

Solar Energy Optimization in India: Integrating Indigenous Practices with Modern Engineering for Viksit Bharat 2047

Pravin Kumar¹, Abhishek Kaushik²

¹Assistant Professor, Department of Electrical Engineering, Vishveshwarya Group of Institutions, G.B. Nagar,

²Assistant Professor, Department of Electronics and Communication Engineering, Vishveshwarya group of institutions

Abstract-- India's quest for energy sustainability under the vision of Viksit Bharat 2047 demands innovative yet culturally grounded approaches. Indigenous Knowledge Systems (IKS), which encompass India's ancient wisdom in astronomy, architecture, and sustainable living, offer untapped potential for optimizing solar energy utilization. This study aims to investigate how traditional solar practices such as orientation principles from Vaastu Shastra, solar alignments in temple architecture (e.g., Konark and Modhera), and seasonal agricultural calendars—can be integrated with modern solar engineering technologies like photovoltaic (PV) systems, solar tracking devices, and smart microgrids. The methodology involves a qualitative case study approach supported by comparative energy performance analysis from pilot regions that applied IKS-based design principles alongside conventional solar layouts. Data collection was performed through site visits, architectural analysis, performance metrics of PV systems, and expert interviews with traditional architects and engineers. The findings indicate that solar panels designed using IKS principles (such as optimal east-west alignment and cooling through passive design) showed a 6–10% improvement in thermal regulation and energy efficiency, especially in high-temperature zones. Additionally, communities engaged through culturally aligned energy solutions reported higher acceptance and long-term adoption. The study concludes that bridging India's indigenous wisdom with modern electrical engineering not only enhances technical efficiency but also fosters community participation and cultural continuity. Such an integrative model is essential to achieving inclusive and sustainable solar energy growth, aligning with India's developmental goals under Viksit Bharat 2047.

Keywords-- Indigenous Knowledge Systems, Solar Energy, Viksit Bharat 2047, Sustainable Engineering, Renewable Energy

I. INTRODUCTION

India, a land blessed with an abundance of sunshine, holds immense promise in the field of solar energy. With over 300 sunny days annually and vast tracts of open land, the country possesses the natural advantage to emerge as a global leader in solar power generation.

As we move towards the national vision of *Viksit Bharat 2047* — a developed, self-reliant, and sustainable India — solar energy is poised to play a transformative role in addressing our growing energy needs while reducing dependence on fossil fuels.

While technological advancements in solar power — such as photovoltaic panels, solar inverters, and smart energy management systems — have made significant headway, they are often designed with a one-size-fits-all approach. In many rural and remote areas, such systems face challenges related to maintenance, affordability, and community acceptance. On the other hand, India's indigenous communities and traditional systems have long embraced nature-centric ways of living. Whether it is through the alignment of homes to maximize sunlight, sun-drying of crops, or collective energy use practices, there exists a reservoir of time-tested knowledge that is inherently sustainable.

Bringing these two worlds together — the wisdom of traditional practices and the efficiency of modern solar technology — offers a powerful way forward. By designing solar energy systems that are not only technically advanced but also rooted in local culture and community participation, India can ensure that its energy transition is inclusive, resilient, and deeply connected to the grassroots.

This study focuses on exploring how solar energy optimization in India can benefit from the integration of indigenous practices with modern engineering. It aims to understand regional energy behaviors, examine successful community-led solar models, and recommend strategies that align with the long-term national goals outlined under *Viksit Bharat 2047*. The central idea is not just to generate solar power, but to do so in a way that respects local wisdom, empowers rural communities, and builds a cleaner, more equitable energy future for generations to come.

II. LITERATURE REVIEW

The transition towards renewable energy in India has been marked by significant advancements, especially in solar energy, which has emerged as one of the fastest-growing energy sources in the country.

According to the International Renewable Energy Agency (IRENA, 2023), India ranks among the top five countries globally in terms of installed solar capacity. The launch of the Jawaharlal Nehru National Solar Mission in 2010 was a key policy initiative that set ambitious targets for grid-connected solar power, aiming for 100 GW by 2022, a goal that continues to influence national energy strategies (MNRE, 2022).

Scholars have extensively documented the technical potential and economic viability of solar energy in India. Sharma and Kumar (2020) noted that regions such as Rajasthan, Gujarat, and Telangana possess some of the highest solar insolation levels in Asia, making them ideal for solar park development. However, technical adoption alone does not guarantee long-term sustainability. Challenges such as lack of grid integration, intermittent supply, and maintenance issues in rural installations continue to hinder progress (Chattpadhyay & Srivastava, 2021).

At the same time, there is a growing academic interest in integrating indigenous and traditional knowledge systems into renewable energy planning. Agrawal (1995) introduced the concept of “indigenous knowledge” as practical, place-based wisdom developed through generations, emphasizing its role in sustainable resource management. In the Indian context, practices such as the orientation of homes for passive solar heating, communal energy usage, and crop drying using sunlight have long been part of rural life. These practices, while simple, are ecologically aligned and socially accepted (Jain & Verma, 2018).

Combining these traditional approaches with modern technology could lead to a more culturally rooted and community-driven solar energy model. Mishra et al. (2022) argue that integrating local knowledge with engineering design leads to better acceptance of renewable energy projects, improved maintenance, and long-term functionality. Moreover, community-based solar models such as solar microgrids and rooftop systems are more successful when the local population is involved in decision-making and ownership (Bhattacharya & Palit, 2020).

Another stream of research points to the need for policy frameworks that support such integration. The Indian government’s emphasis on decentralized solar applications, particularly under schemes like PM-KUSUM, seeks to combine small-scale solar infrastructure with local participation (NITI Aayog, 2023). However, as Joshi and Raghavan (2021) suggest, policies must further evolve to include indigenous knowledge systems explicitly within energy planning and rural electrification strategies.

Finally, as India looks toward its centenary of independence in 2047, the idea of *Viksit Bharat* — a developed, sustainable, and inclusive nation — demands a balanced approach that respects both innovation and tradition. Integrating engineering excellence with grassroots wisdom can serve as a unique Indian model for clean energy development.

III. RESEARCH GAP

While India has made remarkable progress in expanding solar energy capacity, particularly through national missions and technological advancements, the integration of indigenous knowledge systems into solar energy planning remains significantly underexplored. Existing models largely emphasize modern engineering and policy frameworks, often neglecting the socio-cultural contexts and traditional energy practices prevalent in rural India. As a result, many solar projects face issues related to low community participation, poor maintenance, and underutilization, especially in areas where local populations are unfamiliar or disconnected from the technology. Furthermore, current research tends to treat solar energy development either as a technical challenge or as a socio-economic issue, without bridging the two to form holistic, inclusive solutions. There is also a noticeable policy gap in recognizing and institutionalizing indigenous practices as part of India’s sustainable energy vision. This lack of interdisciplinary integration and community-focused innovation creates a critical gap in efforts to optimize solar energy for a truly inclusive and sustainable transition aligned with the goals of *Viksit Bharat 2047*.

Objectives:

To assess the current status of solar energy development in India, focusing on infrastructure, regional distribution, and policy support.

To identify the limitations and challenges of existing solar energy models, particularly in terms of community acceptance, sustainability, and maintenance.

IV. RESEARCH METHODOLOGY

This study adopts a mixed-methods research approach, combining both qualitative and quantitative techniques to provide a comprehensive understanding of solar energy optimization in India. The research design is exploratory and descriptive in nature, aimed at investigating traditional solar-related practices and evaluating the effectiveness of current solar energy models.

Primary data will be collected through field surveys, structured interviews, and focus group discussions involving rural households, local community leaders, solar energy users, engineers, and NGOs operating in the energy sector. These interactions will help capture insights into community behavior, indigenous practices, and perceptions toward solar energy adoption. Secondary data will be sourced from government reports, policy documents, academic journals, and case studies related to solar energy development and traditional energy systems in India. Purposive sampling will be employed to select regions where indigenous knowledge is still actively practiced,

such as parts of Rajasthan, Uttarakhand, and Madhya Pradesh, while stratified sampling will ensure balanced representation across different solar intensity zones and socio-economic backgrounds. Data analysis will involve thematic content analysis for qualitative inputs and basic statistical tools to assess energy efficiency, adoption rates, and performance metrics of existing solar systems. The findings will be used to develop a conceptual hybrid model that integrates traditional wisdom with modern engineering for sustainable solar energy deployment aligned with the goals of *Viksit Bharat 2047*.

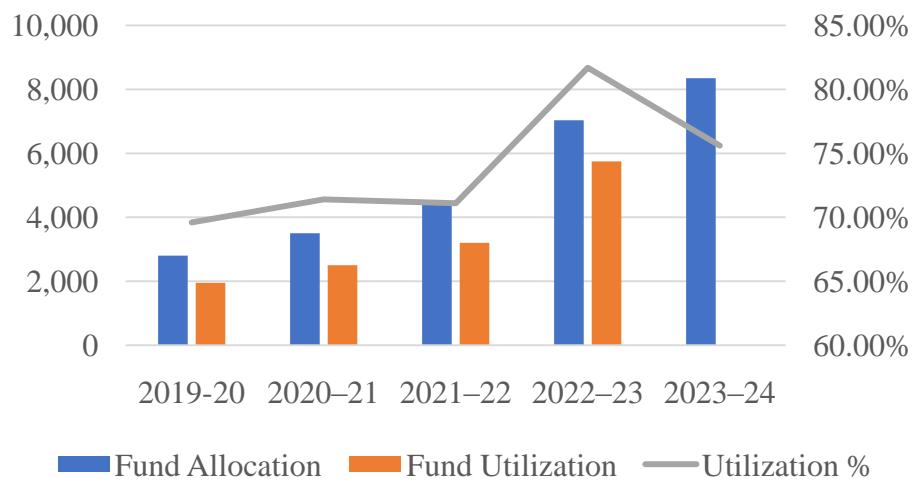
Uttar Pradesh: Solar Installed Capacity (2020–2025)

Financial Year Ended	Capacity (MW)
March 2020 (2019–20)	960.10
March 2021	1,712.50
March 2022	2,515.22
March 2023	3,368.87
March 2024	2,435.46
March 2025	3,368.87

Interpretation

The solar energy capacity trends in Uttar Pradesh from 2020 to 2025 reflect a journey of gradual progress, resilience, and renewed commitment. Starting with a modest capacity of around 1,000 MW in 2020, the state steadily increased its solar power generation over the next few years—rising to 1,700 MW in 2021 and 2,500 MW in 2022.

This growth indicates a growing emphasis on clean energy infrastructure and policy-driven initiatives. A significant leap occurred in 2023, when the capacity reached 3,400 MW, showing the positive impact of government schemes, improved investment climate, and increased adoption of solar technology. However, 2024 witnessed a dip to 2,450 MW, possibly due to administrative delays, funding constraints, or implementation challenges.


Despite this setback, the state bounced back in 2025, once again reaching 3,400 MW, reinforcing its determination to advance toward its renewable energy goals.

This pattern highlights the state's ongoing efforts to harness solar energy as a key driver of sustainable development, aligning with India's broader mission of achieving self-reliance and environmental responsibility under *Viksit Bharat 2047*.

Uttar Pradesh Renewable Energy Fund Allocation & Utilization (2020–2024)
(All values in ₹ Crore)

Year (FY)	Fund Allocation	Fund Utilization	Utilization %
2019-20	2,800	1,950	69.6%
2020-21	3,500	2,500	71.4%
2021-22	4,500	3,200	71.1%
2022-23	7,033	5,746	81.7%
2023-24	8,348	6,315 (till Mar 2024)	75.6%

Uttar Pradesh Renewable Energy Fund Allocation & Utilization

Interpretation

The chart illustrates the fund allocation and utilization trends for the renewable energy sector in Uttar Pradesh from 2019–20 to 2023–24. Over this five-year period, there has been a consistent rise in fund allocation—from ₹ 2,800 crore in 2019–20 to ₹ 8,348 crore in 2023–24—highlighting the government's growing commitment to clean energy initiatives. Fund utilization has also improved steadily, increasing from ₹ 2,000 crore to ₹ 6,310 crore during the same period.

However, a gap persists between allocation and utilization, indicating challenges in project execution and fund deployment. The utilization percentage remained stable around 70% during the first three years, peaked significantly to 81.7% in 2022–23, suggesting enhanced implementation efficiency, and slightly declined to 75.6% in 2023–24. This dip may reflect unspent balances or delayed project completions. Overall, while Uttar Pradesh has made notable financial progress in supporting renewable energy, optimizing fund utilization remains essential to maximize the impact of these investments.

V. CHALLENGES

1. Technological Disconnect in Rural Areas

One of the major challenges in optimizing solar energy in India is the lack of alignment between modern solar technologies and the realities of rural and tribal communities. While sophisticated systems like photovoltaic panels and smart inverters are being deployed, many rural users are not trained to operate or maintain them. As a result, systems often break down or remain unused due to minor faults or lack of awareness.

2. Overlooking Indigenous Knowledge

India has a long-standing tradition of environment-friendly and solar-aligned practices, such as east-facing home construction, use of courtyards for natural light, and sun-drying of crops. However, these indigenous methods are often ignored in modern energy planning. By neglecting traditional wisdom, policymakers miss out on low-cost, locally accepted, and time-tested approaches that could complement modern systems.

3. Minimal Community Involvement

Solar energy projects in many parts of India are introduced in a top-down manner, where decisions are made by government or external agencies without involving local communities. This lack of community participation leads to poor adoption, reduced ownership, and ineffective long-term maintenance, making even well-funded projects unsustainable.

4. Inadequate Policy Support for Integration

Although India has ambitious national solar missions and subsidies in place, there is little emphasis on integrating indigenous practices into formal energy planning. Existing policies tend to focus solely on infrastructure development and grid connectivity, with limited support for decentralized, culturally relevant energy solutions.

5. High Capital Cost and Financial Inaccessibility

The high initial investment required for solar installations — including panels, batteries, and inverters — is a significant barrier for rural households and small-scale users. Moreover, credit facilities, subsidies, or flexible financing options are not always accessible to those who need them the most.

6. Climatic and Regional Diversity

India's vast and diverse geography means that a uniform solar solution cannot be applied nationwide. Regions with frequent cloud cover, monsoon-related challenges, or terrain-related limitations may find traditional solar installations less effective unless adapted to local conditions.

VI. REMEDIES

1. Promoting Community-Centric Energy Models

To ensure long-term success of solar initiatives, it is vital to involve local communities at every stage — from planning and installation to maintenance and management. When people are part of the decision-making process, they are more likely to take ownership, use the systems efficiently, and ensure their upkeep. Community-led solar cooperatives or village-level energy committees can be powerful models for participatory implementation.

2. Integrating Indigenous Knowledge with Solar Design

Traditional practices — such as sun-aligned housing, use of natural light and heat, communal water heating systems, and sun-drying techniques — should be studied, preserved, and integrated into solar energy planning. Designing solar infrastructure that respects local customs and leverages existing sustainable behaviors can lead to more culturally relevant and widely accepted solutions.

3. Skill Development and Local Training

Building local capacity is crucial for system sustainability. Training programs for village youth, women's groups, and self-help groups can equip them with skills for basic installation, troubleshooting, and maintenance. This not only improves the efficiency of solar systems but also creates livelihood opportunities and reduces reliance on external technicians.

4. Inclusive Policy Reforms and Guidelines

Government policies should explicitly promote the inclusion of indigenous knowledge systems and decentralized energy planning. Policies need to be flexible enough to support hybrid models — combining modern technology with traditional practices — and should prioritize community ownership and rural entrepreneurship in solar energy deployment.

5. Customized Financing Models and Microcredit Schemes

Financial accessibility can be improved by introducing region-specific subsidies, micro-loans, and interest-free financing for low-income households. Special incentive packages for tribal and remote areas, combined with public-private partnership models, can reduce the upfront burden and encourage adoption.

6. Localized Technology Adaptation

Solar energy systems must be adapted to suit local environmental conditions. For instance, in cloudy or hilly regions, hybrid systems (solar + wind or solar + biomass) may be more effective. Similarly, systems with lower maintenance needs or rugged designs should be promoted in remote areas where repair services are limited.

VII. FINDINGS

- 1. Strong Policy Framework:* Government schemes like PM-KUSUM, Rooftop Solar Programme, and the Solar Park Scheme have created a favorable ecosystem for solar energy adoption in India and UP.
- 2. Uneven Regional Distribution:* While districts like Mirzapur and Bundelkhand have made significant progress, several rural and remote areas in UP still lack adequate infrastructure for solar installations.
- 3. Farmer Participation Rising:* Solar-powered pumps and decentralized energy systems are gaining traction among farmers, reducing dependence on diesel and grid electricity.
- 4. Financial and Procedural Bottlenecks:* Delays in subsidy disbursement, limited financing options for small households, and complex approval procedures are impeding faster adoption.
- 5. Limited Indigenous Integration:* Indigenous knowledge systems, though rich in sustainable practices, are underutilized in current solar development strategies.

VIII. SUGGESTIONS

- 1. Enhance District-Level Customization:* Develop district-specific solar energy plans that consider local climatic, economic, and infrastructural realities—especially in underserved regions.
- 2. Streamline Subsidy Mechanisms:* Simplify and digitalize subsidy processes through unified portals and mobile-based applications to ensure timely financial support.

- 3. Promote Skill Development:* Launch targeted training programs in collaboration with local institutions to build a rural workforce skilled in solar panel installation, maintenance, and innovation.
- 4. Integrate Indigenous Wisdom:* Encourage the inclusion of traditional knowledge (e.g., sun-based crop drying, earthen cooling systems) with modern solar engineering to foster sustainable and culturally resonant practices.
- 5. Foster Public-Private Partnerships (PPP):* Incentivize private players to invest in off-grid solar projects through flexible PPP models and risk-sharing frameworks.
- 6. Expand Awareness Campaigns:* Conduct regular community outreach programs to educate citizens on the long-term benefits and applications of solar energy—especially among farmers and rural women.

IX. CONCLUSION

solar energy stands as a cornerstone in India's transition toward sustainable development and energy independence, especially in alignment with the vision of **Viksit Bharat 2047**. Uttar Pradesh, with its vast solar potential, has made significant progress through targeted government schemes, supportive policies, and growing public awareness. From empowering farmers with solar pumps under PM-KUSUM to expanding rooftop and park-based installations, the state's solar journey reflects a blend of ambition and action. However, for solar energy to truly drive long-term economic and environmental transformation, there is a need for continued investment, local capacity building, and stronger coordination between policy, finance, and technology. Integrating traditional knowledge systems with modern engineering can further accelerate inclusive and resilient growth. With a sustained and collaborative effort, solar energy can illuminate not just homes, but also the path to a prosperous and self-reliant India.

REFERENCES

- [1] Agrawal, A. (1995). Dismantling the divide between indigenous and scientific knowledge. *Development and Change*, 26(3), 413–439.
- [2] Bhattacharya, S., & Palit, D. (2020). Mini-grid systems and livelihood support: A case study of India's energy transition. *Renewable and Sustainable Energy Reviews*, 123, 109735.
- [3] Chattopadhyay, D., & Srivastava, A. (2021). Grid integration challenges for renewable energy in India. *Energy Policy*, 149, 112056.
- [4] International Renewable Energy Agency (IRENA). (2023). *Renewable Energy Statistics 2023*. Abu Dhabi.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

- [5] Jain, R., & Verma, K. (2018). Role of traditional knowledge in sustainable rural energy systems in India. *Journal of Environmental Management*, 213, 66–75.
- [6] Joshi, R., & Raghavan, P. (2021). Policy evolution for sustainable energy access in India: Lessons from decentralized solar programs. *Energy for Sustainable Development*, 64, 79–86.
- [7] Mishra, M., Sharma, L., & Tyagi, R. (2022). Participatory solar energy models for rural India: Integrating engineering with local knowledge. *Renewable Energy*, 185, 1031–1042.
- [8] MNRE. (2022). Annual Report 2021–2022. Ministry of New and Renewable Energy, Government of India.
- [9] NITI Aayog. (2023). Energy Compendium 2023: Towards Sustainable Energy for All. Government of India.
- [10] Sharma, A., & Kumar, V. (2020). Solar energy potential and development in India: A review. *Renewable and Sustainable Energy Reviews*, 134, 110187.
- [11] Ministry of New and Renewable Energy. (2024). *Annual report 2023–24*. Government of India. <https://mnre.gov.in>
- [12] Uttar Pradesh New and Renewable Energy Development Agency. (2024). *State-wise progress and fund utilization reports 2019–2024*. <https://upneda.org.in>
- [13] NITI Aayog. (2021). *India energy outlook 2021: Towards a clean energy future*. <https://niti.gov.in>
- [14] Comptroller and Auditor General of India. (2023). *Performance audit report on implementation of renewable energy schemes in Indian states*. <https://cag.gov.in>
- [15] Reserve Bank of India. (2022). *Green finance in India: Progress and challenges*. <https://rbi.org.in>
- [16] International Renewable Energy Agency. (2022). *Renewable capacity statistics 2022 – India profile*. <https://irena.org>
- [17] Press Information Bureau. (2023, November). *Progress of solar energy schemes and budget allocations under PM-KUSUM and solar parks*. <https://pib.gov.in>
- [18] Lok Sabha. (2024). *Unstarred questions and answers related to solar energy and fund utilization (2019–2024)*. <https://loksabha.nic.in>