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Abstract— This paper presents a Convolutional Neural 

Network (CNN)-based deep learning model for EMG-driven 

hand gesture recognition, aimed at accurately identifying 

human hand movements from electromyography (EMG) 

signals. The proposed model processes pre-processed EMG 

signals transformed into suitable representations for feature 

learning and classification using deep convolutional layers. By 

automatically extracting spatial and temporal patterns from 

muscle activity signals, the CNN eliminates the need for 

manual feature engineering and improves recognition 

accuracy. The model is evaluated on standard EMG gesture 

datasets and demonstrates robust performance under inter-

subject variability and noise conditions. Such an approach is 

highly suitable for real-time applications including prosthetic 

hand control, human–computer interaction, rehabilitation 

systems, and assistive robotics, where reliable and fast gesture 

recognition is essential.  

Keywords—CNN, Hand, Gesture, Recognition, EMG 

Signals, Deep learning.        

I.  INTRODUCTION  

Electromyography (EMG)-driven hand gesture 

recognition has emerged as a crucial research area at the 

intersection of biomedical engineering, signal processing, 

and artificial intelligence. EMG signals are bioelectrical 

signals generated by skeletal muscles during contraction and 

relaxation [1]. These signals carry rich information about 

muscle activity and intention of movement, making them 

highly suitable for recognizing hand gestures. By analyzing 

EMG signals captured from the forearm or hand muscles, it 

becomes possible to decode user intent without relying on 

visual input, which is especially valuable in environments 

where cameras are unreliable or impractical[2]. Hand 

gesture recognition using EMG is particularly important for 

applications that require natural and intuitive human–

machine interaction. Unlike vision-based gesture 

recognition systems, EMG-based systems are independent 

of lighting conditions, background clutter, and line-of-sight 

constraints[3]. This makes EMG-driven approaches more 

robust and suitable for wearable and portable systems. 

Furthermore, EMG signals reflect neuromuscular activity 

directly, enabling faster response times and more precise 

control, which is essential for real-time systems[4]. 

Traditionally, EMG-driven hand gesture recognition 

relied on handcrafted feature extraction methods such as 

time-domain features, frequency-domain features, and time–

frequency representations. These features were then 

classified using conventional machine learning algorithms 

like k-nearest neighbors, support vector machines, or linear 

discriminant analysis[5]. While these approaches achieved 

reasonable performance, they often required domain 

expertise, extensive signal preprocessing, and careful 

feature selection. Additionally, their performance tended to 

degrade under inter-subject variability, electrode 

displacement, muscle fatigue, and noise[6]. 

With the advancement of deep learning, EMG-driven 

hand gesture recognition has witnessed significant 

improvements. Deep learning models, particularly 

convolutional neural networks, have the ability to 

automatically learn discriminative features directly from 

raw or minimally processed EMG signals[7]. This reduces 

dependency on manual feature engineering and enhances 

generalization across users and conditions. By capturing 

complex spatial and temporal patterns in EMG data, deep 

learning models offer superior recognition accuracy and 

robustness compared to traditional methods[8]. 

EMG-driven hand gesture recognition plays a vital role 

in assistive and rehabilitative technologies. In prosthetic 
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hand control, accurate gesture recognition allows amputees 

to perform natural movements with higher precision and 

comfort[9]. In rehabilitation systems, EMG-based gesture 

analysis helps monitor patient recovery, assess muscle 

activation patterns, and provide adaptive therapy. Similarly, 

in human–computer interaction, EMG-driven gestures 

enable intuitive control of virtual environments, gaming 

systems, and wearable devices without physical contact[10]. 

Despite its advantages, EMG-driven hand gesture 

recognition still faces several challenges. Variability in 

EMG signals across different users, sensor placement issues, 

signal noise, and muscle fatigue can affect system 

performance. Addressing these challenges requires robust 

models capable of learning invariant features and adapting 

to changing signal characteristics. Recent research focuses 

on deep learning architectures, data augmentation, transfer 

learning, and adaptive learning techniques to overcome 

these limitations[11]. 

EMG-driven hand gesture recognition represents a 

powerful and evolving technology for understanding human 

motor intent through muscle activity. Its combination with 

deep learning techniques has opened new possibilities for 

accurate, reliable, and real-time gesture recognition systems. 

As research progresses, EMG-based gesture recognition is 

expected to play an increasingly important role in 

healthcare, robotics, wearable technology, and intelligent 

human–machine interaction systems[12]. 

II. BACKGROUND 

N. R et al., [1] presented a hybrid deep learning framework 

for hand gesture recognition using electromyography 

(EMG) signals by integrating convolutional neural networks 

and long short-term memory networks. The presented model 

focused on capturing both spatial feature patterns and 

temporal signal dependencies. Experimental analysis was 

conducted on a multi-class EMG dataset collected from 

multiple subjects. The system demonstrated strong 

robustness against signal noise and inter-user variability. 

The presented hybrid architecture achieved an average 

classification accuracy of approximately 94.6%. 

Comparative analysis showed improved performance over 

standalone CNN models. The study highlighted the 

effectiveness of hybrid deep learning for real-time gesture 

recognition applications. 

Aarotale et al., [2] presented a machine learning-based 

framework for surface EMG signal classification aimed at 

hand gesture recognition. The study evaluated multiple 

classifiers, including support vector machines, k-nearest 

neighbors, and random forest algorithms. Feature extraction 

involved both time-domain and frequency-domain signal 

characteristics. Among all models, the random forest 

classifier achieved superior performance. The presented 

system recorded an overall accuracy of nearly 91.2%. The 

authors emphasized computational efficiency for real-time 

implementation. The work demonstrated feasibility for 

prosthetic and assistive technology applications. 

Deb et al., [3] presented DPMAS-Net, a privacy-preserving 

deep learning model designed for EMG-based hand gesture 

recognition. The model utilized time–frequency domain 

feature representations to enhance gesture discrimination. 

Privacy preservation was ensured by securing intermediate 

feature representations during training. Experimental 

evaluation confirmed that data confidentiality was 

maintained without major accuracy degradation. The 

presented model achieved a classification accuracy of 

approximately 93.8%. Performance comparison showed 

minimal difference from non-secure models. The study 

validated the importance of privacy-aware biomedical signal 

processing. 

Hile Bustos et al., [4] presented an EMG signal-based hand 

gesture recognition system for multi-class prosthetic control 

using discrete wavelet transform and convolutional neural 

networks. The wavelet transform was applied to extract 

informative frequency components from EMG signals. The 

CNN architecture efficiently learned discriminative patterns 

for gesture classification. The presented system was 

evaluated across multiple gesture categories. Experimental 

results showed an average accuracy of about 92.4%. The 

method demonstrated robustness under varying muscle 

contraction conditions. The study supported real-time 

prosthetic hand control applications. 
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Cao et al., [5] presented a hybrid DAE-CNN-LSTM model 

for rehabilitation-oriented hand gesture recognition using 

EMG signals. A denoising autoencoder was incorporated to 

suppress noise and artifacts in raw EMG data. The CNN 

component extracted spatial features, while LSTM modeled 

temporal dependencies. The presented architecture was 

tested on rehabilitation datasets involving motor-impaired 

subjects. The model achieved an average recognition 

accuracy of nearly 95.1%. Results showed improved 

generalization compared to conventional deep learning 

models. The study demonstrated suitability for clinical 

rehabilitation systems. 

Rani et al., [6] presented an enhanced EMG-based hand 

gesture classification approach designed for real-world 

deployment scenarios. The method addressed dynamic 

factors such as electrode displacement and muscle fatigue. 

A tempo-spatial wavelet transform was used for robust 

feature extraction. Deep learning classifiers were applied for 

accurate gesture recognition. The presented model achieved 

an F1-score of approximately 94% under dynamic testing 

conditions. Performance remained stable across different 

users. The study confirmed the practicality of the approach 

for wearable EMG systems. 

Shi et al., [7] presented an unsupervised transfer learning 

framework for EMG-based multi-user hand gesture 

classification. The approach eliminated the need for explicit 

calibration gestures for new users. Latent feature alignment 

was applied to adapt the model across subjects. The 

presented system was evaluated on cross-user datasets. 

Experimental results indicated an average accuracy of about 

90.7%. The approach significantly reduced setup time. The 

study emphasized scalability for consumer wearable 

devices. 

Zhong et al., [8] presented a spatio-temporal graph 

convolutional network for gesture recognition using high-

density EMG signals. The model represented EMG channels 

as nodes in a graph structure. Temporal dependencies were 

modeled alongside spatial correlations. The presented 

architecture was evaluated on complex gesture datasets. The 

model achieved a high classification accuracy of 

approximately 96.3%. Results demonstrated improved 

performance over conventional CNN methods. The study 

highlighted the advantage of graph-based learning in EMG 

analysis. 

Zanghieri et al., [9] presented an online unsupervised arm 

posture adaptation technique for sEMG-based gesture 

recognition. The system continuously adapted to posture 

variations without labeled data. Implementation was 

optimized for ultra-low-power microcontroller platforms. 

The presented method was tested in real-time scenarios. 

Accuracy improved from nearly 85% to 91% after 

adaptation. Energy efficiency was maintained throughout 

operation. The study supported long-term wearable 

prosthetic use. 

Song et al., [10] presented a multichannel CNN-GRU 

hybrid architecture for surface EMG gesture recognition. 

CNN layers extracted spatial representations from multi-

channel EMG signals. GRU layers captured sequential 

temporal dependencies efficiently. The presented system 

was validated on benchmark EMG datasets. Experimental 

evaluation showed an average accuracy of approximately 

93.5%. Training time was reduced compared to LSTM-

based systems. The study demonstrated the effectiveness of 

GRU-based temporal modeling. 

Al Taee et al., [11] presented a deep scattering transform 

combined with attention mechanisms for EMG-based hand 

gesture recognition. The scattering transform enhanced 

feature robustness to noise and signal distortion. Attention 

mechanisms improved feature selection and interpretability. 

The presented model was evaluated across multiple datasets. 

An average recognition accuracy of about 94.2% was 

achieved. Performance consistency was observed across 

users. The study validated attention-based deep learning for 

EMG applications. 

Zhang et al., [12] presented LSTM-MSA, a deep learning 

model with dual-stage attention mechanisms for forearm 

EMG-based hand gesture recognition. The model applied 

attention at both temporal and feature representation stages. 

This enhanced discriminative learning of subtle gesture 

patterns. The presented architecture was tested on multi-

subject datasets. The system achieved an accuracy of 
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approximately 95.6%. False classification rates were 

significantly reduced. The study demonstrated strong 

generalization performance. 

III. METHODOLOGY 

The proposed work is understand using following flow 

chart. 

 

Figure 1: Flow chart 

The flowchart outlines the process for developing and 

evaluating a CNN Deep Learning-Based Model for Hand 

Gesture Recognition Using EMG Signals. Here's an 

explanation of each step: 

1. Dataset: 

The process begins with the collection or selection 

of an EMG signal dataset. This dataset contains 

raw EMG signals representing various hand 

gestures, typically collected using sensors. 

2. Signal Acquisition: 

EMG signals are captured using appropriate 

hardware, such as surface electrodes. These raw 

signals serve as the input to the processing 

pipeline. 

3. Preprocessing: 

Raw EMG signals are often noisy and may contain 

artifacts. Preprocessing involves filtering and 

cleaning the signals to remove unwanted noise and 

enhance signal quality. This step ensures that the 

data is suitable for further analysis. 

4. Signal Limitation: 

5. This step may involve standardizing or normalizing 

the signals, segmenting them into consistent time 

windows, or applying other constraints to ensure 

uniformity in the data. 

6. Feature Extraction: 

Relevant features are extracted from the 

preprocessed EMG signals. These features capture 

meaningful information about the gestures, which 

can improve the model's ability to distinguish 

between them. This may include spatial, temporal, 

or frequency-based features. 

7. Training: 

The extracted features are used to train the CNN 

Classifier. The dataset is typically divided into 

training and testing subsets, where the training 

subset is used to optimize the model's parameters. 

CNN Classifier: 

Convolutional Neural Networks are used as the 

primary classification model. The CNN learns to 

identify patterns and relationships in the data 

automatically, extracting both high-level and low-

level features during training. 

Train Feature/Test Feature: 

Features are split into two parts: training features, 

used to train the CNN model, and testing features, 

used to validate the model's performance on unseen 

data. 

8. Prediction: 

Once trained, the CNN model predicts hand 

gestures by analyzing the EMG features from test 

data. 

9. Performance Estimations: 
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The predicted results are evaluated against ground 

truth labels using various performance metrics, 

including: 

Accuracy: Measures the overall correctness of the 

predictions. 

Sensitivity: Indicates the model's ability to detect 

true positives (correctly identifying a gesture). 

Specificity: Reflects the model's ability to avoid 

false positives (incorrectly identifying a gesture). 

F-Score: Balances precision and recall to provide a 

single performance metric. 

Error Rate: Measures the rate of incorrect 

predictions. 

IV. SIMULATION AND RESULTS 

The proposed work is simulated using MATLAB 

software. 

 

Figure 1: Input signal and Pre-processing   

Figure 1 is presenting preprocessing step. In this step signal 

is clean and remove unwanted signal from the input signal.  

 

Figure 2: CNN Classification   

Figure 2 is showing CNN classification, the trained model 

takes an input EMG signal and passes it through the 

network to predict the corresponding hand gesture. 

 

Figure 3: Results 

Figure 3 is showing the evaluating the performance of an 

hand gesture classification model involves using various 

metrics to assess its accuracy and reliability. 
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Table 1: Result Comparison 

Sr 

No 

Parameter Existing 

results 

Proposed 

Results 

1 Method Hybrid  CNN 

2 Accuracy 82.41% 97.91% 

3 Classfication 

Error 

17.59% 2.09% 

4 Sensitivity 84% 97.33% 

5 Specificity 75% 99.06% 

V. CONCLUSION 

The presented CNN-based model, when compared with 

the existing hybrid method for hand gesture recognition 

using EMG signals, demonstrates substantial improvements 

across all evaluation metrics. The CNN model achieved a 

high classification accuracy of 97.91%, significantly 

outperforming the hybrid approach, which recorded an 

accuracy of 82.41%. Furthermore, the classification error 

was drastically reduced to 2.09%, whereas the hybrid 

method exhibited an error rate of 17.59%. The sensitivity of 

the system improved from 84% to 97.33%, indicating the 

CNN model’s enhanced capability to correctly identify hand 

gestures. Similarly, specificity increased from 75% to an 

outstanding 99.06%, reflecting a superior ability to 

minimize false-positive detections. These performance gains 

clearly demonstrate the effectiveness of the CNN model in 

extracting discriminative EMG features and delivering 

robust classification results. Overall, the presented model 

establishes a highly reliable and efficient solution for 

precise EMG-based hand gesture recognition, setting a 

strong benchmark in terms of accuracy, sensitivity, and 

specificity. 
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