

The impact of sustainable Leadership, Knowledge Absorptive capacity, and Project Innovativeness: on Project Performance

Iftikharullah Ghani¹, Ahmad Sameer Wahidi², Amanullah Sherzai³

Lecturers in Jahan University

Abstract-- This study investigates the impact of Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness on Project Performance using a sample of 100 participants. Quantitative data were analyzed using SPSS Version 29, including descriptive statistics, correlation analysis, and multiple regression modeling. The mean scores for Sustainable Leadership ($M = 3.84$, $SD = 0.34$) and Project Performance ($M = 3.81$, $SD = 0.34$) were relatively high, while Knowledge Absorptive Capacity ($M = 3.26$, $SD = 0.57$) and Project Innovativeness ($M = 3.39$, $SD = 0.58$) showed moderate levels. Correlation results revealed weak and non-significant relationships between the predictors and project performance: Sustainable Leadership ($r = 0.088$, $p = 0.193$), Knowledge Absorptive Capacity ($r = 0.068$, $p = 0.249$), and Project Innovativeness ($r = -0.020$, $p = 0.422$). The multiple regression model explained only 0.8% of the variance in project performance ($R^2 = 0.008$, $F (3, 96) = 0.262$, $p = 0.852$), indicating no significant predictive power. These findings suggest that while the studied variables are positively perceived, their direct impact on project performance is limited in this context. The study underscores the complexity of factors influencing project outcomes and recommends further research to explore additional variables and indirect relationships.

Purpose-- The purpose of this study is to examine the impact of Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness on Project Performance. Specifically, it aims to assess the strength and significance of the relationships between these variables and to determine the extent to which they predict project success within organizational settings.

Design Methodologies/Approach-- This study employed a quantitative, cross-sectional survey design, collecting data from 100 participants involved in various project activities. Data analysis was conducted using IBM SPSS Statistics Version 29. Descriptive statistics summarized the data, showing mean scores such as Sustainable Leadership ($M = 3.84$, $SD = 0.34$) and Project Performance ($M = 3.81$, $SD = 0.34$). Pearson correlation analysis assessed relationships among variables, revealing weak correlations between predictors and project performance (e.g., **Sustainable Leadership $r = 0.088$, $p = 0.193$**). Multiple regression analysis was performed to evaluate the predictive power of Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness on Project Performance, with the model explaining only 0.8% of the variance ($R^2 = 0.008$, $F (3, 96) = 0.262$, $p = 0.852$). The analysis included checks for multicollinearity and regression assumptions to ensure model validity.

Finding-- Using IBM SPSS Statistics Version 29, the study found that Sustainable Leadership ($M = 3.84$, $SD = 0.34$) and Project Performance ($M = 3.81$, $SD = 0.34$) were rated positively, while Knowledge Absorptive Capacity ($M = 3.26$, $SD = 0.57$) and Project Innovativeness ($M = 3.39$, $SD = 0.58$) had moderate scores. Correlation analysis showed weak, non-significant relationships between these variables and project performance (e.g., Sustainable Leadership $r = 0.088$, $p = 0.193$). Regression results indicated the predictors explained only 0.8% of the variance in project performance ($R^2 = 0.008$, $F (3, 96) = 0.262$, $p = 0.852$). Multicollinearity was detected between Sustainable Leadership and Knowledge Absorptive Capacity, but regression assumptions were satisfied. Overall, the variables showed limited direct impact on project performance in this sample.

Practical/ implementations Horizontal-- The findings suggest that organizations should focus on strengthening Sustainable Leadership and Knowledge Absorptive Capacity together, as their strong interrelation indicates a combined influence on project success. While direct impacts on project performance were limited, fostering leadership that promotes knowledge sharing can indirectly improve outcomes. Additionally, encouraging innovation tailored to the specific project context remains important, even if its direct effect was not statistically significant in this study. Managers should adopt a holistic approach by integrating leadership development, knowledge management, and innovation practices to enhance overall project effectiveness.

Originality Value-- This study contributes to the existing body of knowledge by simultaneously examining the combined effects of Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness on Project Performance within a single research framework. Using quantitative analysis via IBM SPSS Statistics Version 29, it provides empirical insights into the complex relationships among these variables in organizational project settings. Despite the limited direct impact found, the study highlights important interconnections and identifies areas for further exploration, offering valuable guidance for both scholars and practitioners seeking to enhance project outcomes through leadership, knowledge management, and innovation.

Key Words: Sustainable Leadership, Knowledge Absorptive Capacity, Acquisition Capacity, Assimilation Capacity, Transformation Capacity, Exploitation Capacity Project Innovativeness, Market Facets, Technology Facets, Firm-Internal Facets, ironment-Related Facets, Project Performance.

Paper Types: Research Papers

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online)) Volume 15, Issue 01, January 2026

I. INTRODUCTION

Every organization wishes to significantly raise its place, and strengthen participants between its representative competitors by arranging original, countrywide, and worldwide measures in order to accommodate commercial enterprise locations and have a positive image in existing occupations (Sahibzada et al., 2020d) Azim Mommand 2023 et al., Iftikharullah Ghani (2024). For implementing, an Effective plans which can achieve the goal instead of enhancing and developing operating core competencies consuming tried and true overall organizational methodology (Sahibzada et al., 2020c). There are varieties of corporate approaches, which are commonly used to achieve this objective, and then the consequence of one of these is found inside this corporation's instructional supervision in emerging markets (Gupta, Villaluz, chez al., 2008a; Latif et al., 2021). et al., Iftikharullah Ghani (2025). Today World economic strategies also proffered several challenges. Difficult challenges aimed at superiors in terms of leadership. To achieve goals and maintain Leaders should strive for a protracted strategic advantage. Arrange captivating resourcefulness, encouraging increasingly but instead wanting to take sensible precautions through ongoing inspiration and modernization. (Villaluz and Lineage, et al., 2018; Adena et al., 2019). As a result, Perhaps the most important aspect of knowledge monitoring is an overall organizational good leader. To progress manager skills in organizations and gain more compensation. (Iqbal et al., 2019) et al., Iftikharullah Ghani (2025). Knowledge management is also required for firms focused on project completion. Projects are common in the cutting-edge, resourceful, and experienced and understanding industry of information technology (IT) (Handzic., & Villaluz et al., 2016) Azim Mommand 2024 et al. Decision makers must have a straight impression of how enterprises confront but also integrate knowledge supervision progressions in order to expand productivity and manager skill levels. (2020a Latif et al.). For manager Understanding is a valuable resource meant for all establishments that, when appropriately managed, which can help them to gain a competitive advantage and improve project outcomes and productivity. So, Leaders are important for effective knowledge supervision through structural modernizations. (Bryant, 2003). Leadership is an essential constituent of successful Operations for effective management (Pers). Kuan (2005), Mokhtar et al. (2019), as well as Najam (2020). Dissimilar responsibilities require changed management attitudes in the organization in order to improve efficiency.

Which influence exactly how sound transformations stand instigated by some (2006), Sethibe and Ashwin (2015), Sethi (2018), or rather Perano et al. (2019). today Organizational learning, permeability, modernization, exploitation, or rather utilization knowledge absorptive capacity stays initiate to be present confidently interconnected with firm improvement presentation in terms of the product increment. (Sahibzada et al., 2020d). Additionally, we determine that firms' Progression of experience and understanding and the application of information capabilities cutting-edge improving productivity intermediate with the relationship amongst colleague achievement besides business the effectiveness of advancements. Awards (2017 & Salter, 2006; Zhao et al., 2018; Kamasak et al., 2017). As well as the dimensions for firms for innovation and knowledge assimilation. Our findings contribute to Research on wisdom capabilities and awareness of organizational behavior besides demonstrating, what comprehension is, conceptually and empirically. Ability influences businesses' improvement productivity through an Effective information approach. The ability to engage information obligates extensive stayed recognized for example an important influence in what manner fighting fit groups prosper popular relationships of modernization. (Kostopoulos or collaborators, 2011; Marco, 2015).

RQ1, does sustainable leadership influence project innovation in Afghanistan universities?

RQ2, Is there a direct relationship between Knowledge Absorptive Capacity and Project Performance in Afghanistan Universities?

RQ3, does project innovation improve project performance at Afghanistan universities?

RQ4, does project innovation in Afghanistan universities mediate the relationship between the KAC process and project performance?

II. BACKGROUND OF STUDY

In today's competitive and rapidly changing environment, organizations increasingly recognize the importance of effective project management for achieving strategic goals. Sustainable Leadership, which emphasizes ethical, visionary, and long-term thinking, (Iqbal et al., 2019) et al., Iftikharullah Ghani (2025) is seen as vital for guiding project teams and fostering success. Similarly, Knowledge Absorptive Capacity the ability to acquire, assimilate, and apply knowledge is critical for innovation and adapting to new challenges. Project Innovativeness, Kostopoulos or collaborators, 2011; Marco, 2015) Mokhtar et al. (2019) et al., Iftikharullah Ghani (2025).

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

Reflecting the extent to which projects introduce novel ideas or methods, also plays a crucial role in driving performance improvements. Despite their acknowledged importance, the combined impact of these factors on project performance remains underexplored, particularly in dynamic organizational settings. Despite their acknowledged importance, the combined impact of these factors on project performance remains underexplored, particularly in dynamic organizational settings. This study aims to fill that gap by investigating how sustainable leadership, knowledge absorptive capacity, and project innovativeness influence project outcomes (Sahibzada et al., 2020d) Azim Mommand 2023 et al., Iftikharullah Ghani (2025).

Problem statement

Some earlier lessons obligate shown that Sustainable Knowledge Leadership (SKL) enablers and processes have a single or immediate positive impact proceeding the usefulness before presentation for industries. (Iqbal et al., 2019; Gold et al., 2001; Chiu and Chen, 2016; Shahzad et al., 2016). Minute, standing exploration signposts so it Sustainable Knowledge Leadership (SKL) mends information operative consummation passing officialdoms. According to (Shujahat et al., 2018; Sahibzada ET voila. 2020), may perhaps encourage big businesses to popular cultivate their enactment (Sahibzada et al., and colleagues (2020). Knowledge Acquire Capacity (KAC) with no need for a reason to suspect. Is information-concentrated nitrated societies. (Sahibzada and colleagues, 2020), Despite the occurrence of substantial suggestions of Sustainable Leadership (SL) meaning in the use of present nonfiction, deficient examination studies obligate established simplifying relations along with foundations on behalf of energetic Sustainable Leadership (SL) representation in higher education institutions (Alluding as well as Rowley, 2017; Masa'deh et al., 2017; Iqbal et al., 2019). However, the literature has infrequently lectured on how it could be amended. Organizational scheme recital (Shujahat Alors Que al. (2018) and Sahibzada et al. (2020). Furthermore, the appliance by which Sustainable Leadership (SL) inspirations Project Sustainable Knowledge Leadership (PSKL) is indefinite. (Iqbal et al., 2019; Shahzad et al., 2016). Similarly, there hasn't been enough scientific study undertaken to investigate in what manner Sustainable Leadership (SL) touches Higher Education institutions (HEI) presentation. (Iqbal et al., 2019; Ahmad et al., 2017).

The relevance of using Sustainable Leadership (SL) to examine influencing factors was highlighted by (Iqbal et al. (2019). Was emphasized. Fundamental examination indicates that when Sustainable Leadership (SL) and Project Performance (PP) are linked, Knowledge Acquire Capacity (KAC) should be taken into account. (Shujahat et al. (2018) as well as Sahibzada et al. (2020). Since the researchers could not identify any data collection period Knowledge Acquire Capacity (KAC) to improve Project Performance (PP) the authors believe that the communication respectively Knowledge Acquire Capacity (KAC) and Sustainable Leadership (SL) on how well Higher Education Institutions (HEI) execution is just about non-existent. Completely disregarded. In spite of the fact that even more experiments on the Knowledge Acquire Capacity (KAC) are being performed, its superiority in boosting Project Performance (PP) is just mentioned. Undecided designer conservatories. (Bratianu and Bejinaru et al., (2017), Matsui as well as Kalita (2017), and Shujahat et al. (2018). Previous research on Knowledge Acquire Capacity (KAC) understanding of the consequences of Sustainable Leadership (SL) on Organization concerts, in specific, has received little consideration. (Sahibzada and colleagues, 2020).

Study Gaps:

Regardless of the occurrence of substantial evidence of sustainable Leadership (SL) purpose in the fashionable literature, inadequate research has complete smoothing relations for foundations of energetic Sustainable leadership Knowledge Management (SLKM) representation in Higher Education institutions (HEI). (Fullwood as well as Doherty (2017), Masa'deh et al. (2017), but instead Iqbal et al. (2019). At the exact moment, the current investigation directs which Sustainable Leadership project performance (SLPP) mends operational understanding sense of achievement Knowledge Acquire Capacity (KAC) in trades. (Shujahat notamment al. (2018) as well as Sahibzada et al., among others. (2020) Earlier research, in particular in what way Sustainable Knowledge Acquire Capacity (SKAC) construes the belongings of arranged Higher Education concert, has traditional little consideration. (Sahibzada et al., 2020). Additionally, research into the role of Knowledge Acquire Capacity (KAC) as an intermediary in the connection between Sustainable technology skill leadership (STSL) measures and higher education institutions (HEI) routine was largely flouted. Fourth, diminutive research on project innovate (PI) in higher education has been conducted.

Researchers believe that project innovate knowledge Management (PIKM) is dangerous besides lasting structural benefit lamentation that delivers project performance sustainable leadership (PPSL) through a sustainable economic improvement in the appearance of constantly-escalating too animated flea bazaar atmospheres. (Sahibzada et al., 2020a). Donate as well as Guadamilas el at., (2015); Sahibzada et al., 2019; Sahibzada et al., 2019; Sahibzada et al., 2019; Sahibzada et al., 2019). Comes to understanding and his associates (2016a).

III. LITERATURE REVIEW/ HYPOTHESES DEVELOPMENTS

sustainable leadership believes that Project innovate Performance procedures the way of familiarity creation, solicitation, packing, distribution, and then alteration exist essential for humanizing presentation plus achievement an inexpensive improvement (Shujahat and colleagues (2019a). Business practices around the world have raised some difficult issues for managers with respect to leadership styles. Leaders should concentrate on taking initiatives, risk-taking and building competitiveness in order to achieve goals and guarantee a sustained competitive advantage (Gil et al., 2018; Villaluz and Hechanova, 2019). To manage with the emerging business scenario, every organization has a firm aspiration to develop and create competition for competitors at the local, national or global level (Sahibzada et al., 2020d). The goal can be achieved by maximizing and creating new knowledge resources through proven organizational mechanisms (Sahibzada et al., 2020b). Several organizational mechanisms are accustomed to this purpose, but the importance of these is the company's leadership practices (Singh, 2008). Therefore, one of the leading knowledge management enablers is organizational leadership (Iqbal et al., 2019); leaders directly impact organizations and how they should address and manage knowledge management processes (Latif et al., 2020a). However Traditional management could not remain a selection for 21st-century groups by way of productivity remains near modification, predominantly as innovation advances and blazes. So Sustainable Knowledge (SK) is the key to contemporary corporate existence and success (Abubakar et al., 2018). There is a link respectively organizational effectiveness and leadership. Examined fashionable bright of several intermediating factors for manager skill improvement. (Kantor and Al-Dhaafri et al., 2016a). Controversial whether project success is straightly related to Project Performance.

Previous research has suggested that a review of sustainable leadership Management practices be conducted to assist explicate what influences and motivates various organizational achievements in terms of both productivity and manager skills Chang (et al. (2018); Nasab and Afshari et al., 2019; Naqshbandi as well as Jasimuddin, et al., 2018). The resource-based view of the firm suggests that organizations should use their strategic resources to achieve sustainable competitive advantage (Amit and Schoemaker, 1993). Sustainable leadership Knowledge-based view pronounces that knowledge is one of the most important strategic resources (Grant, 1996), which is valuable and unique as well. Therefore, such firms need to think how they can promote SL behavior amongst their employees without advanced and formal KM systems and programmers because of their small size. Dynamic capabilities (DCs) view suggests that for sustainable competitive advantage firms should have the competence of creating and reconfiguring abilities according to the changing environment (Teece et al., 1997; Teece, 2007) such as innovation capability. DCs view also suggests that having a tangible or intangible resource such as knowledge is not enough and firms need appropriate sustainable leadership's management practices to enhance DCs (Shamim et al., 2019a, 2019b). Knowledge-based dynamic capabilities (KBDCs) view suggests that DCs mainly depends on KM (Zheng et al., 2011). It makes SKAPP view a relevant theoretical framework for this study. Sustainable Leadership processes are rapidly becoming an important business activity for organizations and it consists of a dynamic and continuous set of processes and practices directed to identifying and leveraging the collective knowledge in an organization to help the organization compete (Garrido-Moreno et al., 2020). If organizations desire to maintain good standing in the industry and hold a competitive advantage by a high number of successful project implementations, they should not only rely on the traditional project management improvement techniques but also act to manage their Sustainable leadership knowledge-of-projects. Moreover, organizations need to employ an efficient Sustainable Leadership Knowledge Absorptive capacity strategy towards the successful completion of projects. Therefore, the research attempts to examine the influence of Sustainable leadership knowledge processes (Acquisition Assimilation, Transformation, Exploitation, and Capacity) on the Project performance through the mediating role of satisfaction of the knowledge worker.

A thorough literature assessment revealed that KM fosters organizational performance (Pang and Lu, 2018; Vinas-Bardolet ~ et al., 2018), thus, improves KWS as well (Shujahat et al., 2018; Sahibzada et al., 2020 et al., Iftikharullah Ghani (2025).

1: Sustainable Leadership Effective leadership enhances knowledge sharing, fosters a knowledge-friendly environment, and motivates employees. Supervisors and managers play a crucial role in sharing information. Knowledge-oriented leadership improves collaboration and collaboration. Modern approaches emphasize the influence of followers on leadership behaviors. Complexity leadership can overcome transformational leadership shortcomings, Sahibzada et al., 2020 et al., Iftikharullah Ghani (2025). enabling businesses to adapt to today's knowledge-driven environment.

2: Knowledge Absorptive capacity, Knowledge absorptive capacity (AC) is crucial for organizational learning, innovation, and performance (Garrido-Moreno et al., 2020). It influences prior knowledge, allowing firms to identify market opportunities and anticipate technological advances. Limited prior knowledge can lead to uncertainty.

2.1: Acquire Capacity External knowledge acquisition is crucial for organizations to innovate, involving internal creation, technological knowledge, market service strategies, customer problems, and market knowledge acquisition.

2.2: Assimilation Capacity Knowledge assimilation capacity refers to a firm's ability to analyze and interpret external information, enhancing its innovation and competitiveness. A firm with a strong capacity can solve problems faster (Pang and Lu, 2018; Vinas-Bardolet ~ et al., 2018), shorten product development cycles, avoid repetitive work, update knowledge reserves, and avoid waste of intellectual resources.

2.3: Transformation Capacity Knowledge transformation capacity is crucial for a firm's ability to combine existing and newly acquired knowledge. It involves developing routines to facilitate this process, often in social contexts. Effective knowledge transformation accelerates new knowledge absorption, integrates efficiently, and enhances business performance. Firms must reconstruct their cognitive structure to better understand and adapt to external knowledge.

2.4: Exploitation Capacity Knowledge exploitation capacity is a firm's ability to incorporate acquired, assimilated, and transformed knowledge into operations to solve real-world problems Iftikharullah Ghani (2025). Positive capacity converts acquired knowledge into internal knowledge, generating innovative ideas.

3: Project Innovativeness Project-based innovation performance involves improvements in project implementation, decision-making, quality, and cost reduction. Human capital is crucial in software and higher education. Innovation requires open communication, flexibility, risk-taking, and entrepreneurial ideals. Technology-based industries rely on innovation for profitability and global competitiveness.

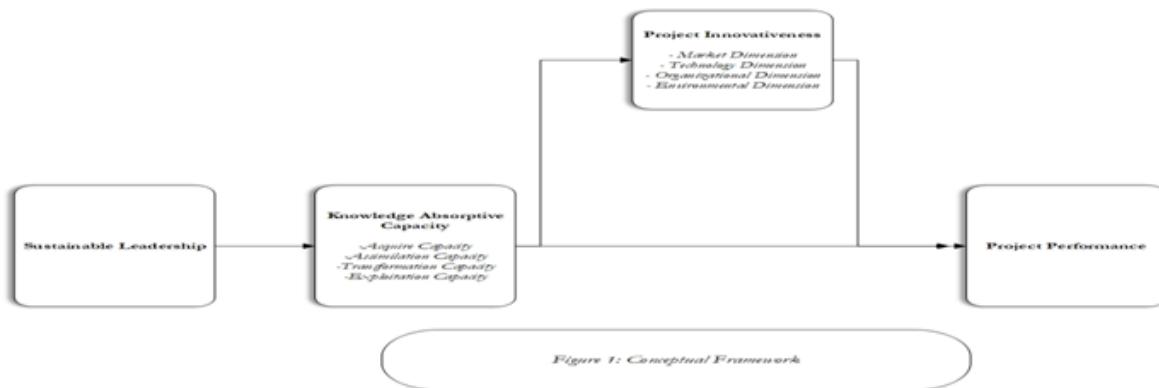
a. Market dimension Marketing is crucial for a company's performance, but there's a disconnect between market complexity and marketing capabilities. Redefining capabilities with higher-level capabilities like market sensing and customer-linking can improve market intelligence and organizational performance, (Garrido-Moreno et al., 2020). complementing market-related competencies.

b. Technology Dimension Technology is crucial for information sharing, enabling companies to develop business processes and promote knowledge exchange. ICT tools like Web 2.0 facilitate codifying tacit knowledge, but adoption is limited. Weblogs promote knowledge flow and reduce communication hurdles, making information technology a vital enabler for knowledge management.

c. Organizational Dimension Organizational knowledge is socially constructed templates used to improve performance, such as JIT, TQM, and continuous improvement. It's multi-actor, distributed among people, and tied to specific contexts. It's a "process service" nature, requiring tacit knowledge for tasks like health services. It requires justification and understanding to ensure human cohesion.

d. Environmental Dimension Environmental focus in warehousing research focuses on specific targets, feasibility, and application field. Literature covers warehouse automation, storage, and material handling systems. Measures like travel time, processing time, and throughput time are used to evaluate automated solutions. Economic performance is also considered in comparisons.

3.1: Market Facets Market complexity impacts marketing strategy implementation and firm performance. A gap exists between complexity and organizational capabilities, necessitating redefinition. Market orientation generates intelligence, but requires complementary capabilities. Combining MO and MC enhances firm performance.


3.2: Technology Facets Technology, particularly ICT tools like Web 2.0 and knowledge sharing platforms, significantly impacts information exchange within businesses. Weblogs are increasingly recognized as important tools for tacit knowledge exchange.

Information technology contributes to knowledge management, supporting knowledge management architecture. Despite debates about significant expenditures and potential human capital costs, information technology controls knowledge accessibility within organizations. Effective knowledge management relies on technological assistance, necessitating significant technology infrastructure investments.

3.3: Firm-Internal Facets refer to the internal resources, capabilities, and structures that influence a company's strategic direction and competitive advantage. These facets include organizational culture, leadership, operational efficiency, human capital, financial resources, and technological capabilities. A firm's ability to leverage these elements effectively determines its growth potential, innovation capacity, and market positioning. Strong internal facets create a solid foundation for adaptability, resilience, and long-term success in a competitive business environment.

3.4: Environment-Related Facets refer to external factors that influence a firm's operations, strategy, and overall success. These include economic conditions, technological advancements, regulatory policies, social trends, competitive dynamics, and environmental sustainability concerns.

Theoretical Framework:

Hypothesis:

H1: There is a significant impact of sustainable Leadership On project performance.

H2: There is a Significant Impact of sustainable leadership on the KAC Process (Acquire Capacity Assimilation Capacity, Transformation Capacity, and Exploitation Capacity).

Firms must continuously analyze and adapt to these changing external conditions to mitigate risks and seize new opportunities. A strong understanding of environment-related facets enables businesses to stay competitive, ensure compliance, and align with evolving market demands and societal expectations.

*3.5: project success*_Projects help organizations achieve goals efficiently and effectively, utilizing available resources. Project success (PS) is a key theme in project management, and knowledge management (KM) is crucial for achieving superior performance. However, few empirical studies have focused on KM's direct application in enhancing organizational performance. 4: Project Performance Productivity (PP) is a multidimensional concept that measures a firm's performance using objective and soft metrics. It focuses on three dimensions: financial success, operational success, and product excellence Sahibzada et al., 2020 et al., Iftikharullah Ghani (2025). Operational performance is the output of distinctive capabilities, reflecting a company's internal operations' quality, effectiveness, and productivity. High-performance operations are sought after for competitiveness, industrial excellence, and reduced administrative costs and inventory.

H3: There is Significant Impact of KAC the process on Project performance.

H4: There is a Significant Impact of sustainable leadership on the Project innovativeness process.

H5: There is a Significant Impact of the Project innovativeness process on project performance.

H6: KAC, PI process mediates the relationship between Sustainable leadership and project performance.

IV. RESEARCH METHODOLOGIES

According to Cooper and Schindler (2003), research design is described as a strategy for selecting data sources. It is a type of strategy that a researcher uses to determine how he would gather information and, more importantly, how he will incorporate the selected data into the study. It also identifies the different sorts of statistics utilized to answer the study questions. The major goal of the research design is to show that there is a link between the research variables and the study's topic. My investigation of the study is based on measurable methods. Understanding economies trust on the accomplishments of HEIs that conduct relevant research and develop different theories, which impact a nation's economic and social innovation. (Feiz et al., 2019 Iqbal et al., 2019). In place of little more than a consequence, exploration ought to remain integrated into organizations' popular emerging economic systems like China. Ministry of Commerce of the People's Republic of China Teaching obligates accentuated standing humanizing an examination philosophy that finally led to an experimental investigation at HEIs. (Lo, al., 2016a). since this experiment is using quantitative methods, primarily correlation and regression analysis in nature, a survey method motivation stands as the best performance otherwise technique intended for gathering information subsequently participants. And to composing, information will be analyzed further through the final assistance of (Statistical package for social science). (**SPPS Version 29**).

Significance of study: Regardless of developing vertical of maintainable management designer the computer science segment, studies that examine the qualifying surroundings also consequences for maintainable guidance observes are scarce. The existing education is among one of initially just before looking into the link among groundbreaking construction projects, information absorbency, and performance outcomes. This is the beginning of an education that isn't just evidenced but inspects small connotations amongst these different factors, however similarly adds to the nonfiction by proximately investigating the mediator function, one of which practical innovations is the application of wavelet empirical comparison study to recognize different project effectiveness paths.

V. RESEARCH OBJECTIVE

RO1, to determine the impact of sustainable leadership on project innovation in Afghanistan universities?

RO2, to determine whether KAC will improve project performance in Afghanistan universities?

RO3, do we have better project performance in Afghanistan universities to determine effective market dimension and technology dimension?

RO4, determine whether there is a positive and linked relationship between all of them?

Scope of the study: This study focuses on examining the impact of Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness on Project Performance. The research is limited to a sample of 100 participants, providing insights within a specific organizational or project context. It explores the direct relationships between these variables using quantitative methods, primarily correlation and regression analysis. The scope does not extend to qualitative factors, longitudinal effects, or other potential influences on project performance such as organizational culture or external environmental conditions.

Sample and Sampling Techniques: Current fundamental education collected records sources through data error correction, which comprised statistics from several categories of universities and different types of HEC personnel (Turner and Turner, 2009). (Academic as well as administrative). Several theoretical frameworks were used, comprising this same Sustainable Leadership aptitude exemplary (Gold et al., 2001), as well as the consequential system projection (Grant, 1996). (Grant, 1996). Consequently, the first period is situated on the road to indicate homework contributors. Finally, subjects of revision include speculative in addition to organizational personnel on or after Afghans community Higher Education Communications who are involved Tran's worked under the supervision research but then instruction now ordinary besides operational disciplines, construction, and sociology. Scholarship's observation historical persisted beginning December 2022 to May 2025.

Frequencies

		Statistics			
		Sustainable Leadership	Knowledge_Absorptive_Capacity	Project_Innovativeness	Project_Performance
N	Valid	100	100	100	100
	Missing	0	0	0	0

Frequency Table

Sustainable Leadership					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	3.20	17	17.0	17.0	17.0
	3.80	45	45.0	45.0	62.0
	4.00	7	7.0	7.0	69.0
	4.20	31	31.0	31.0	100.0
	Total	100	100.0	100.0	

Knowledge Absorptive Capacity					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1.80	2	2.0	2.0	2.0
	2.20	5	5.0	5.0	7.0
	2.40	2	2.0	2.0	9.0
	2.60	16	16.0	16.0	25.0
	2.80	2	2.0	2.0	27.0
	3.00	4	4.0	4.0	31.0
	3.20	13	13.0	13.0	44.0
	3.40	23	23.0	23.0	67.0
	3.80	21	21.0	21.0	88.0
	4.00	11	11.0	11.0	99.0
	4.20	1	1.0	1.0	100.0
	Total	100	100.0	100.0	

Project Performance					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	3.20	19	19.0	19.0	19.0
	3.80	49	49.0	49.0	68.0
	4.00	2	2.0	2.0	70.0
	4.20	30	30.0	30.0	100.0
	Total	100	100.0	100.0	

Project Innovativeness					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1.80	2	2.0	2.0	2.0
	2.20	2	2.0	2.0	4.0
	2.40	2	2.0	2.0	6.0
	2.60	14	14.0	14.0	20.0
	2.80	2	2.0	2.0	22.0
	3.00	2	2.0	2.0	24.0
	3.20	14	14.0	14.0	38.0
	3.40	18	18.0	18.0	56.0
	3.80	26	26.0	26.0	82.0
	4.00	10	10.0	10.0	92.0
	4.20	8	8.0	8.0	100.0
	Total	100	100.0	100.0	

The frequency analysis shows that Sustainable Leadership (76% rated 3.8 or above) and Project Performance (79% rated 3.8 or above) were perceived positively by most respondents.

In contrast, Knowledge Absorptive Capacity and Project Innovativeness exhibited more dispersed responses, with the highest frequencies at mid-range values (e.g., 23% rated 3.4 for absorptive capacity; 26% rated 3.8 for innovativeness), indicating greater variability in perceptions across participants.

Regression

Descriptive Statistics				
	Mean	Std. Deviation	N	
Project Performance	3.8100	.34392	100	
Sustainable Leadership	3.8360	.33681	100	
Knowledge Absorptive Capacity	3.2640	.57340	100	
Project Innovativeness	3.3920	.58113	100	

Descriptive statistics indicate that all variables were measured on a comparable scale across 100 respondents. Sustainable Leadership reported the highest mean score ($M = 3.84$, $SD = 0.34$), closely followed by Project Performance ($M = 3.81$, $SD = 0.34$).

Project Innovativeness ($M = 3.39$, $SD = 0.58$) and Knowledge Absorptive Capacity ($M = 3.26$, $SD = 0.57$) had slightly lower mean values, with higher variability, suggesting more diverse responses in these areas.

Correlations					
		Project Performance	Sustainable Leadership	Knowledge Absorptive Capacity	Project Innovativeness
Pearson Correlation	Project Performance	1.000	.088	.068	-.020
	Sustainable Leadership	.088	1.000	.731	.014
	Knowledge Absorptive Capacity	.068	.731	1.000	-.028
	Project Innovativeness	-.020	.014	-.028	1.000
Sig. (1-tailed)	Project Performance		.193	.249	.422
	Sustainable Leadership	.193		.000	.446
	Knowledge Absorptive Capacity	.249	.000		.393
	Project Innovativeness	.422	.446	.393	
N	Project Performance	100	100	100	100
	Sustainable Leadership	100	100	100	100
	Knowledge Absorptive Capacity	100	100	100	100
	Project Innovativeness	100	100	100	100

A Pearson correlation analysis was conducted to examine the relationships among Project Performance, Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness. The results showed no significant correlations between Project Performance and any of the independent variables.

However, a strong, positive, and significant correlation was found between Sustainable Leadership and Knowledge Absorptive Capacity ($r = .731$, $p < .001$), indicating a close association between these two constructs. All other relationships were weak and statistically non-significant.

Variables Entered/Removed			
Model	Variables Entered	Variables Removed	Method
1	Project Innovativeness, Sustainable Leadership, Knowledge Absorptive Capacity		Enter
a. Dependent Variable: Project Performance			
b. All requested variables entered.			

All three independent variables Project Innovativeness, Sustainable Leadership, and Knowledge Absorptive Capacity were entered simultaneously into the regression model to predict Project Performance.

No variables were removed during the analysis, indicating that the combined effects of these predictors were examined to assess their impact on project outcomes.

Model Summary ^b										
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics					Durbin-Watson
					R Square Change	F Change	df1	df2	Sig. F Change	
1	.090 ^a	.008	-.023	.34783	.008	.262	3	96	.852	2.024
a. Predictors: (Constant), Project Innovativeness, Sustainable Leadership, Knowledge Absorptive Capacity										
b. Dependent Variable: Project Performance										

ANOVA ^a						
Model		Sum of Squares		df	Mean Square	F
1	Regression	.095		3	.032	.262
	Residual	11.615		96	.121	
	Total	11.710		99		
a. Dependent Variable: Project Performance						
b. Predictors: (Constant), Project Innovativeness, Sustainable Leadership, Knowledge Absorptive Capacity						

The regression model including Project Innovativeness, Sustainable Leadership, and Knowledge Absorptive Capacity as predictors explains only 0.8% of the variance in Project Performance ($R^2 = 0.008$). The adjusted R^2 is negative (-0.023), indicating that the model does not improve prediction beyond the mean of project performance.

The model's overall fit is not statistically significant ($F(3, 96) = 0.262$, $p = 0.852$), suggesting that these variables do not significantly predict project performance in this sample. The Durbin-Watson statistic is 2.024, indicating no serious autocorrelation issues in the residuals.

Coefficients ^a											
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Correlations			Collinearity Statistics	
		B	Std. Error				Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	3.515	.463		7.589	.000					
	Sustainable Leadership	.084	.152	.082	.551	.583	.088	.056	.056	.465	2.151
	Knowledge Absorptive Capacity	.005	.089	.008	.053	.958	.068	.005	.005	.465	2.152
	Project Innovativeness	-.012	.060	-.021	-.204	.839	-.020	-.021	-.021	.997	1.003
a. Dependent Variable: Project Performance											

Collinearity Diagnostics ^a							
Model	Dimension	Eigenvalue	Condition Index	Variance Proportions			
				(Constant)	Sustainable Leadership	Knowledge Absorptive Capacity	Project Innovativeness
1	1	3.956	1.000	.00	.00	.00	.00
	2	.031	11.254	.00	.00	.17	.52
	3	.011	19.369	.23	.03	.39	.46
	4	.002	41.826	.76	.97	.44	.01
a. Dependent Variable: Project Performance							

The collinearity diagnostics reveal a potential multicollinearity issue among the predictors. The Condition Index value of 41.826 exceeds the recommended threshold of 30, indicating multicollinearity concerns.

Additionally, high variance proportions for Sustainable Leadership (0.97) and Knowledge Absorptive Capacity (0.44) in this dimension suggest these variables are highly correlated, which may affect the reliability of the regression coefficients. It is advisable to consider further investigation or corrective measures to address this issue.

Residuals Statistics ^a					
	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.7423	3.8577	3.8100	.03102	100
Residual	-.65371	.45485	.00000	.34252	100
Std. Predicted Value	-2.182	1.537	.000	1.000	100
Std. Residual	-1.879	1.308	.000	.985	100

a. Dependent Variable: Project Performance

The residuals analysis indicates that the predicted values for project performance closely match the observed values, with predicted scores ranging from 3.74 to 3.86 and a mean of 3.81. Residuals vary between -0.65 and 0.45, averaging near zero, which suggests the model's predictions are reasonably accurate. Additionally, standardized residuals fall within the acceptable range (-1.88 to 1.31), indicating no significant outliers or violations of regression assumptions.

VI. CONCLUSIONS

This study examined the influence of Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness on Project Performance among 100 participants. The descriptive statistics indicated generally positive perceptions of Sustainable Leadership and Project Performance, while Knowledge Absorptive Capacity and Project Innovativeness received moderately favorable ratings with greater variability. However, correlation and regression analyses revealed that none of these factors had a statistically significant direct effect on Project Performance within this sample. The weak and non-significant correlations suggest that the relationships may be more complex or influenced by other unmeasured variables. Notably, Sustainable Leadership and Knowledge Absorptive Capacity showed strong intercorrelation, indicating these constructs are closely linked and may jointly impact outcomes in ways not captured by simple linear models.

Multicollinearity diagnostics further indicated potential overlap between predictors, which could affect the stability and interpretability of regression coefficients. Residual analyses showed no major violations of regression assumptions, confirming the adequacy of the model fit despite its limited explanatory power. Overall, the findings suggest that while Sustainable Leadership, Knowledge Absorptive Capacity, and Project Innovativeness are conceptually important, their direct measurable impact on Project Performance in this context appears limited.

Future research should explore additional factors, potential moderating or mediating variables, and possibly employ larger or more diverse samples to better understand the drivers of successful project outcomes.

Implications:

The study suggests that while Sustainable Leadership and Knowledge Absorptive Capacity are related, their direct impact on project performance is limited, indicating project success depends on multiple factors. Organizations should focus on fostering leadership that supports knowledge sharing and encourage innovation tailored to their specific context. Researchers are encouraged to explore more complex relationships and larger samples to better understand what drives project performance.

Limitations and future research:

This study has several limitations that should be considered when interpreting the results. First, the sample size of 100 participants, while adequate for some analyses, may limit the generalizability of the findings to broader populations or different organizational contexts. Second, the cross-sectional design restricts the ability to infer causality or observe changes over time. Third, the study focused on three specific predictors, potentially overlooking other important factors influencing project performance. Future research should aim to include larger and more diverse samples to enhance generalizability. Longitudinal studies could provide insights into how the relationships among sustainable leadership, knowledge absorptive capacity, innovation, and project performance evolve over time. Additionally, incorporating other variables such as team dynamics, organizational culture, and environmental factors may offer a more comprehensive understanding of project success. Exploring moderating and mediating effects could also clarify the complex interplay between these constructs.

REFERENCES

[1] Ahmad, N., Lodhi, M.S., Zaman, K. and Naseem, I. (2017), "Knowledge management: a gateway for organizational performance", Journal of the Knowledge Economy, Vol. 8 No. 3, pp. 859-876.

[2] Ahmed, P.K. and Rafiq, M. (2003), "Internal marketing issues and challenges", *European Journal of Marketing*, Vol. 37 No. 9, pp. 1177-1186.

[3] Al-Kurdi, O., El-HaddaHaddadand Eldabi, T. (2018), "Knowledge sharing in higher education institutions: a systematic review", *Journal of Enterprise Information Management*, Vol. 31 No. 2, pp. 226-246.

[4] AlaAllard Abidin-Mohamed, Z. and Bustamam, U.S.B.A. (2016), "Mediating role of trust on the effects of knowledge management capabilities on organizational performance", *Procedia-Social Behavioral Sciences*, Vol. 235 No. 2016, pp. 729-738.

[5] Alavi, M. and Leidner, D.E. (2001), "Knowledge management and knowledge management systems: conceptual foundations and research issues", *MIS Quarterly*, Vol. 25 No. 1, pp. 107-136.

[6] Bano, S. and Taylor, J. (2015), "Universities and the knowledge-based economy: perceptions from a developing country", *Higher Education Research and Development*, Vol. 34 No. 2, pp. 242-255.

[7] Barley, W.C., Treem, J.W. and Kuhn, T. (2018), "Valuing multiple trajectories of knowledge: a critical review and agenda for knowledge management research", *The Academy of Management Annals*, Vol. 12 No. 1, pp. 278-317.

[8] Black, R. (2001), *Humanism and Education in Medieval and Renaissance Italy: Tradition and Innovation in Latin Schools from the Twelfth to the Fifteenth Century*, Cambridge University Press, Cambridge, United Kingdom.

[9] Bontis, N. and Serenko, A. (2009), "Longitudinal knowledge strategising in a long-term healthcare organisation", *International Journal of Technology Management*, Vol. 47 No. 1, pp. 276-297.

[10] Bontis, N., Crossan, M.M. and Hulland, J. (2002), "Managing an organizational learning system by aligning stocks and flows", *Journal of Management Studies*, Vol. 39 No. 4, pp. 437-469.

[11] Boshoff, C. and Tait, M. (1996), "Quality perceptions in the financial services sector: the potential impact of internal marketing", *International Journal of Service Industry Management*, Vol. 7 No. 5, pp. 5-31.

[12] Bratianu, C. and Bejinaru, R. (2017), "Knowledge strategies for increasing IC of universities", paper presented at the European Conference on Intellectual Capital.

[13] Bryant, S.E. and Terborg, J.R. (2008), "Impact of peer mentor training on creating and sharing organizational knowledge", *Journal of Managerial Issues*, Vol. 20 No. 1, pp. 11-29.

[14] Carlos, V.S. and Rodrigues, R.G. (2012), "Internal market orientation in higher education institutions- its inter-relations with other organisational variables", *Public Policy and Administration*, Vol. 11 No. 4, pp. 690-702.

[15] Chang, T.-C. and Chuang, S.-H. (2011), "Performance implications of knowledge management processes: examining the roles of infrastructure capability and business strategy", *Expert Systems with Applications*, Vol. 38 No. 5, pp. 6170-6178.

[16] Chatterji, N. and Kiran, R. (2017), "Role of human and relational capital of universities as underpinnings of a knowledge economy: a structural modelling perspective from north Indian universities", *International Journal of Educational Development*, Vol. 56 No. 3, pp. 52-61.

[17] Chatzoudes, D., Chatzoglou, P. and Vraimaki, E. (2015), "The central role of knowledge management in business operations: developing a new conceptual framework", *Business Process Management Journal*, Vol. 21 No. 5, pp. 1117-1139.

[18] Chaurasia, S.S., Kodwani, D., Lachhwani, H. and Ketkar, M.A. (2018), "Big data academic and learning analytics: connecting the dots for academic excellence in higher education", *International Journal of Educational Management*, Vol. 32 No. 6, pp. 1099-1117.

[19] Davenport, T.H. and Prusak, L. (1998), *Working Knowledge: How Organizations Manage What They Know*, Harvard Business Press, Boston, USA.

[20] Day, G.S. (1994), "The capabilities of market-driven organizations", *Journal of Marketing*, Vol. 58 No. 4, pp. 37-52.

[21] Donate, M.J. and de Pablo, J.D.S. (2015), "The role of knowledge-oriented leadership in knowledge management practices and innovation", *Journal of Business Research*, Vol. 68 No. 2, pp. 360-370.

[22] Donate, M.J. and Guadarrama, F. (2015), "An empirical study on the relationships between knowledge management, knowledge-oriented human resource practices and innovation", *Knowledge Management Research and Practice*, Vol. 13 No. 2, pp. 134-148.

[23] Drucker, P.F. (1998), "Management's new paradigms", *Forbes Magazine*, Vol. 10 No. 2, pp. 98-99. Drucker, P.F. (1999), "Knowledge-worker productivity: the biggest challenge", *California Management Review*, Vol. 41 No. 2, pp. 79-94.

[24] Epstein, I. (2017), *Chinese Education: Problems, Policies, and Prospects*, Routledge, Garland, New York. Falk, R.F. and Miller, N.B. (1992), *A Primer for Soft Modeling*, University of Akron Press, United States of America.

[25] Feiz, D., Dehghani Soltani, M. and Farsizadeh, H. (2019), "The effect of knowledge sharing on the psychological empowerment in higher education mediated by organizational memory", *Studies in Higher Education*, Vol. 44 No. 1, pp. 3-19.

[26] Hair, F.J. Jr, Sarstedt, M., Hopkins, L. and Kuppelwieser, G.V. (2014), "Partial least squares structural equation modeling (PLS-SEM) an emerging tool in business research", *European Business Review*, Vol. 26 No. 2, pp. 106-121.

[27] Iftikharullah Ghani. (2022). Impact of Exchange Rates on Returns in Share Market: A Case Study of Pakistan. *International Journal of Innovative Science and Research Technology*, 7(8), 1894–1947. <https://doi.org/10.5281/zenodo.7124517>.

[28] Iftikharullah Ghani. (2022). Customer Relationship Management: Experimental Inspirations (A Case Study of AIB Bank). *International Journal of Innovative Science and Research Technology*, 7(8), 1778–1792. <https://doi.org/10.5281/zenodo.7098440>.

[29] Iftikharullah Ghani, Pardesullah Wayand, Dr Azim Momamand, Ikhtiarullah Safi, Shamshad Amarkhai, (2023), "Impact of Training on Da Afghanistan Bank Employees performance", *journal of emerging technologies and innovative research* Vol:10 issue:7 pp a290-a302.

[30] Iftikharullah Ghani, Abdul Muhammad Mustaf, Dr Mohammad Hakim Hadid (2023), "The supervisory Role of da Afghanistan Bank and its Impact on: Financial Stability.", *international Journal of Research and Analytical reviews*. Vol 10, issue4 pp 910 -918.

[31] Iftikharullah Ghani, Abdul Hadi Sabawoon, Dr. Abdul Shakoor Momand (2024), "The impact of Murabaha Scopes in banking sectors: the Horizontal and Vertical Financial Ratio Analysis (A case study of Bank-e-Milli Afghanistan).", *international journal of current Science* Vol.14, issue3pp149-166.

[32] Iftikharullah Ghani, Noor Ul Haq Khairi, Hanifullah Bashar (2024), "Livelihood Opportunities and its Impact on: Women in the Rural areas of Afghanistan", *international journal of current Science* Vol.14, issue3pp149-166.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online)) Volume 15, Issue 01, January 2026

- [32] Iftikharullah Ghani, Abdul Baseer Hakeemi, (2025), "Assessment of Knowledge, Attitude and Practices Regarding Antenatal Care among pregnant Women in Kabul City, Afghanistan", Global Scientific journals, Vol.13, issue9, pp.40-50.
- [33] Liu, Y., Chan, C., Zhao, C. and Liu, C. (2019), "Unpacking knowledge management practices in China: do institution, national and organizational culture matter?", Journal of Knowledge Management, Vol. 23 No. 4, pp. 619-643.
- [34] Lo, W.Y.W. (2016), "The concept of greater China in higher education: adoptions, dynamics and implications", Comparative Education, Vol. 52 No. 1, pp. 26-43.
- [35] Magner, N., Johnson, G.G. and Elfrink, J. (1994), "Evidence on the relationship between procedural and distributive justice in performance appraisal and accounting faculty attitudes and performance", Journal of Accounting Education, Vol. 12 No. 4, pp. 325-341.
- [36] Mahamed Ismail, N.A., Welch, C. and Xu, M. (2015), "Towards a sustainable quality of university research: knowledge sharing", Knowledge Management Research and Practice, Vol. 13 No. 2, pp. 168-177.
- [37] Mahdavi Mazdeh, M. and Hesamamiri, R. (2014), "Knowledge management reliability and its impact on organizational performance: an empirical study", Program, Vol. 48 No. 2, pp. 102-126.
- [38] Martelo-Landroguez, S. and Cepeda-Carri'on, G. (2016), "How knowledge management processes can create and capture value for firms?", Knowledge Management Research and Practice, Vol. 14 No. 4, pp. 423-433.
- [39] Masa'deh, R.E., Shannak, R., Maqableh, M. and Tarhini, A. (2017), "The impact of knowledge management on job performance in higher education: the case of the University of Jordan", Journal of Enterprise Information Management, Vol. 30 No. 2, pp. 244-262.
- [40] Ml'adkov'a, L., Zouharov'a, J. and Novy', J. (2015), "Motivation and knowledge workers", Procedia-Social Behavioral Sciences, Vol. 207 No. 4, pp. 768-776.
- [41] Munir, H., Jianfeng, C. and Ramzan, S. (2019), "Personality traits and theory of planned behavior comparison of entrepreneurial intentions between an emerging economy and a developing country", International Journal of Entrepreneurial Behavior, Vol. 25 No. 3, pp. 554-580.
- [42] Ngah, R., Tai, T. and Bontis, N. (2016), "Knowledge management capabilities and organizational performance in roads and transport authority of Dubai: the mediating role of learning organization", Knowledge and Process Management, Vol. 23 No. 3, pp. 184-193.
- [43] Nonaka, I. and Takeuchi, H. (1995), The knowledge-creating company: How Japanese companies create the dynamics of innovation, Oxford university press, Oxford.
- [44] Obeidat, B.Y., Al-Suradi, M.M., Masa'deh, R.E. and Tarhini, A. (2016), "The impact of knowledge management on innovation: an empirical study on Jordanian consultancy firms", Management Research Review, Vol. 39 No. 10, pp. 1214-1238.

Corresponding Author

Iftikharullah Ghani

Can Be Contacted at: iftikharullah.ghani@gmail.com