X € M and
xeM

yeT .M. Let TMy=T M{0}. The natural projection 7z . TM — M isgivenby 7(X,y)=X.

The pull-back tangent bundle 77 * TM s a vector bundle over TM, whose fiber
T, *TMatveT MO is TxM,Where 7Z(V)=x.

. . 0
Then 7 * TM ={(x, y,v)\y eT.M,,veT, M} . Thenatral basis for 7, * TIM is {0 |V=(v,&) |}
foralli=1,2,....n
B. Non-linear connection: A non-linear connection on a manifold M" is a collection of locally defined 1 - homogeneous

function IV ; on (TM-0) satisfying transformation rules

ox o X' o 19K

(6.1) i VT TN T S Agiayd
OoX OoX 2 OX'OX

yj and
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. oG
(6.2) N} = ——.
oy’
. 0 : _
C. Decomposition of T(TM - 0): The vector spaces span {6 ly = 1, 2, ...... n} depend on local coordinates.
Therefore, we cannot say about " F " direction in T(TM-0). However, when M" is equipped with a non-linear connection
X
i
N o let
5. 0 ) 5
(6.3) gyng— N; (X, Y)$|€T(TM -0).
o ox O
where | == . Thus 2n-dimensional vector spaces 1, (TMM — O)has n-dimensional subspaces,
Y axt oY P

0
V M =span {@‘y} and

H pTM =span { il y } and these are independent of local coordinates. Let us define V7T = U VpTM
ox peTM -0
and HITM = U H ,TM . then T(TM —0)=VTM @ HTM . The vectors in VTM are called vertical
peTM -0
vectors and vectors in HTM are called horizontal vectors. The tangent of a geodesic is always a horizontal vector; geodesic
spray G(x, y) is horizontal for all (x,y)e(TM —0).

D. Decomposition of T* (TM-0): On TM the 1-forms dx' and dy' satisfying law of transformation

; ox'
(6.4) dx'|, = ox"
y axr y
65) dyll, = 25 og7|,+- 2% _grax|,.
v ox” Y ox"ox® Y
Let 5yi :dyi +N~k(x y)dxj‘ where Syt| = ox' Sy" The 2n-dimensional vector spaces, T"
y y T Y Y=g Y lu- ’

(TM-0) has two n-dimensional subspaces Vp *TM span {5yi‘p} and Hp *TM span {5yj‘p} and these are

independent of local coordinates. Then pointwise T* (TM — O):V*TM @ H TM co-vectors in V'TM are called

vertical co-vectors and co-vectors in H"TM are called horizontal co-vectors.
635
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VII. METRIC TENSOR AND CARTON TORSION TENSOR

From equation (3.6) we can easily see that the quantities g;; defined by it form the components of a covariant tensor of rank 2;
also gj(x, y) are positively homogeneous of degree zero in y' and symmetric in their indices. Due to homogeneity condition - (a)
of section 1.3 for the function L (X, y), we have

(71) (x,y)=g; (%y)y'y’

By condition - (c) of section 1.3 it follows that inverse of matrix g;; exists. Thus, if g” denotes the inverse of gij, then
ke k
(7.2) 95 (%,y) 9" (x,y)=5;,

where 5l-k is well known Kronecker delta. Therefore the tensor whose covariant and contravariant components are gj(x, y)
and g(x, y) respectively, is called the metric tensor or the first fundamental of the Finsler space F".

Cartan torsion tensor :
Let x € M, y € T, M and L be the fundamental function on Manifold M". Define

Cy TMx T MxT,M —R by c,(u,v,w)=cyu'v'w*. The family ¢={c;} for all yeTM, is called
Cartan torsion. The tensor C;; (X, y) defined by

1 ° 1 e o o 2
is positively homogeneous of degree -1 in y' and is symmetric in all their indices. This tensor is called Cartan's C-tensor and
satisfies

(7.4) Cyk (x:y)yizcyk (x,y)yj:Cyk (x;y)ykZO
(7.5) (ahcyk )yi :(ahcyk )yj:(ahcyk )yk =0
VIIl. MAGNITUDE OF A VECTOR. THE NOTION OF ORTHOGONALITY

The metric tensor gjj(x, y) may be used in two different ways, in defining the magnitude of a vector and also the angle
between two vectors.

Let X ‘ be a vector, then the scalar X given by
(8.1) X?=(g; (%, X)X' X’

is called the magnitude of this vector.

If Y is another vector, then the ratio,
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g; (X', X)Xy’

(8.2) cos(X,Y)zL(Xi LY

is called the 'Minkowskian cosine' corresponding to the (ordered) pair of directions Xl, Y! (Rund[27]). It is obvious from

(8.2) that Minkowskian cosine is non-symmetric in X'and Y.

Let X' beavectorand Y' an arbitrary fixed direction, then the scalar

(8.3) g; (%.Y) X' X7

is called the square of magnitude of the vector X" for the pre-assigned direction Y'. 1t Y' is another vector, then the
ratio,

g;(%,y)X'Y’
Jgg(x,y)xiw' J95(x,y) XY

is called the cosine of X", Y for the direction " .

(84) cos(X,Y)=

It is to be noted that the concepts of magnitude of vector and the cosine between two vectors given by (8.3) and (8.4)

respectively stand at each point of the space in a pre-assigned direction yl which has been called the element of support. Also
the cosine given by (8.4) is symmetricin X" and Y (Berwald [4], Synge [31]).

To distinguish between the two magnitudes we call the magnitude given by (8.1) as the Minkowskian magnitude of X" and
that given by (8.3) the magnitude of Xt
The equations (8.2) and (8.4) are used to define the orthogonality in F".

The vector is said to be orthogonal with respect to X' if

(85) gi(x, X)X'Y) =0

Thus according to this definition if Yiis orthogonal with respect to X " then it is not necessary that X " is also orthogonal

with respectto Y'.

The vectors Xi and Yi are said to be orthogonal (for a pre-assigned yi) if
(8.6) gi(x, y) XY’ =0

This definition of orthogonality is symmetricin X" and Y.
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IX. CONNECTIONS AND COVARIANT DIFFERENTIATIONS

- . : : . o oS
Any quantity in a Finsler space is function of line element (x, y). If S(x, y) is a scalar field in a Finsler space then —— are
ox
not components of a covariant vector. If we have a non-linear connection NJL ( X,y ) , We can obtain the covariant vector
field of the components.

:5—Si,where 0 _ 9 ~N/
ox

0

S‘ .
ox  0x oy’

2

Further, if we have quantities Fjlk (x, y) which obey the transformation rule similar to Christoffel symbols, the covariant

derivatives K}\k of a Finsler tensor field of (1, 1)-type is defined by

i 5K; r i 1 r
(9.1) Fj‘k:W+Kj e — K Fie

On the other hand, the partial derivatives of components of a tensor field K; with respect to yk give a new tensor field,
but we shall modify them as

. 0K

| - J

9.2) Fi|,= o

where C}k (X, Y) are components of a tensor field of (1, 2)-type. The collection (Fjlk, NJl-, C;k constitute a Finsler

connection, and covariant derivatives given by (9.1) and (9.2) are called h- and v-covariant derivatives of K} respectively.

A. Finsler connection: Suppose N} is a non-linear connection on M" and Fjlk, le'k are respectively 0 & -1 degree

homogeneous functions in y' from (TM - 0) to R, (M ) the set of vector field on manifold M". A Finsler connection is a
mapping

V(F},N,Ch ) :Tp(TM = 0)xN(M) > T, ,,(M),(Y,X) > Vy(X)
satisfying the properties

(1) V islinear over Rin X and Y (but not necessarily in y).

@ 1f feC®(M)andy e (T, M —0) thenin local coordinates.

638



N2

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(0Online) Volume 15, Issue 01, January 2026)

o 0 0 0 0
; - :d - — + m .,
o 5 5 lu)=af ()5 1)+ M () s
0 0 i 0
w0tV o (F = 5lu) = £ Chely) ol

Forall X € (M ) and V does not depend on the local coordinates.

For any Finsler connection (Fjlk, NJl-, C;k) we have five torsion tensors and three curvature tensors : hh, hv and vv-
curvatures [Riemannian curvature (f), Berwaldian Curvature (B) and third curvature (Q)] which are given by

: i i i
9.3) (h)h-torsion : TJk =F; - F;
(9.4) (V)v-torsion : S; = lek — ;g
(9.5) (h)hv-torsion:C}k as the vertical connection C;k
. _ON; &N
(9.6) (v)h-torsion : R}k = kJ — k
ox ox’
(9.7) (v)hv-torsion : Pﬁc = Ok N; _Fklj
(9.8) h-curvature :

i i
i 5hj_5Fhk+ mpi _pmpi ol pm
i hj + mk hj + mk hm* jk

hjk =
ek ox
DA i i i pm
(9.9) hv-curvature : Pth =0k th _Chk\j +Cp ik
(9.10) v-curvature : Sflljk =0k C;lj —0;Cp + C;;C,fnk - C;Sccrlnj

The deflection tensor field D; of a Finsler connection FI" is given by
i_ ki pri
(9.11) Dj =Y F Nj.

When a Finsler metric is given, various Finsler connections are determined from the metric. The well known examples are
Cartan's connection, Rund's connection and Berwald's connection.

639



N2

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(0Online) Volume 15, Issue 01, January 2026)

B. Cartan's Connection: We are concerned with a Finsler space F'" = (M "™, L) which is to be endowed with the Cartan's

connection CT"=( F;é ,F;,ic, Cjik ) constructed from the fundamental function L{ X, Y. According to the theory of

Finsler connections due to M. Matsumoto ([17], [18]), the CT is determined from the axiomatic stand- point as follows :
There exists a unique Finsler connection F'T" = ( ch s N; s Jlk) which satisfies the following five conditions :

(Cy) gy‘k =0

(C,) (h)h-torsion : TJl =0

(C,) Deflection tensor field D} =0

(Ca) gg‘k =0
(Cs) (V)v-torsion : Sj =0
This connection is called the Cartan's connection and is denoted by
CI'= (F;i: F(’;;c) Cjik) -
The last two conditions C4 and Cs give

(9.12) Cly = églh agyJZf

This shows that vertical connection of C I and Cartan's C-tensor are identical

The first three conditions C,, C, and C; give

(9.14) N! =To = 75 — 2C, G,
where
(9.15) Ggi-1 Vo
2
and
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;1 4 .09 0 og
619 Tw=g9" (G5 aikf}'l o

is the Christoffel symbol of (M", L). Here '0' denotes contraction with yl .

It is easy to verify from the axiomos C,, C; and equation (9.1), that

(9.17) 3) y‘ih:O, b L, =0, o l“}l =0

where [" is a unit vector in the direction of element of support yl ,l.e.
i
=9
L(x,y)

Since Cy‘k is an indicatory tensor, therefore, from (9.2) we have yl‘h :5,11. Thus in view if (9.1) and condition C;, we

have L |, = &i L=, where [, =gy~lj . It may also be verified that

(9.18) a) [’

11
;=L hj,b) L;

-1

d hi,=0 ¢ hy-

=L (Lhy +Lhy, ),
where hy- is the angular metric tensor defined by

(9.19) h; =g; — Ll
and h} = gik th

C. Rund's Connection: The Rund's connection of a Finsler space F™"* Z(Mn, L) is a Finsler connection which is obtained

from Cartan's connection CI" by the C-process [18]. The C-process is characterized by expelling the torsion tensor C;k-

Thus the first two connection coefficients of the Rund's connection IR I are the same as those of the Cartan's connection

CT, while the third is equal to zero. Thus the Rund's connection R I of the Finsler space F" is given by RI" =

* 7 *4
(Fﬂé, [i,0). Thetorsion tensors of R T are such that
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00) }k =0, RJik = the same as that of CT’, Jik =0,
| Jéczthesame as that of CT, JikzO.

The curvature tensors of R I are as follows :

Ll pt i r
a). h—curvature K Ky =Ry —Cp,, Ry
(9.21) . , . ,
.l _ pt i i r
b). hv — curvature F 2 By = Byje + Cryp = Cir P

while the v-curvature tensor S;ij of RI" vanishes identically. We note that h-covariant differentiations with respect to
CT and RT coincide with each other. Furthermore le'k in (9.21) is the Cartan's C-tensor CJl =glh thk’ which is

not the vertical connection of R I as it vanishes for R 1.

The h-curvature K and hv-curvature F of R I" may be given in terms of connection coefficients as

oLy dl,
a).  Kpyo=—p
(9.22) X X

b). Ry =0;T}.

*m i *m i
+1 Do =T Ty

mj

D. Berwald's Connection:  The Berwald's connection of a Finsler space F''" = (Mn s L) is a Finsler connection which is

obtained from Rund's connection R T" by the P'-process [18]. The P process is characterized by expelling the torsion tensor

lek . The Berwald's connection of Finsler space F" is denoted by Bl = ( ;k , GJL- ,0), where

(9.23) a) G} =0;G;b) Gjl-: o}= 0; G
The Berwald's connection Bl is uniquely determined from metric function L(x, y) of F" by the following five axioms :
®)L; =0
(B,) (h) h-torsion: J‘k =0
(Bs) Deflection : D; =0
(B.) (v) hv-torsion : lek =0
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(Bs)(h) hv-torsion - C =0
Thus the torsion tensors of Bl are such that

020 Jéc =0, RJik = the same as that of RI, Jik =0
| J%:the same as that of RI', jk =0.

The v-connection coefficients GJl-k of Bl are related to those of by

it i
(9.25) Gy =T + Cio-

The curvature tensors of Bl are as follows

Cppl e i i
a) h—curvature H : Hyj =Ky + Cyope = Crpol

i r i i
(9.26) +Ciarjo Cino =Crjo Cinpo

S i A
b) hv—curvature G : Gy = Fy + Ok Cinlo
The v-curvature tensor S}lljk of Bl vanishes identically.

The simpler forms of Hflljk and G’lljk of Bl may be given by

i A pi i A i
It is to be noted that BIL" is neither h-metrical nor v-metrical in general :
Gijk) = _ZCgk\w Gijrx = Cgk >

where h- and v-covariant derivatives with respect to Bl are denoted by () and '." respectively.

X. GEODESICS AND PATHS IN A FINSLER SPACE

The geodesics of a Finsler space are the curves of minimum or maximum arc-length between any two points of the space.
The differential equations of a geodesic in a Finsler space is given by [18]

2 i ‘
(10.1) d ); +2G* (x, ;ﬂj =0,

ds S
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where is the arc-length of the curve X' = x' (S and

(10.2) 2G' =L v’y o
(10.3) 2G' = g" (y/ 6,0; F-8,F).

Here Lagrangian function L is defined on TM by

Flxy) =5 F(xy)

where F' ;' TM — R is the Finsler function.

Let M" be a manifold with a Finsler connection FFZ( Jlk, NJl-, ;k) . A curve C of the tangent bundle T(M) over M"

is called an h-path if C is the projection of an integral curve of an h-basic vectors field Bh (v) corresponding to a fixed

veV™s).
dy' dx’
= 4 N (x(t R t))—=0
dt L(x(t), y(t)) i

(10.4) . .
d?x! dx? dx®

o+ Fie(x(t), y(t) T2

dt dt

Geodesic spray :

Geodesic spray G € X (TM - 0), the set of vector fields on (TM-0), is locally defined as

;0
Gly:y A i

(10.5) :
ox

|y_

2G'(x,y)

0
6yi

ly

Here G does not depend on local coordinates and G' is defined by (10.3).

XI.

In Riemannian geometry we have many interesting
theorems such that if a Riemannian space is assumed to
have special geometrical properties, or to satisfy special
tensor equations, or to admit special tensor fields, then the
space reduces to one of well-known space forms, for
instance, Euclidean space, spheres, topological spheres,
projective spaces and so on.

SPECIAL FINSLER SPACES

644

On the other hand, in Finsler geometry we have special
Finsler spaces, namely, Riemannian spaces and
Minkowskian spaces, but there are various kinds of
Riemannian spaces and Minkowskian spaces. As a
consequence we have an important problem to classify all
the Minkowskian spaces. It is easy to write down concrete
forms of fundamental function L(x, y) which are interesting
as a function, for instance, a Randers metric, Kropina
metric, generalized Kropina metric, Matsumoto metric and
cubic metric.
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It is essential for the progress of Finsler geometry to find
Finsler spaces, which are quite similar to Riemannian
spaces, but not Riemannian and Minkowskian spaces,
which are analogous to flat spaces, but not flat.

(A) Riemannian space :

In the present section, we are mainly concerned with
special tensor equations satisfied by torsion, curvature and
other important tensors. In the following, we give some
definitions of special Finsler spaces and their
corresponding result.

A Finsler space F'* = (Mn, L(x, y)) is said to be a Riemannian space if its fundamental function L(x, y) is written as

L(x,y)=g; (x)y'y’.

Among Finsler spaces, the class of all the Riemannian spaces is characterized by Cyk =0 .. vertical connection I of

the Cartan's connection C T is flat.

(B) Locally Minkowskian space :

AFinsler space F™* =(M™, L(x, y) is called locally Minkowskian space if there exists a co-ordinate system (X' )

in which L is a function of yl only [18].

A Finsler space is locally Minkowskian if and only if

For CT: Rg;c =C£‘k=0
For RT Ky};c ZFJ;C =0
For BT Hj =Gj =0

(C) Berwald space :

If the connection coefficient Gjl-k of the Berwald's connection BT given by

J

G =0;G.

are functions of position alone, the space is called a Berwald space [18].

A Finsler space is Berwald space if and only if

For CT: Cg-l‘k =0

For R F;fc =0
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For BI' Gg;c =0

(D) Landsberg space
A Finsler space is called a Landsberg space [18] if the Berwald connection BT ish-metrical i.e. gy'(k) =0.

In terms of the Cartan's connection C 1", a Landsberg space is characterized by

@ Pi=0, o () Pp=0

(E) C-reducible Finsler space:

A Finsler space of dimension n, more than two, is called C-reducible if Cy'k is written in the form [18] :

1
C.,.=— 7. (h..C )
ke ke k
k01 ] (k) "7y
_ Jjk . . . . . _ .
where Ci —Cy“kg is the torsion vector hy , is the angular metric tensor given by hy —gy —lilj and ”(g'k) is the
sum of cyclic permutation of i, j, k.
(F) Semi C-reducible Finsler space:
A Finsler space of dimension n, more than two, is called semi C-reducible if Cg‘k is written in the form [18] :

Cyic = T (hC)+ 1 ccc.,

n+l
2_ 0 _
where C* =g CiCj andp+q=1.

(G) Quasi C-reducible Finsler space :
A Finsler space of dimension n, more than two, is called quasi C-reducible if there exists a symmetric Finsler tensor field
Aij , satisfying AiO =0, in trms of which is written in the form [18] :

Cyk:”(gk)(Ag‘ Ce).

(H) P-reducible Finsler space :
A Finsler space of dimension n, more than two, is called P-reducible if (v)hv-torsion tensor Pk of CT is written in the
form ([12], [22]):

1
n+1

Q'IJ

k= i) (M Ck\o)
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() C2-like Finsler space :
A Finsler space if called C2-like Finsler space [23] if

1

g

(J) C3-like Finsler space :
A Finsler space is called C3-like Finsler space [25] if

where ;. and bk are components of arbitrary covariant vectors such that @, = bO =0 and S(yk ) denotes the cyclic
sum of i, j, k.

(K) S3-like Finsler space :
A Finsler space F™ with fundamental function L(x, y) is called S3-like Finsler space [18] if v-curvature tensor Shy'k of

CT is written in the form

L*S,j = S{hyhy —hychy ),

where S is a scalar and function of position alone.

(L) S4-like Finsler space :

A Finsler space F'" is called S4-like Finsler space [25] if v-curvature tensor Shyk of CT  is written in the form
2 —
where M j are components of a symmetric covariant tensor of second order and are (-2)p-homogeneous in yl satisfying

MOjZO-

(M) R3-like Finsler space :
A Finsler space of dimension more than three, is called R3-like Finsler space [20] if h-curvature tensor Rhyk of CI'is

written in the form

Ryiic = GniLac + GacLinj — Gnie Ly — G L

n-—1I 2 n-—1I
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(N) Finsler space of scalar curvature :

A Finsler space of scalar curvature K is characterized by [18] :

Ry; = Khy,

where Rg'k are components of (v)h-torson tensor of CT defined by (9.6).

(O) One-form :

A one-form on a differentiable manifold is a smooth section of the cotangent bundle. It is a smooth mapping of the total
space of the tangent bundle of M to R whose restriction to each fiber is a linear functional on the tangent space. Symbolically,

p:TM >R, [, :ﬂ‘TxM :T.M — R where 3, is linear.

In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates: ,Bx = bl-dxl

where the bi are smooth functions (Fibers over x). It is an order-1 covariant tensor field.

Examples :

1. The second element of a three-vector is given by the one-form [0, 1, O[. That is, the second element of [X, vy, z] is [0,1,0] .

xy.z] =y.

2. The mean element of an n-vector is given by the one-form [1/n, 1/n, ..., 1/n]. That is, mean [1/n, 1/n, 1/n].v

XIl. INTRINSIC FIELDS OF ORTHONORMAL FRAMES

Berwald theory of two-dimensional Finsler space is
developed based on the intrinsic field of orthonormal frame

which consists of the normalized supporting element ['

and unit vector orthonormal to [*. Following the idea,
Moor introduced in a three-dimensional Finsler space, the
intrinsic field of orthonormal frame which consists of the

normalized supporting element ll, the normalized torsion

vector C' |C and a unit vector orthogonal to them and

developed a theory of three-dimensional Finsler spaces.
Generalizing the Berwald's and Moor's ideas, Miron and
Matsumoto ([18], [20], [24]) developed a theory of intrinsic
orthonormal frame fields on n-dimensional Finsler space as
follows.

Let L(x, y) be the fundamental function of an n-
dimensional Finsler space and introduce Finsler tensor
fields of (0, 2i-1) type, i=1, 2, ....,n by

B .. . 2
lilp..... 1.20[71 a i2 ”'ai2a71L '
Then we get a sequence of covariant vectors
_ J1 )2 J2a-3-J2a-2
La)l o L§1]2“"J2a73'.]2a72g g 9 ’

Definition 1 : If (n-1) covariant vectors La}i’ i=1,2,..,n-1are linearly independent, the Finsler space is called strongly non-

Riemannian.
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Assume that above n-covectors La)i are linearly independent and put eb =Lll} /L=ll . Here and in the following we
use raising and lowering of indices as Lll) = gyLl)j .

Further put Nz)y' =gy. —el}iel)j and matrix Nl} =N1)y- is of rank (n-1). Second vector 62} is introduced by

[
€y =Ly /Ly,

where L, is the length of LLQ) relative to yl.

Next we put NQ}Q’ =N1}y~ —€5)€2);> Eé) = Né)j Lfg) and so third vector €, is defined by
i i
e;) =E; / Es,

where E, is the length of Eé ) relative to yl. The repetition of above process gives a vector €
defined by

rel)s r=1, 2, ... , n-1

e =Ery/ Eps

where E;+1) = i)jL£+1)’Er+1 is the length of E;H) relative to " and N, =N, 15 — €€z
Definition 2 : The orthonormal frame {e;}, i =1, 2, ....., n as above defined in every co-ordinate neighborhood of a strongly non-

Riemannian Finsler space is called the 'Miron Frame'.

Consider the Miron frame {e}. If a tensor T} of (1, 1)-type, for instance, is given then

i i
T;=T,4e,/€p);;

where the scalars Taﬂ are defined as

TO{ - T]lea}leé) .

These scalars Ta p are called the scalar components TJF of with respect to Miron frame.

. L i
Let H a)By be scalar components of the h-covariant derivatives € o)) jand Va )8y / L be scalar components of the v-
i

covariant derivatives e; ) with respect to CT of the vector €, )

belonging to the Miron frame. Then
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i i i i
euli =Ha)pC8)8r)i> €yl =Va)p s

where the scalars Ha}ﬂ7 and V a)py satisfy the following relations [18] :

l)ﬂy =0, Ha)ﬂy = _Hﬁ)a7
_ _ 1 o1 _
Va)ﬂ}/ _5ﬂ7 5ﬁ57’ Va)ﬂ? - Vﬂ)w

Definition 3 : The scalars H a)pBy and V a) By are called connections scalars.

If Caﬁ}, /L be the scalar components of the (h)hv-torsion tensor C]k ie.,

i i
LCy =Cpes)€p) i€, )k
then we have [13] :

=LC,C, = = =0 for > 3, where C is the length of C".

Proposition 12.1: C; 5, =0, C, Spup = e wee o -

K
Now, we consider scalar components of covariant derivatives of a tensor field, for instance, TJF . Let Ta/,;y and Taﬂ;y /'L be

the scalar components of h-and v-covariant derivatives with respect to Cr respectively of a tensor le i.e

i i
(12.1) Tj‘k =T,5,€4)€5);€, )k and
(12.2) LTJ? Taﬂy a)eﬁ” )k » then we have [34].

(12.3) Taﬁ,y :(5kTaﬂ)ejlfc) +T )057 +T Hﬂ)ﬂﬂ’ and

—T /(7 k
(12.4) T, =L(0 T, )€+ T 5V 00, + T,V 0y
The scalar components Taﬂ and T y are called h-and v-scalar derivative of T of respectively.

Two dimensional Finsler space :

The Miron frame {el},eg)} is called the Berwald frame. The first vector eb is the normalized supporting element
I'= l/L and the second vector 612} =m' is the unit vector orthogonal to I'. 1f C" has non-zero length C, the

= +Cl /C The connection scalars H a)By and V a) By of a two-dimensional Finsler space are such that [18]
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= — _ 12 - - .
Ha)ﬁy =0, Va),ez =0, Ha)ﬁQ = 5aﬂ,WhICh implies
(12.5) % =0, rn{J =0, Ll ;= mimj, Lmt

There is only one surviving scalar components of LCyk namely C222.

j:

_lim ..

J

If we put J= Then

C222 '

The scalar | is called the main scalar of a two-dimensional Finsler space.
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