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Abstract— Climate change is intensifying due to escalating
greenhouse gas emissions, exerting severe pressure on
ecosystems, economic systems, and public health. Addressing
this global challenge requires intelligent, data-driven solutions
capable of managing complex environmental systems.
Avrtificial intelligence (Al), including machine learning, deep
learning, and optimization techniques, has emerged as a
powerful enabler of climate change mitigation. This paper
reviews recent advances in Al-driven mitigation strategies
across renewable energy, agriculture, transportation,
industry, forestry, and climate governance. The benefits,
technical limitations, and ethical considerations of Al
deployment are critically examined. The study highlights how
responsibly designed Al systems can accelerate the transition

toward low-carbon and climate-resilient development
pathways.
Keywords— Artificial intelligence, Carbon emission

reduction, Climate change mitigation, Precision agriculture,
Renewable energy optimization, Sustainable development.

I. INTRODUCTION

Climate change mitigation refers to practices that reduce
or prevent the emission of greenhouse gases (GHGs) and
enhance carbon sinks. Sustainable solutions must integrate
technology, policy, economic incentives, and societal
changes. In this context, Al — encompassing machine
learning, deep learning, optimization, and data analytics —
offers innovative capabilities for modeling complex
systems, enabling precision interventions, and optimizing
resource use. Al can significantly contribute to climate
mitigation by improving efficiency, forecasting changes,
and enabling intelligent decision making in energy, land
use, transportation, and industrial processes (Rolnick et al.,
2019).

579

Figure 1. Relative Impact of Al Applications Across Climate Mitigation Sectors
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Figure 1. Relative mitigation potential of artificial intelligence
applications across major climate-relevant sectors, including energy
systems, agriculture, transportation, industry, and forestry.

Table 1.
Major Al Techniques Used for Climate Change Mitigation
Al Technique Application Mitigation
Area Contribution
Machine Learning Energy Reduced fossil fuel

forecasting use

Deep Learning Climate Accurate prediction
modeling

Reinforcement Smart grids Energy efficiency

Learning

Computer Vision Forest Reduced
monitoring deforestation

Optimization Transport Lower emissions

Algorithms systems
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I1. Al TECHNIQUES FOR CLIMATE CHANGE MITIGATION

Machine learning, deep learning, reinforcement learning,
computer vision, and optimization algorithms are widely
applied in climate mitigation. These techniques improve
forecasting accuracy, enable intelligent decision-making,
and enhance system-level efficiency.

I1l. Al IN RENEWABLE ENERGY SYSTEMS

3.1 Forecasting and Grid Integration

Al techniques, such as neural networks and support
vector machines, enhance forecasting of renewable energy
generation (e.g., wind and solar), improving grid stability
and reducing dependence on fossil fuel backup power
(Zhang et al., 2020). Accurate prediction of renewable
outputs helps utilities balance supply—demand and reduce
curtailment.

3.2 Smart Grid Optimization

Al algorithms optimize energy distribution in smart
grids by adjusting loads and managing demand response,
ultimately minimizing energy waste and carbon emissions.
Deep reinforcement learning has been used to manage
complex grid operations efficiently (Kiani et al., 2022).

IV. Al IN AGRICULTURE AND LAND USE

4.1 Precision Agriculture

Al-enabled precision farming leverages satellite
imagery, sensor networks, and machine learning for real-
time decision making on irrigation, fertilizer application,
and pest control. Precision agriculture reduces energy use
and nitrous oxide emissions by applying inputs only where
needed (Liakos et al., 2018).

4.2 Climate-Smart Crop Forecasting

Predictive Al models help forecast crop yields under
climate extremes, aiding adaptation and resource allocation
while reducing carbon footprints associated with
inefficiencies in crop production.

V. Al FOR TRANSPORTATION EMISSIONS REDUCTION

Al supports intelligent transport systems (ITS) by
optimizing routes, managing traffic flows, and integrating
autonomous vehicles. Reduced congestion and improved
fuel efficiency can lead to significant reductions in carbon
emissions (Huang et al., 2021). Al also aids electrification
strategies by optimizing charging networks and battery
usage patterns.

VI. FORESTRY AND ECOSYSTEM PROTECTION

Deforestation is a major source of carbon emissions. Al
enables monitoring of forest changes through satellite
imagery and automated detection of illegal logging.
Convolutional neural networks (CNNs) and remote sensing
improve large-scale tracking of forest cover and support
conservation strategies (lenca et al., 2021).

VII. V. Al IN INDUSTRIAL EMISsIONS AND CARBON

CAPTURE

Al enhances energy efficiency in industrial settings
through predictive maintenance, reducing downtime and
energy waste. Furthermore, Al is being applied to design
and optimize carbon capture and storage (CCS)
technologies, potentially reducing emissions from heavy
industries (Mandal et al., 2022).

VIII.

Al supports climate policy by modeling socio-economic
and environmental scenarios. Al-driven integrated
assessment models (IAMs) evaluate the impacts of
mitigation strategies, assess cost-benefit dynamics, and
assist policymakers in identifying effective climate actions.

Al IN CLIMATE PoLicYy AND DECISION SUPPORT

Table 2.
Sector-Wise Applications of Al for Climate Mitigation
Sector Al Application Mitigation
Outcome
Energy Smart grids, forecasting | Reduced CO,
emissions
Agriculture Precision farming Reduced N, O
emissions

Transportation

Traffic optimization Fuel efficiency

Industry

Predictive maintenance Lower energy use

Forestry

Deforestation detection Carbon

sequestration

580




v

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

IX. OPPORTUNITIES AND ADVNTAGES

9.1 Scalability and Flexibility

Al systems can process massive data streams, making
them suitable for large-scale climate applications. They
adapt to changing conditions and integrate diverse datasets,
from satellite observations to sensor networks.

9.2 Real-Time Adaptation

Adaptive learning enables systems to respond in real
time to changing climate variables, improving the
resilience and efficiency of mitigation interventions.

Table 3.
Advantages and Challenges of Al-Driven Climate Solutions
Aspect Advantages Challenges
Scalability Large-scale Infrastructure cost
deployment
Accuracy High predictive | Data bias
power
Efficiency Optimized Energy-intensive
resources training
Policy Better decision | Ethical concerns
support making

X. CHALLENGES AND RISKS

10.1 Data Quality and Bias

Al outcomes depend heavily on data quality. Incomplete
or biased datasets can lead to erroneous predictions and
suboptimal decisions, underscoring the need for rigorous
data governance.

10.2 Computational Emissions

Al training and deployment require significant
computational resources, which themselves may contribute
to carbon emissions if powered by non-renewable energy
sources (Strubell et al., 2020).

10.3 Ethical and Governance Issues

Responsible Al frameworks must address transparency,
accountability, and equitable deployment, particularly in
vulnerable communities disproportionately affected by
climate change.
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Xl. FUTURE DIRECTIONS

Future research should focus on developing energy-
efficient Al architectures, interpretable models, and robust
hybrid systems that integrate Al with domain-specific
physical models. Multidisciplinary collaboration and global
policy frameworks will be essential for maximizing
positive impacts and minimizing unintended consequences.

Figure 2. Projected Emission Reduction With and Without Al Integration
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Figure 2. Projected greenhouse gas emission reduction trajectories
with and without Al-driven climate mitigation strategies.

XIlI.

Al-driven solutions possess significant potential to
accelerate climate change mitigation across sectors. From
enhancing renewable energy integration to optimizing
agricultural inputs and monitoring ecosystems, Al enables
smarter, data-driven interventions. However, challenges
related to data quality, computational footprints, and ethical
governance must be addressed proactively. With
responsible development and deployment, Al can become a
cornerstone technology for achieving global climate goals.

CONCLUSION

Table 4.
Al Contribution to Sustainable Development Goals (SDGs)
SDG Al Contribution
SDG 7 | Clean energy optimization
SDG 9 | Sustainable industrialization
SDG 11 | Smart cities
SDG 12 | Resource efficiency
SDG 13 | Climate action
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