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Extended Abstract: 

➢ Nickel–Titanium (NiTi) shape memory alloys (SMAs) have 

become increasingly important in biomedical, aerospace, 

and precision-engineering applications due to their 

superelasticity, biocompatibility, and shape-memory effect. 

However, these advantageous properties also pose 

significant challenges for precision machining.  

➢ NiTi alloys exhibit pronounced work-hardening, low 

thermal conductivity, and phase-transformation behavior 

during cutting, which complicate chip formation, accelerate 

tool wear, and lead to variability in surface integrity.  

➢ In micro-milling—a manufacturing process employed to 

produce miniature features with tight dimensional 

tolerances—surface roughness, typically quantified by the 

arithmetic average roughness (Ra), is a critical quality 

attribute.  

➢ Ra directly influences fatigue life, implant osseointegration, 

frictional behavior, and the overall functional performance 

of NiTi components. As a result, controlling surface 

roughness is not merely a technical concern but also a 

strategic and managerial priority, as it directly affects 

product reliability, regulatory compliance, rework rates, and 

total production cost.  

➢ Addressing this challenge, the present study proposes a 

management-aligned optimization framework that integrates 

shop-floor machining decisions with broader production 

objectives using a Modified Differential Evolution (MDE) 

algorithm.  

➢ Key machining variables—including spindle (cutting) 

speed, feed rate, axial depth of cut, and tool diameter—are 

treated as controllable decision levers available to 

production planners and process engineers.  

       Surface roughness (Ra) is adopted as the primary key 

performance indicator (KPI), while secondary factors such 

as tool life, cycle time, and unit cost are incorporated as 

constraints or as weighted objectives within multi-criteria 

optimization formulations.  

➢ The proposed framework is designed to translate 

algorithmic results into actionable operational guidance. 

Specifically, it delivers recommended parameter 

combinations, projected improvements in surface quality, 

anticipated effects on throughput, and sensitivity analyses 

that identify the most influential process variables.  

➢ From a methodological standpoint, the research integrates 

experimental investigation, computational optimization, and 

statistical validation. A structured set of micro-milling 

experiments on NiTi specimens provides the empirical data 

required for response modeling, with surface profiles 

measured using high-resolution techniques such as stylus 

profilometry and / or atomic force microscopy to obtain 

accurate Ra values.  

➢ The Modified Differential Evolution algorithm employed in 

this study incorporates adaptive control of mutation and 

crossover parameters, elitist selection strategies, and a local 

search refinement stage to enhance convergence behavior 

and mitigate premature stagnation commonly observed in 

classical DE.  

➢ The performance of the MDE approach is benchmarked 

against conventional DE and Taguchi-based optimization 

methods using metrics including best-achieved Ra, average 

population fitness, convergence speed, and robustness under 

measurement noise. Statistical analyses, including analysis 

of variance (ANOVA), confidence interval estimation, and 

repeated-runs testing, are conducted to verify that the 

observed performance improvements are statistically 

significant and repea. 
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Nomenclature 

Symbol Definition Unit 

Ra Arithmetic average surface roughness Μm 

vs  Spindle speed / cutting speed rpm or m/min 

f Feed rate mm/rev or μm/tooth 

ap  Axial depth of cut Mm 

Dt  Tool diameter Mm 

T Tool life Min 

Cu  Unit production cost currency/unit 

tc  Cycle time s or min 

DE Differential Evolution algorithm – 

MDE Modified Differential Evolution algorithm – 

KPI Key Performance Indicator – 

ANOVA Analysis of Variance – 

I. LITERATURE REVIEW AND INTRODUCTION 

Nickel–Titanium (NiTi) shape memory alloys (SMAs) 

are extensively used across various industries owing to 

their exceptional mechanical and functional characteristics, 

such as superelasticity, biocompatibility, and the shape 

memory effect [1–2]. These attributes make NiTi alloys 

indispensable in applications including biomedical devices, 

aerospace components, and precision engineering systems. 

However, determining optimal machining conditions 

through experimental trial-and-error approaches is time-

consuming, costly, and resource-intensive, rendering such 

methods impractical for complex machining processes. 

Although conventional optimization techniques remain 

widely adopted by machinists, there is growing interest in 

advanced optimization methods such as Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO)—a 

swarm intelligence–based technique [13]—and Differential 

Evolution (DE), a population-based algorithm [14–16]. 

These algorithms offer promising time- and cost-efficient 

solutions for addressing complex, nonlinear machining 

optimization problems. Among them, DE has demonstrated 

superior robustness in multi-objective optimization; 

nevertheless, it is often limited by slow convergence rates 

and susceptibility to premature convergence [17].  

 

To address these shortcomings, several Modified 

Differential Evolution (MDE) variants have been proposed. 

These enhancements improve DE’s optimization 

performance through hybrid search strategies, adaptive 

parameter control, and local search mechanisms [18–19]. 

The application of MDE in machining optimization has 

shown considerable potential for improving process 

parameter selection and reducing surface roughness [20]. 

Specifically, MDE provides a structured framework for 

identifying optimal micro-milling conditions that yield 

superior surface finish when machining NiTi alloys. In this 

context, the Taguchi method has been employed to develop 

a regression model that establishes the relationship between 

key machining parameters—such as axial feed, feed per 

tooth, cutting edge radius ratio, and nanoparticle-assisted 

lubrication methods—and surface roughness (Ra) [21]. 

This regression model serves as the fitness function for the 

MDE algorithm, enabling efficient exploration of the 

search space and identification of optimal parameter 

combinations for enhanced machining performance. 

Optimal tuning of control parameters is particularly critical 

in complex engineering systems involving interacting 

processes.  
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Recent studies have demonstrated the effectiveness of 

MDE in optimizing control parameters for applications 

such as microgrid frequency regulation and active 

suspension systems, leading to improved stability and 

overall system performance [22–23]. In micro-milling 

operations, lubrication strategies play a vital role alongside 

process parameter optimization in enhancing surface finish 

and extending tool life. Minimum Quantity Lubrication 

(MQL) and solid lubricants, such as boron nitride (BN) 

nanoparticles, have been widely investigated for their 

ability to reduce friction, dissipate heat, and minimize tool 

wear [19, 24]. MQL involves the controlled delivery of a 

small quantity of lubricant into the cutting zone, offering 

environmental benefits while improving machining 

efficiency [25]. The incorporation of BN nanoparticles 

further enhances lubrication effectiveness by improving 

adhesion, facilitating chip fracture, reducing surface 

roughness, and increasing the durability of both the cutting 

tool and work piece [26]. By simultaneously optimizing 

machining and lubrication parameters, a holistic approach 

can be adopted to achieve superior surface finishes during 

the micro-milling of NiTi alloys [27–28]. In this study, the 

optimization of surface roughness (Ra) in micro-milling of 

NiTi SMAs is accomplished using the Modified 

Differential Evolution algorithm. The integration of 

Taguchi-based regression modeling with MDE enables the 

systematic determination of optimal machining parameters 

aimed at minimizing Ra. Furthermore, the application of 

MQL combined with BN nanoparticles significantly 

enhances machining performance. These findings 

contribute to the advancement of machining optimization 

methodologies by demonstrating MDE’s effectiveness in 

achieving high-quality surface finishes while supporting 

green and sustainable manufacturing practices. The insights 

obtained from this research are highly relevant to industries 

requiring high-precision NiTi components, including 

biomedical, aerospace, and robotics sectors, where surface 

integrity and component reliability are of paramount 

importance. 

II.   MANAGERIAL PERSPECTIVE ON EXPERIMENTAL DATA 

AND OPTIMIZATION 

Data-Driven Analysis of Machining Performance: 

Surface roughness (Ra) was analyzed using an 

experimentally validated machining dataset to support 

evidence-based decision-making in micro-manufacturing 

operations. The study evaluated the influence of key 

controllable process parameters—namely the feed per tooth 

to cutting edge radius ratio, nanoparticle concentration in 

minimum quantity lubrication (MQL), and cutting 

environment—on surface quality outcomes.  

The experimental data were sourced from the work of 

Zailani and Mativenga [21], who conducted micro-milling 

experiments on NiTi shape memory alloys under three 

lubrication strategies: dry machining, MQL with graphene 

nanoparticles, and MQL with boron nitride (BN) 

nanoparticles. To ensure measurement reliability and 

consistency—critical for managerial decisions based on 

quality metrics—surface roughness measurements were 

performed using a calibrated VK-X200K optical 

profilometer. Each experimental condition was measured at 

least five times, reducing random uncertainty and 

strengthening the robustness of performance evaluation. 

Statistical Modeling for Process Control: 

To translate experimental observations into actionable 

insights, a regression-based Ra prediction model was 

developed to quantify the relationships between machining 

parameters, lubrication strategy, and nanoparticle 

concentration. The Taguchi design of experiments 

approach, employing an L4 orthogonal array, was adopted 

to efficiently analyze parameter effects with minimal 

experimental cost—an important consideration in 

manufacturing resource management. Regression analysis 

and Analysis of Variance (ANOVA), conducted using 

Minitab software, enabled the identification of statistically 

significant factors influencing surface roughness. From a 

management standpoint, this model functions as a decision-

support tool, allowing practitioners to assess trade-offs 

among process settings and predict quality outcomes with 

confidence. The validated regression model was 

subsequently embedded as the fitness function within the 

optimization framework. 

Optimization as a Decision-Support Mechanism: 

A Modified Differential Evolution (MDE) algorithm was 

employed to determine optimal machining conditions that 

minimize surface roughness. From an operations 

management perspective, MDE serves as an intelligent 

optimization engine that systematically explores the 

decision space and refines parameter selection to achieve 

superior quality performance. Enhancements such as 

adaptive mutation strategies and local search mechanisms 

were incorporated to improve solution robustness, prevent 

premature convergence, and enhance exploration 

efficiency. The algorithm was implemented in MATLAB, 

enabling computational evaluation of parameter 

combinations and identification of configurations that 

consistently yield minimal Ra values. 
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Verification and Managerial Validation 

To validate the effectiveness of the optimization-driven 

decision framework, the predicted optimal machining 

parameters were experimentally verified. The verification 

results demonstrated close agreement between predicted 

and measured Ra values, confirming the reliability of the 

proposed approach.  

 

This validation phase establishes managerial confidence 

in the framework’s applicability, demonstrating that the 

integration of statistical modeling and evolutionary 

optimization can support informed decision-making, 

improve surface quality, and enhance overall micro-milling 

performance. The proposed methodology thus offers a 

structured, data-driven approach for quality management 

and process optimization in advanced manufacturing 

systems. 

 

III. SOLUTION CHARACTERISTICS OF DIFFERENTIAL 

EVOLUTION 

Differential Evolution (DE) provides robust and high-

quality solutions for complex optimization problems 

characterized by nonlinearity, multimodality, and strong 

parameter interactions. The algorithm’s solution 

effectiveness arises from its population-based search 

mechanism and differential mutation strategy, which 

collectively ensure balanced global exploration and local 

exploitation. 

 

 

 

Key solution characteristics of DE include: 

1. Global Optimality: DE efficiently explores the search 

space and demonstrates strong capability in escaping 

local optima, making it sui for solving highly 

nonlinear and multimodal objective functions. 

2. Fast and S Convergence: The use of vector-based 

perturbation and greedy selection accelerates 

convergence toward high-quality solutions while 

maintaining numerical stability. 
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3. Robustness to Noise and Uncertainty: DE maintains 

solution reliability even in noisy experimental 

environments, such as machining processes where 

measurement variability is inevi. 

4. Scalability and Flexibility: DE can handle both low- 

and high-dimensional optimization problems and can 

be easily adapted by modifying mutation strategies, 

control parameters (F and CR), or hybridizing with 

local search techniques. 

5. Ease of Implementation: With few control parameters 

and simple mathematical operations, DE is 

computationally efficient and straightforward to 

implement using platforms such as MATLAB. 

In this study, the DE framework—enhanced through 

adaptive mutation strategies in the Modified Differential 

Evolution (MDE) approach—enabled reliable identification 

of optimal machining parameters that minimized surface 

roughness (Ra). 

IV. APPLICATIONS OF DIFFERENTIAL EVOLUTION 

Due to its efficiency and versatility, Differential 

Evolution has been widely applied across engineering, 

manufacturing, and decision-support domains. Major 

application areas include: 

1. Manufacturing Process Optimization 

DE is extensively used to optimize machining 

parameters such as cutting speed, feed rate, depth of cut, 

and lubrication conditions to improve surface quality, tool 

life, and energy efficiency. In micro-milling of NiTi shape 

memory alloys, DE effectively identifies optimal parameter 

combinations under multiple lubrication environments. 

2. Multi-Objective Engineering Design 

DE supports multi-objective optimization problems 

where trade-offs exist between conflicting objectives such 

as quality, productivity, and cost. It enables decision-

makers to select Pareto-optimal solutions that align with 

strategic manufacturing goals. 

3. Control Systems and Automation 

DE is applied in tuning controllers, optimizing system 

parameters, and enhancing control performance in 

nonlinear and dynamic systems. 

4. Structural and Mechanical Engineering 

Applications include structural optimization, vibration 

control, and material property estimation, where DE 

handles complex constraint-driven optimization efficiently. 

 

5. Data-Driven Decision Support Systems 

When integrated with regression models, neural 

networks, or surrogate models, DE functions as a powerful 

decision-support engine for data-driven optimization in 

Industry 4.0 environments. 

6. Energy, Sustainability, and Resource Optimization 

DE is increasingly used to optimize energy consumption, 

reduce emissions, and improve sustainability performance 

in advanced manufacturing and industrial systems. 

V.  RELEVANCE TO THE PRESENT STUDY 

In the present work, the Modified Differential Evolution 

(MDE) algorithm serves as an intelligent optimization and 

decision-support tool by integrating experimental data, 

statistical modeling, and evolutionary search. This 

integration enables systematic identification of optimal 

micro-milling conditions, ensuring improved surface 

quality, reduced experimental trial costs, and enhanced 

managerial confidence in decision-making for advanced 

manufacturing systems. 

Experimental Design and Regression Analysis 

The experimental design was conducted at two different 

levels for each control factor. Three cutting parameters 

were selected for the study. An L4 orthogonal array (OA) 

was employed, accommodating three factors at two levels 

each. However, constructing a regression model with three 

factors using only four experimental runs exhausts all 

available degrees of freedom, leaving no scope for 

estimating experimental error. To overcome this limitation 

and enhance statistical reliability, a replication strategy was 

adopted. Replication increases the degrees of freedom for 

error estimation and mitigates the risk of over fitting, 

thereby improving model robustness [30]. Consequently, 

the total number of experimental runs was increased to 

eight. Experimental settings and corresponding surface 

roughness (Ra) values, including both measured and 

model-predicted responses. The input factors include the 

feed per tooth to cutting edge radius ratio (A), nanoparticle 

composition (B), and cutting environment (C), where boron 

nitride (BN) and graphene nanoparticles are coded as −1 

and +1, respectively. The close agreement between 

experimental and predicted Ra values, along with small 

prediction errors, demonstrates the model’s effectiveness in 

capturing the influence of machining parameters on surface 

quality. The results indicate that higher feed-per-tooth 

ratios (A = 2.0) lead to increased surface roughness, 

whereas lower feed values (A = 0.4) produce smoother 

surfaces.  
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Additionally, the cutting environment significantly 

affects Ra, with BN-based MQL (C = −1) consistently 

yielding lower surface roughness than graphene-based 

MQL (C = +1).  

These findings emphasize the critical role of process 

parameter selection in achieving superior surface quality 

during micro-milling. 

 

VI. STATISTICAL SIGNIFICANCE AND MODEL 

VALIDATION 

Statistical analysis was performed using Minitab 

software to evaluate the regression coefficients and the 

significance of each cutting parameter. Analysis of 

Variance (ANOVA) results are summarized. The model 

exhibited strong statistical significance, with p-values 

below the 0.05 threshold, confirming that the independent 

variables are significant predictors of surface roughness. 

The high F-value of 42.66 indicates that the regression 

model explains a substantial proportion of the variability in 

Ra. Furthermore, the residual error was found to be 

minimal, suggesting that the model adequately represents 

the experimental data with limited unexplained variation. 

The predictive accuracy of the regression model was 

further assessed using the coefficient of determination (R²), 

which yielded a value of 0.97. This indicates that 97% of 

the variation in surface roughness is explained by the 

model, demonstrating excellent predictive capability.  

The regression equation describing the relationship 

between machining parameters and Ra is expressed in 

Equation (7), where Ra denotes surface roughness, A 

represents the feed per tooth to cutting edge radius ratio, B 

denotes nanoparticle composition, and C indicates the 

cutting environment. Overall, the Taguchi-based regression 

model effectively captures the relationship between 

machining parameters and surface roughness in the micro-

milling of NiTi shape memory alloys. The analysis 

confirms that feed ratio, nanoparticle composition, and 

cutting environment significantly influence Ra, with 

optimal performance achieved using BN nanoparticles and 

appropriate feed ratios. The high correlation between 

experimental and predicted values validates the model’s 

suitability for optimization purposes. The validated 

regression equation was subsequently employed as the 

fitness function for the Modified Differential Evolution 

(MDE) algorithm.  
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This integration of statistical modeling and evolutionary 

optimization provides a systematic and efficient approach 

to identifying optimal machining parameters, significantly 

reducing the need for extensive experimental trials while 

ensuring superior surface quality. 

 

 

VII. MODIFIED DIFFERENTIAL EVOLUTION 

OPTIMIZATION 

Differential Evolution (DE) is a powerful stochastic 

optimization algorithm widely applied in engineering for 

solving complex and nonlinear optimization problems. 

Despite its effectiveness, conventional DE algorithms often 

suffer from limitations such as premature convergence, 

slow optimization speed, and rigid parameter control [31]. 

These shortcomings can restrict performance in machining 

optimization, where precise parameter tuning is essential 

for achieving minimal surface roughness. To address these 

challenges, a Modified Differential Evolution (MDE) 

approach was developed by incorporating an improved 

elitism strategy to preserve high-quality solutions, an 

enhanced search mechanism to balance global exploration 

and local exploitation, and a probabilistic selection scheme 

to maintain population diversity and avoid excessive 

exploitation.  

 

 

These enhancements improve convergence speed, 

sustain solution diversity, and reduce the likelihood of 

stagnation in local optima. In the present study, MDE was 

integrated with the Taguchi-based regression model, which 

served as the fitness function for optimization. The 

algorithm iteratively optimized key machining 

parameters—including feed per tooth to cutting edge radius 

ratio, nanoparticle concentration, and cutting 

environment—using MATLAB as the computational 

platform. Through successive generations, MDE refined the 

parameter combinations to minimize surface roughness, 

demonstrating its effectiveness as a robust decision-support 

tool for machining parameter optimization. 

VIII.   CONCLUSIONS 

This study demonstrates that the Modified Differential 

Evolution (MDE) algorithm is highly effective for 

optimizing surface roughness (Ra) in the micro-milling of 

Nickel–Titanium (NiTi) shape memory alloys.  
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The optimized results obtained using MDE significantly 

outperform those achieved through traditional optimization 

approaches. By coupling MDE with regression-based 

response modeling, the study successfully identified 

optimal machining conditions—including the feed-per-

tooth to cutting-edge radius ratio, antioxidant nanoparticle 

composition, and cutting environment—that yield minimal 

surface roughness. 

Comparative analysis confirms the superiority of MDE 

over conventional Differential Evolution (DE), as 

evidenced by faster convergence, enhanced parameter 

adaptability, and improved optimization accuracy. Under 

the optimal machining conditions, a minimum Ra value of 

0.7115 µm was achieved, with boron nitride (BN) 

nanoparticle-based solid lubrication proving most effective 

in reducing tool–workpiece friction and maintaining s 

machining conditions. These findings highlight the critical 

role of advanced evolutionary optimization techniques in 

achieving high surface quality during the precision 

machining of NiTi alloys, which is particularly relevant for 

biomedical, aerospace, and robotics applications where 

surface integrity is paramount. Furthermore, the study 

establishes the effectiveness of integrating intelligent 

optimization algorithms with empirical modeling 

techniques to enhance machining performance while 

significantly reducing the number of required experimental 

trials. This combined approach offers a systematic, cost-

effective, and scalable framework for process optimization 

in micro-manufacturing environments. The insights gained 

from this work provide valuable guidance for researchers 

and practitioners seeking to achieve superior surface 

finishes in the micro-milling of advanced materials such as 

NiTi SMAs. 

Future Scopes: 

Building upon the outcomes of this research, several 

directions for future work are recommended: 

1. Multi-objective Optimization: Future studies may 

extend the MDE framework to multi-objective 

optimization, simultaneously minimizing surface 

roughness while maximizing tool life, material 

removal rate, and energy efficiency. 

2. Real-Time Adaptive Control: Integrating MDE with 

real-time monitoring systems and adaptive control 

strategies can enable dynamic adjustment of 

machining parameters in response to tool wear, 

temperature variations, and process instabilities. 

 

 

 

3. Advanced Lubrication Strategies: Further 

investigation into hybrid and multifunctional 

nanolubricants, including graphene-based or 

composite nanoparticles, may yield additional 

improvements in surface quality and tool durability. 

4. Broader Machining Conditions and Materials: The 

proposed optimization framework can be validated 

across a wider range of machining regimes, tool 

geometries, and advanced materials, including other 

shape memory alloys and difficult-to-machine 

superalloys. 

5. Digital Twin and Industry 4.0 Integration: Coupling 

MDE with digital twin models and smart 

manufacturing platforms can facilitate predictive 

optimization, process automation, and data-driven 

decision-making in intelligent manufacturing systems. 

6. Surface Integrity and Functional Performance 

Analysis: Future work may incorporate additional 

surface integrity metrics—such as residual stress, 

microhardness, and phase transformation effects—to 

better correlate optimized machining parameters with 

functional performance and service life. 

7. By pursuing these research directions, the MDE-based 

optimization framework can be further strengthened, 

supporting sustainable, intelligent, and high-precision 

manufacturing of NiTi shape memory alloy 

components. 
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