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Extended Abstract:

>

Nickel-Titanium (NiTi) shape memory alloys (SMAs) have
become increasingly important in biomedical, aerospace,
and precision-engineering applications due to their
superelasticity, biocompatibility, and shape-memory effect.
However, these advantageous properties also pose
significant challenges for precision machining.

NiTi alloys exhibit pronounced work-hardening, low
thermal conductivity, and phase-transformation behavior
during cutting, which complicate chip formation, accelerate
tool wear, and lead to variability in surface integrity.

In micro-milling—a manufacturing process employed to
produce miniature features with tight dimensional
tolerances—surface roughness, typically quantified by the
arithmetic average roughness (Ra), is a critical quality
attribute.

Ra directly influences fatigue life, implant osseointegration,
frictional behavior, and the overall functional performance
of NiTi components. As a result, controlling surface
roughness is not merely a technical concern but also a
strategic and managerial priority, as it directly affects
product reliability, regulatory compliance, rework rates, and
total production cost.

Addressing this challenge, the present study proposes a
management-aligned optimization framework that integrates
shop-floor machining decisions with broader production
objectives using a Modified Differential Evolution (MDE)
algorithm.

Key machining variables—including spindle (cutting)
speed, feed rate, axial depth of cut, and tool diameter—are
treated as controllable decision levers available to
production planners and process engineers.
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Surface roughness (Ra) is adopted as the primary key
performance indicator (KPI), while secondary factors such
as tool life, cycle time, and unit cost are incorporated as
constraints or as weighted objectives within multi-criteria
optimization formulations.

The proposed framework is designed to translate
algorithmic results into actionable operational guidance.
Specifically, it delivers recommended parameter
combinations, projected improvements in surface quality,
anticipated effects on throughput, and sensitivity analyses
that identify the most influential process variables.

From a methodological standpoint, the research integrates
experimental investigation, computational optimization, and
statistical validation. A structured set of micro-milling
experiments on NiTi specimens provides the empirical data
required for response modeling, with surface profiles
measured using high-resolution techniques such as stylus
profilometry and / or atomic force microscopy to obtain
accurate Ra values.

The Modified Differential Evolution algorithm employed in
this study incorporates adaptive control of mutation and
crossover parameters, elitist selection strategies, and a local
search refinement stage to enhance convergence behavior
and mitigate premature stagnation commonly observed in
classical DE.

The performance of the MDE approach is benchmarked
against conventional DE and Taguchi-based optimization
methods using metrics including best-achieved Ra, average
population fitness, convergence speed, and robustness under
measurement noise. Statistical analyses, including analysis
of variance (ANOVA), confidence interval estimation, and
repeated-runs testing, are conducted to verify that the
observed performance improvements are statistically
significant and repea.
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Nomenclature
Symbol Definition Unit
Ra Arithmetic average surface roughness Mm
Vs Spindle speed / cutting speed rpm or m/min
f Feed rate mm/rev or pm/tooth
ap Axial depth of cut Mm
Dt Tool diameter Mm
T Tool life Min
Cu Unit production cost currency/unit
tc Cycle time S or min
DE Differential Evolution algorithm -
MDE  Modified Differential Evolution algorithm —
KPI Key Performance Indicator -

ANOVA Analysis of Variance

I. LITERATURE REVIEW AND INTRODUCTION

Nickel-Titanium (NiTi) shape memory alloys (SMAs)
are extensively used across various industries owing to
their exceptional mechanical and functional characteristics,
such as superelasticity, biocompatibility, and the shape
memory effect [1-2]. These attributes make NiTi alloys
indispensable in applications including biomedical devices,
aerospace components, and precision engineering systems.
However, determining optimal machining conditions
through experimental trial-and-error approaches is time-
consuming, costly, and resource-intensive, rendering such
methods impractical for complex machining processes.
Although conventional optimization techniques remain
widely adopted by machinists, there is growing interest in
advanced optimization methods such as Genetic
Algorithms (GA), Particle Swarm Optimization (PSO)—a
swarm intelligence—based technique [13]—and Differential
Evolution (DE), a population-based algorithm [14-16].
These algorithms offer promising time- and cost-efficient
solutions for addressing complex, nonlinear machining
optimization problems. Among them, DE has demonstrated
superior robustness in multi-objective optimization;
nevertheless, it is often limited by slow convergence rates
and susceptibility to premature convergence [17].
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To address these shortcomings, several Modified
Differential Evolution (MDE) variants have been proposed.
These enhancements improve DE’s optimization
performance through hybrid search strategies, adaptive
parameter control, and local search mechanisms [18—19].
The application of MDE in machining optimization has
shown considerable potential for improving process
parameter selection and reducing surface roughness [20].
Specifically, MDE provides a structured framework for
identifying optimal micro-milling conditions that yield
superior surface finish when machining NiTi alloys. In this
context, the Taguchi method has been employed to develop
a regression model that establishes the relationship between
key machining parameters—such as axial feed, feed per
tooth, cutting edge radius ratio, and nanoparticle-assisted
lubrication methods—and surface roughness (Ra) [21].
This regression model serves as the fitness function for the
MDE algorithm, enabling efficient exploration of the
search space and identification of optimal parameter
combinations for enhanced machining performance.
Optimal tuning of control parameters is particularly critical
in complex engineering systems involving interacting
processes.
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Recent studies have demonstrated the effectiveness of
MDE in optimizing control parameters for applications
such as microgrid frequency regulation and active
suspension systems, leading to improved stability and
overall system performance [22-23]. In micro-milling
operations, lubrication strategies play a vital role alongside
process parameter optimization in enhancing surface finish
and extending tool life. Minimum Quantity Lubrication
(MQL) and solid lubricants, such as boron nitride (BN)
nanoparticles, have been widely investigated for their
ability to reduce friction, dissipate heat, and minimize tool
wear [19, 24]. MQL involves the controlled delivery of a
small quantity of lubricant into the cutting zone, offering
environmental benefits while improving machining
efficiency [25]. The incorporation of BN nanoparticles
further enhances lubrication effectiveness by improving
adhesion, facilitating chip fracture, reducing surface
roughness, and increasing the durability of both the cutting
tool and work piece [26]. By simultaneously optimizing
machining and lubrication parameters, a holistic approach
can be adopted to achieve superior surface finishes during
the micro-milling of NiTi alloys [27-28]. In this study, the
optimization of surface roughness (Ra) in micro-milling of
NiTi SMAs is accomplished wusing the Modified
Differential Evolution algorithm. The integration of
Taguchi-based regression modeling with MDE enables the
systematic determination of optimal machining parameters
aimed at minimizing Ra. Furthermore, the application of
MQL combined with BN nanoparticles significantly
enhances machining performance. These findings
contribute to the advancement of machining optimization
methodologies by demonstrating MDE’s effectiveness in
achieving high-quality surface finishes while supporting
green and sustainable manufacturing practices. The insights
obtained from this research are highly relevant to industries
requiring high-precision NiTi components, including
biomedical, aerospace, and robotics sectors, where surface
integrity and component reliability are of paramount
importance.

II. MANAGERIAL PERSPECTIVE ON EXPERIMENTAL DATA
AND OPTIMIZATION

Data-Driven Analysis of Machining Performance:

Surface roughness (Ra) was analyzed using an
experimentally validated machining dataset to support
evidence-based decision-making in micro-manufacturing
operations. The study evaluated the influence of key
controllable process parameters—namely the feed per tooth
to cutting edge radius ratio, nanoparticle concentration in
minimum quantity lubrication (MQL), and cutting
environment—on surface quality outcomes.
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The experimental data were sourced from the work of
Zailani and Mativenga [21], who conducted micro-milling
experiments on NiTi shape memory alloys under three
lubrication strategies: dry machining, MQL with graphene
nanoparticles, and MQL with boron nitride (BN)
nanoparticles. To ensure measurement reliability and
consistency—critical for managerial decisions based on
quality metrics—surface roughness measurements were
performed using a calibrated VK-X200K optical
profilometer. Each experimental condition was measured at
least five times, reducing random uncertainty and
strengthening the robustness of performance evaluation.

Statistical Modeling for Process Control:

To translate experimental observations into actionable
insights, a regression-based Ra prediction model was
developed to quantify the relationships between machining
parameters, lubrication strategy, and nanoparticle
concentration. The Taguchi design of experiments
approach, employing an L4 orthogonal array, was adopted
to efficiently analyze parameter effects with minimal
experimental cost—an important consideration in
manufacturing resource management. Regression analysis
and Analysis of Variance (ANOVA), conducted using
Minitab software, enabled the identification of statistically
significant factors influencing surface roughness. From a
management standpoint, this model functions as a decision-
support tool, allowing practitioners to assess trade-offs
among process settings and predict quality outcomes with
confidence. The validated regression model was
subsequently embedded as the fitness function within the
optimization framework.

Optimization as a Decision-Support Mechanism:

A Modified Differential Evolution (MDE) algorithm was
employed to determine optimal machining conditions that
minimize surface roughness. From an operations
management perspective, MDE serves as an intelligent
optimization engine that systematically explores the
decision space and refines parameter selection to achieve
superior quality performance. Enhancements such as
adaptive mutation strategies and local search mechanisms
were incorporated to improve solution robustness, prevent
premature  convergence, and enhance exploration
efficiency. The algorithm was implemented in MATLARB,
enabling  computational  evaluation of parameter
combinations and identification of configurations that
consistently yield minimal Ra values.
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Verification and Managerial Validation

To validate the effectiveness of the optimization-driven
decision framework, the predicted optimal machining
parameters were experimentally verified. The verification
results demonstrated close agreement between predicted
and measured Ra values, confirming the reliability of the
proposed approach.

Data-Driven Analysis of Machining
Performance

il s

» Dry Machining, MQL with Graphene, MQL with BN
» Validated Surface Roughness Measurement

Managerial Perspective on Experimental Data and Optimization

This validation phase establishes managerial confidence
in the framework’s applicability, demonstrating that the
integration of statistical modeling and evolutionary
optimization can support informed decision-making,
improve surface quality, and enhance overall micro-milling
performance. The proposed methodology thus offers a
structured, data-driven approach for quality management
and process optimization in advanced manufacturing
systems.

Statistical Modeling for
Process Control

Taguchild | 2 I

« Regression-Based Ra Model ' i
» Taguchi Design & ANOVA Analysis =

Optimization as a Decision-Support
Mechanism

@t

» Adaptive Strategy Enhancements
« Optimal Parameter Selection

Verification and
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III. SOLUTION CHARACTERISTICS OF DIFFERENTIAL

EVOLUTION

Differential Evolution (DE) provides robust and high-
quality solutions for complex optimization problems
characterized by nonlinearity, multimodality, and strong
parameter interactions. The algorithm’s  solution
effectiveness arises from its population-based search
mechanism and differential mutation strategy, which
collectively ensure balanced global exploration and local
exploitation.
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Key solution characteristics of DE include:

1. Global Optimality: DE efficiently explores the search
space and demonstrates strong capability in escaping
local optima, making it sui for solving highly
nonlinear and multimodal objective functions.

2. Fast and S Convergence: The use of vector-based
perturbation and greedy selection accelerates
convergence toward high-quality solutions while
maintaining numerical stability.
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3. Robustness to Noise and Uncertainty: DE maintains
solution reliability even in noisy experimental
environments, such as machining processes where
measurement variability is inevi.

4. Scalability and Flexibility: DE can handle both low-
and high-dimensional optimization problems and can
be easily adapted by modifying mutation strategies,
control parameters (F and CR), or hybridizing with
local search techniques.

5. Ease of Implementation: With few control parameters
and simple mathematical operations, DE is
computationally efficient and straightforward to
implement using platforms such as MATLAB.

In this study, the DE framework—enhanced through
adaptive mutation strategies in the Modified Differential
Evolution (MDE) approach—enabled reliable identification
of optimal machining parameters that minimized surface
roughness (Ra).

IV. APPLICATIONS OF DIFFERENTIAL EVOLUTION

Due to its efficiency and versatility, Differential
Evolution has been widely applied across engineering,

manufacturing, and decision-support domains. Major
application areas include:
1. Manufacturing Process Optimization

DE is extensively used to optimize machining

parameters such as cutting speed, feed rate, depth of cut,
and lubrication conditions to improve surface quality, tool
life, and energy efficiency. In micro-milling of NiTi shape
memory alloys, DE effectively identifies optimal parameter
combinations under multiple lubrication environments.

2. Multi-Objective Engineering Design

DE supports multi-objective optimization problems
where trade-offs exist between conflicting objectives such
as quality, productivity, and cost. It enables decision-
makers to select Pareto-optimal solutions that align with
strategic manufacturing goals.

3. Control Systems and Automation

DE is applied in tuning controllers, optimizing system
parameters, and enhancing control performance in
nonlinear and dynamic systems.

4. Structural and Mechanical Engineering

Applications include structural optimization, vibration
control, and material property estimation, where DE
handles complex constraint-driven optimization efficiently.
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5. Data-Driven Decision Support Systems

When integrated with regression models, neural
networks, or surrogate models, DE functions as a powerful
decision-support engine for data-driven optimization in
Industry 4.0 environments.

6. Energy, Sustainability, and Resource Optimization

DE is increasingly used to optimize energy consumption,
reduce emissions, and improve sustainability performance
in advanced manufacturing and industrial systems.

V. RELEVANCE TO THE PRESENT STUDY

In the present work, the Modified Differential Evolution
(MDE) algorithm serves as an intelligent optimization and
decision-support tool by integrating experimental data,
statistical modeling, and evolutionary search. This
integration enables systematic identification of optimal
micro-milling conditions, ensuring improved surface
quality, reduced experimental trial costs, and enhanced
managerial confidence in decision-making for advanced
manufacturing systems.

Experimental Design and Regression Analysis

The experimental design was conducted at two different
levels for each control factor. Three cutting parameters
were selected for the study. An L4 orthogonal array (OA)
was employed, accommodating three factors at two levels
each. However, constructing a regression model with three
factors using only four experimental runs exhausts all
available degrees of freedom, leaving no scope for
estimating experimental error. To overcome this limitation
and enhance statistical reliability, a replication strategy was
adopted. Replication increases the degrees of freedom for
error estimation and mitigates the risk of over fitting,
thereby improving model robustness [30]. Consequently,
the total number of experimental runs was increased to
eight. Experimental settings and corresponding surface
roughness (Ra) values, including both measured and
model-predicted responses. The input factors include the
feed per tooth to cutting edge radius ratio (A), nanoparticle
composition (B), and cutting environment (C), where boron
nitride (BN) and graphene nanoparticles are coded as —1
and +1, respectively. The close agreement between
experimental and predicted Ra values, along with small
prediction errors, demonstrates the model’s effectiveness in
capturing the influence of machining parameters on surface
quality. The results indicate that higher feed-per-tooth
ratios (A = 2.0) lead to increased surface roughness,
whereas lower feed values (A = 0.4) produce smoother
surfaces.
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Additionally, the cutting environment significantly
affects Ra, with BN-based MQL (C = —1) consistently
yielding lower surface roughness than graphene-based
MQL (C=+1).

L4 Orthogonal Array
Factor A: Factor B: Factor C.
Feed/tooth | Nanoparticle Cutting
Ratio Environment

0.4 BN BN
0.4 [ Graphene Graphene
2.0 BN BN
2.0 I Graphene Graphene
4.0 | BN BN
3.0 I Graphene Graphene
60 | BN BN

Surface Roughness (Ra)
1.6

B BN MQL
W Graphene MQL

0.4 2.0

Feed/Tooth Ratio (A)

Higher Feed/Tooth Ratio_l

Increased Surface Roughness

VI. STATISTICAL SIGNIFICANCE AND MODEL
VALIDATION
Statistical analysis was performed wusing Minitab

software to evaluate the regression coefficients and the
significance of each cutting parameter. Analysis of
Variance (ANOVA) results are summarized. The model
exhibited strong statistical significance, with p-values
below the 0.05 threshold, confirming that the independent
variables are significant predictors of surface roughness.
The high F-value of 42.66 indicates that the regression
model explains a substantial proportion of the variability in
Ra. Furthermore, the residual error was found to be
minimal, suggesting that the model adequately represents
the experimental data with limited unexplained variation.
The predictive accuracy of the regression model was
further assessed using the coefficient of determination (R?),
which yielded a value of 0.97. This indicates that 97% of
the variation in surface roughness is explained by the
model, demonstrating excellent predictive capability.

These findings emphasize the critical role of process
parameter selection in achieving superior surface quality
during micro-milling.

A = Feed/tooth Ratio (0.4 / 2.0)
B = Nanoparticle (BN = - 1/ Graphene =+1)
C = Cutting Environment (BN MQL = -1/ Graphene MQL +1)

1.6
1.4
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Experimental vs Predicted Ra ———

M Measured Ra
@ Predicted Ra

1 2 3 4 6 5 6 7 8
Run Number

BN MQL

Lower Surface Roughness

The regression equation describing the relationship
between machining parameters and Ra is expressed in
Equation (7), where Ra denotes surface roughness, A
represents the feed per tooth to cutting edge radius ratio, B
denotes nanoparticle composition, and C indicates the
cutting environment. Overall, the Taguchi-based regression
model effectively captures the relationship between
machining parameters and surface roughness in the micro-
milling of NiTi shape memory alloys. The analysis
confirms that feed ratio, nanoparticle composition, and
cutting environment significantly influence Ra, with
optimal performance achieved using BN nanoparticles and
appropriate feed ratios. The high correlation between
experimental and predicted values validates the model’s
suitability for optimization purposes. The validated
regression equation was subsequently employed as the
fitness function for the Modified Differential Evolution
(MDE) algorithm.
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This integration of statistical modeling and evolutionary
optimization provides a systematic and efficient approach
to identifying optimal machining parameters, significantly

reducing the need for extensive experimental trials while
ensuring superior surface quality.

Statistical Significance and Model Validation

* @ Minitab %

B , palue
SECORNN NS
Jl:mf 1) SES008

»

N

VII. MODIFIED DIFFERENTIAL EVOLUTION
OPTIMIZATION

Differential Evolution (DE) is a powerful stochastic
optimization algorithm widely applied in engineering for
solving complex and nonlinear optimization problems.
Despite its effectiveness, conventional DE algorithms often
suffer from limitations such as premature convergence,
slow optimization speed, and rigid parameter control [31].
These shortcomings can restrict performance in machining
optimization, where precise parameter tuning is essential
for achieving minimal surface roughness. To address these
challenges, a Modified Differential Evolution (MDE)
approach was developed by incorporating an improved
elitism strategy to preserve high-quality solutions, an
enhanced search mechanism to balance global exploration
and local exploitation, and a probabilistic selection scheme
to maintain population diversity and avoid excessive
exploitation.

p-value < 0.05, Statistical Significance
F-value = 42.66, High Model Accuracy

Ra=0.354 +0.295A - 0.071B - 0.130C
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These
sustain solution diversity, and reduce the likelihood of
stagnation in local optima. In the present study, MDE was
integrated with the Taguchi-based regression model, which
served as the fitness function for optimization. The

enhancements improve convergence speed,

algorithm iteratively  optimized key  machining
parameters—including feed per tooth to cutting edge radius
ratio, nanoparticle concentration, and cutting

environment—using MATLAB as the computational
platform. Through successive generations, MDE refined the
parameter combinations to minimize surface roughness,
demonstrating its effectiveness as a robust decision-support
tool for machining parameter optimization.

VIII. CONCLUSIONS

This study demonstrates that the Modified Differential
Evolution (MDE) algorithm is highly effective for
optimizing surface roughness (Ra) in the micro-milling of
Nickel-Titanium (NiTi) shape memory alloys.
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The optimized results obtained using MDE significantly
outperform those achieved through traditional optimization
approaches. By coupling MDE with regression-based
response modeling, the study successfully identified
optimal machining conditions—including the feed-per-
tooth to cutting-edge radius ratio, antioxidant nanoparticle
composition, and cutting environment—that yield minimal
surface roughness.

Comparative analysis confirms the superiority of MDE
over conventional Differential Evolution (DE), as
evidenced by faster convergence, enhanced parameter
adaptability, and improved optimization accuracy. Under
the optimal machining conditions, a minimum Ra value of
0.7115 pm was achieved, with boron nitride (BN)
nanoparticle-based solid lubrication proving most effective
in reducing tool-workpiece friction and maintaining s
machining conditions. These findings highlight the critical
role of advanced evolutionary optimization techniques in
achieving high surface quality during the precision
machining of NiTi alloys, which is particularly relevant for
biomedical, aerospace, and robotics applications where
surface integrity is paramount. Furthermore, the study
establishes the effectiveness of integrating intelligent
optimization algorithms with  empirical modeling
techniques to enhance machining performance while
significantly reducing the number of required experimental
trials. This combined approach offers a systematic, cost-
effective, and scalable framework for process optimization
in micro-manufacturing environments. The insights gained
from this work provide valuable guidance for researchers
and practitioners seeking to achieve superior surface
finishes in the micro-milling of advanced materials such as
NiTi SMAs.

Future Scopes:

Building upon the outcomes of this research, several

directions for future work are recommended:

1. Multi-objective Optimization: Future studies may
extend the MDE framework to multi-objective
optimization, simultaneously minimizing surface
roughness while maximizing tool life, material
removal rate, and energy efficiency.

2. Real-Time Adaptive Control: Integrating MDE with
real-time monitoring systems and adaptive control
strategies can enable dynamic adjustment of
machining parameters in response to tool wear,
temperature variations, and process instabilities.
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3. Advanced Lubrication Strategies: Further
investigation into hybrid and multifunctional
nanolubricants, including  graphene-based or
composite nanoparticles, may yield additional

improvements in surface quality and tool durability.

4. Broader Machining Conditions and Materials: The
proposed optimization framework can be validated
across a wider range of machining regimes, tool
geometries, and advanced materials, including other
shape memory alloys and difficult-to-machine
superalloys.

5. Digital Twin and Industry 4.0 Integration: Coupling
MDE with digital twin models and smart
manufacturing platforms can facilitate predictive
optimization, process automation, and data-driven
decision-making in intelligent manufacturing systems.

6. Surface Integrity and Functional Performance
Analysis: Future work may incorporate additional
surface integrity metrics—such as residual stress,
microhardness, and phase transformation effects—to
better correlate optimized machining parameters with
functional performance and service life.

7. By pursuing these research directions, the MDE-based
optimization framework can be further strengthened,
supporting sustainable, intelligent, and high-precision

manufacturing of NiTi shape memory alloy
components.
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