"

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

Enhanced Verification of Asynchronous FIFO Buffers Using
Universal Verification Methodology (UVM)

G. Munirathnam?, Y. Murali mohan babu?

!Assistant professor(A), Department of Electronics and Communication Engineering, INTUACEK, Kalikiri, A.P, India
*Professor, Department of Electronics and Communication Engineering, NBKRIST, Vidyanagar, A.P, India

Abstract-- This paper presents a comparative analysis of
asynchronous FIFO verification methodologies using the
Universal Verification Methodology (UVM) and
traditional non-UVM approaches. UVM offers a
structured, scalable, and reusable environment, enhancing
verification efficiency and thoroughness. Key components
in a UVM-based test bench include the sequencer, driver,
monitor, scoreboard, transaction logger, and coverage
model, which collectively ensure comprehensive coverage,
automated reporting, and robust debugging capabilities. In
contrast, the non-UVM test bench relies on simpler
stimulus and checker mechanisms with basic monitoring
and manual coverage collection. While the non-UVM
approach is easier to set up and suitable for smaller
designs, it lacks the modularity, reusability, and thorough
coverage provided by UVM. The comparison highlights
the benefits of UVM in managing complex verification
environments, offering advanced debugging tools, and
ensuring exhaustive functional verification. Despite the
higher initial complexity and learning curve, UVM's
advantages in structured testing, efficient reporting, and
automated coverage make it the preferred choice for
verifying asynchronous FIFOs, particularly in larger and
more complex designs. This analysis underscores the
importance of adopting UVM for high-confidence
verification, while also acknowledging the practicality of
non-UVM methods for less demanding applications.

Keywords— Asynchronous FIFO; UVM method; Test
bench; Debugging; reusability

I. INTRODUCTION

The verification of asynchronous FIFOs (First-In-First-
Out) is a critical aspect of modern digital design,
particularly in systems where reliable data transfer across
different clock domains is essential. Asynchronous FIFOs
are used to buffer data between subsystems operating at
different clock speeds, ensuring smooth and error-free
communication. Ensuring the correct functionality of these
FIFOs is vital, given their role in maintaining data integrity
and system performance.

1270

Verification is the process of ensuring that a design
behaves as intended [1]. In the context of asynchronous
FIFOs, this involves checking that data written to the FIFO
is accurately read out, control signals function correctly,
and the FIFO handles edge cases like simultaneous read
and write operations or boundary conditions. Effective
verification is crucial for detecting and addressing design
flaws early in the development process, which helps
minimize the risk of expensive post-silicon corrections.

Traditional verification methods often involve writing
directed tests that simulate specific scenarios to check the
functionality of the design. This approach is
straightforward and can be effective for simple designs.
However, as designs become more complex, the limitations
of this method become apparent. Directed tests can only
cover scenarios explicitly anticipated by the verification
engineer, potentially missing corner cases and edge
conditions that might occur in actual operation [2].

Traditional non-UVM verification methods for
asynchronous FIFOs rely on simpler, less structured
approaches compared to UVM. These methods typically
involve writing directed tests and employing basic
checking mechanisms[3] to verify functionality. A non-
UVM test bench might include a stimulus generator that
provides directed or random read/write operations and a
checker that manually verifies the FIFO's output against
expected results. A monitor observes and logs the
transactions and control signals, while a reference model or
check manually or through scripts verifies the correctness
of the FIFO’s output. Coverage collection is done manually
or through basic analysis to ensure key scenarios are tested.
This approach lacks the modularity, reusability, and
comprehensive coverage features offered by UVM, often
resulting in less thorough and efficient verification.

Il. EXISTING METHODS FOR ASYNCHRONOUS FIFO
VERIFICATION

Verification of asynchronous FIFOs (First-In-First-Out)
buffers is an essential step in the design process of digital
systems that involve communication between different
clock domains.

"

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

Traditional and contemporary methods have evolved to
address the unique challenges posed by these asynchronous
interfaces. This section will delve into the existing methods
for verifying asynchronous FIFOs, discussing the pros and
cons of each approach.

1. Directed Testing

Directed testing is one of the most basic and traditional
methods used in the verification of digital designs,
including asynchronous FIFOs. This method involves
writing specific test cases to check the functionality of the
FIFO under predefined conditions. Directed testing[4] for
asynchronous FIFOs involves components such as stimulus
generation, where predefined read and write operations are
applied to the FIFO, and expected results, where the output
for each test case is manually defined. A checker then
compares the actual output from the FIFO with these
expected results. Directed testing offers simplicity, as the
tests are straightforward to write and understand, and
automation, allowing tests to run automatically once the
stimulus generator and checker are set up, saving manual
effort and time. However, this approach has disadvantages.
Debugging can be difficult, as identifying the cause of a
failure is challenging due to complex and hard-to-
reproduce scenarios from random sequences. Additionally,
while random testing can cover many scenarios, it may still
leave coverage gaps, being less targeted than directed
testing.

2. Assertion-Based Verification

Assertion-based verification (ABV) for asynchronous
FIFOs involves embedding assertions within the design to
check for specific properties and behaviours during
simulation. These assertions, embedded in the HDL code or
test bench, specify the expected behaviour of the FIFO. A
checker monitors these assertions during simulation and
reports any violations. ABV offers advantages such as early
bug detection, as assertions can catch errors early in the
simulation process, and local debugging, since assertions
pinpoint the exact location and time of a failure,
simplifying debugging. However, ABV also has
disadvantages, including the initial setup, which requires
writing comprehensive assertions and a thorough
understanding of the design, and limited scope, as
assertions check specific properties and may not cover all
possible behaviours and interactions [5].

1271

3. Formal Verification

Formal verification uses mathematical techniques to
prove the correctness of a design, making it particularly
powerful for verifying properties of asynchronous FIFOs,
such as ensuring data integrity and correct control signal
operation across clock domains. This method involves
formal specifications [6] that describe the expected
behaviour of the FIFO and formal tools that automatically
prove or disprove these properties against the design.
Advantages of formal verification include exhaustive
verification, providing proof of correctness for specified
properties across all possible input scenarios, and the
elimination of simulation, thus not requiring test vectors.
However, formal verification also has disadvantages, such
as the complexity of writing formal properties and setting
up the verification environment, which requires specialized
skills, and scalability issues, as formal methods can
struggle with very large and complex designs, potentially
leading to state explosion.

4. Model Checking

Model checking is a type of formal verification that
systematically explores the state space of a design to check
for property violations. This method involves creating an
abstract representation of the FIFO, specifying properties
that define the expected behaviour, and using a model
checker tool to exhaustively explore all states of the model
to verify these properties. The advantages of model
checking include exhaustive exploration, ensuring that all
possible states and transitions [7] are checked, and
automation, which allows for property verification without
the need for extensive test benches. However, model
checking also faces disadvantages, such as the
computational intensity of state explosion, especially for
large designs, and the need for an abstract model of the
design, which may introduce simplifications that do not
capture all details of the implementation.

5. Coverage-Driven Verification

Coverage-driven verification combines random testing
with coverage metrics to ensure thorough testing of all
aspects of the design. This approach includes coverage
metrics, such as code coverage, functional coverage, and
assertion coverage, to measure the extent of testing.
Random stimulus generation is used to create varied test
scenarios, and coverage analysis tools identify untested
parts of the design by analyzing the coverage metrics.

"

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

The advantages of coverage-driven verification include
comprehensive testing, ensuring all parts of the design are
exercised and verified, and a feedback loop that improves
test stimuli based on coverage analysis. However, this
method also has disadvantages, including the complexity of
setting up coverage metrics and integrating them with
random testing, and the significant computational resources
required to achieve comprehensive coverage [8].

I11. PROPOSED METHOD FOR ASYNCHRONOUS FIFO
VERIFICATION USING UVM

UVM (Universal Verification Methodology) testing for
asynchronous FIFOs offers significant benefits in terms of
reusability, scalability, debugging, and reporting. Firstly,
UVM test benches are modular and reusable, allowing the
same test bench to be adapted for different FIFO
configurations or other designs with minimal changes. This
reusability reduces development time and effort while
ensuring consistent testing methodologies across different
projects. Secondly, UVM facilitates the creation of scalable
test environments, which is invaluable for complex designs
involving multiple FIFOs or larger systems incorporating
FIFOs. This scalability ensures that the verification
environment can grow along with the complexity of the
design, maintaining efficiency and effectiveness [9].

Additionally, UVM provides robust debugging
capabilities through transaction-level debugging. It offers
detailed information about transactions, making it easier to
pinpoint and resolve issues related to the interaction
between various components, including the FIFO and its
control signals. Moreover, UVM includes built-in
mechanisms for automatic reporting and logging, aiding in
tracking the progress and results of the verification process.
This automatic reporting streamlines the verification
workflow, providing clear insights into the verification
status and any detected issues, enhancing overall
productivity and quality assurance in the verification
process.

To create a UVM (Universal Verification Methodology)
test bench for an asynchronous FIFO, first define the FIFO
interface, which includes signals like ‘“write data’,
‘write_enable’, ‘read_enable’, ‘read data’, “full’, and
“empty” necessary for interacting with the FIFO. Next,
develop UVM components such as the Driver, which
stimulates the FIFO by generating “write® and ‘read
operations; the Monitor, which observes input and output
signals to wverify correct behaviour; the Sequencer,
responsible for managing the sequence of operations sent to
the driver; the Agent, encapsulating the driver, sequencer,
and monitor; and the Scoreboard, which compares expected
and actual FIFO outputs to verify correctness.

1272

These components collectively form the foundation of
your UVM test bench, ensuring comprehensive testing and
verification of the asynchronous FIFO [10].

Once the UVM components are developed, write UVM
sequences that define various test scenarios. These
sequences include burst writes/reads, random operations,
boundary condition tests, and other scenarios to thoroughly
exercise the FIFO under different conditions. Assemble
these components into a UVM environment, configure the
test bench with the appropriate settings, and execute tests.
During test execution, analyse the results, refining the tests
as necessary to achieve complete coverage and verification
of the FIFO's functionality and performance. Utilizing
UVM in this manner ensures that your asynchronous FIFO
design undergoes thorough testing, ensuring its reliability
and readiness for integration into larger systems with
confidence in its correctness and robustness.

The proposed method involves setting up a UVM test
bench tailored to the unique challenges of verifying
asynchronous FIFOs [11]. The test bench will include
components such as sequencers, drivers, monitors,
scoreboards, transaction loggers, and coverage models.
These components will work together to generate stimuli,
drive the Device Under Test (DUT), monitor transactions,
compare outputs, log activities, and collect coverage data.

Components of the UVM Test bench

1. Sequencer: The sequencer generates sequences of read
and write operations to stimulate the FIFO. These
sequences can be constrained random or directed, ensuring
comprehensive coverage of all possible scenarios.

2. Driver: The driver receives sequences from the
sequencer and converts them into signals that can be
applied to the DUT. The driver ensures that the signals are
correctly timed and synchronized with the FIFO’s clock
domains.

3. Monitor: The monitor observes the signals at the DUT’s
interfaces, capturing all transactions for analysis. It records
the data written to and read from the FIFO, as well as the
status of control signals like “full’, "empty", “write_enable’,
and “read_enable’.

4. Scoreboard: The scoreboard compares the actual outputs
from the FIFO with expected results generated by a
reference model. It checks for data integrity, proper
operation of control signals, and adherence to FIFO
behaviour under various conditions.

5. Transaction Logger: The transaction logger logs all
transactions for debugging and analysis purposes. It
provides a detailed record of all operations performed on
the FIFO, facilitating root cause analysis in case of failures.

N2

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

6. Coverage Model: The coverage model collects
functional coverage data to ensure that all aspects of the
FIFO’s functionality are exercised.

It tracks which scenarios have been tested and identifies
gaps in coverage, guiding the generation of additional test
cases.

ROOT
Test

Env

——C

Scoreboard

O

DUT

Asynchronous FIFO

Mon [D—»C{ COV |

<;I‘I—_>1‘Driver[]—>q sqr |

Fig 1: Asynchronous FIFO with UVM test environment

Addressing verification challenges in an asynchronous
FIFO design involves several strategic approaches. Firstly,
to tackle metastability, incorporating assertions and formal
properties to check for potential metastable states is crucial.
Ensuring that the driver and monitor can handle
synchronization between clock domains is essential, along
with verifying that the FIFO's design includes proper
metastability resolution mechanisms. Secondly, addressing
timing variability requires generating test sequences with
varying read and write frequencies to test the FIFO under
different timing conditions. Utilizing the coverage model
ensures that all timing scenarios, including worst-case
scenarios, are thoroughly exercised during verification.

Thirdly, maintaining control signal integrity is
paramount. This involves including specific coverage
points and assertions for control signals like “full’, "empty",
“write_enable’, and ‘read_enable’, ensuring they operate
correctly under all conditions. Lastly, addressing boundary
conditions[11] requires designing test sequences that cover
scenarios such as near-full or near-empty states. The
scoreboard plays a crucial role in verifying that the FIFO
handles these boundary conditions accurately, providing
confidence in its functionality under challenging
operational scenarios. By adopting these strategic
approaches, verification teams can effectively mitigate
potential issues and ensure the robustness and reliability of
their asynchronous FIFO designs.

1273

IV. RESULTS AND DISCUSSIONS

The proposed verification method for asynchronous
FIFOs offers several significant benefits. Firstly, it ensures
comprehensive coverage of the FIFO's functional aspects
through the use of constrained random generation[12] and a
detailed coverage model. This approach guarantees
thorough testing, reducing the risk of undetected issues and
enhancing the overall reliability of the design. Secondly,
leveraging the UVM framework's modular approach
enables the creation of reusable components, reducing
effort and time required to verify similar designs in the
future. This modularity and reusability promote efficiency
and consistency across verification projects.

The differences between UVM-based and non-UVM-
based verification methodologies are significant across
various aspects. Firstly, the setup and learning curve in
UVM are initially more complex, requiring a deeper
understanding of the methodology and a structured setup
process. However, once established, UVM environments
are easier to maintain and extend, offering a more
organized and scalable approach [13]. In contrast, non-
UVM methods are simpler to set up initially but can
become cumbersome and unwieldy as the design
complexity grows, leading to challenges in maintenance
and scalability over time.

&

P

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

Secondly, UVM's modularity[14] and reusability stand
out as key advantages. Its modular approach allows for the
reuse of components across different projects, promoting
efficiency and reducing redundancy in verification efforts.
On the other hand, non-UVM test benches often involve
bespoke components, which can result in duplicated work
when verifying similar designs. Additionally, UVM's
coverage-driven testing and functional coverage models
offer a more thorough verification compared to directed
tests in non-UVM environments.

This comprehensive testing ensures that all functional
aspects of the FIFO are rigorously tested, reducing the risk
of undetected issues and enhancing overall design

reliability. Moreover, UVM provides advanced debugging
tools[15] and automated reporting mechanisms, making it
easier to identify and resolve issues efficiently, whereas
non-UVM methods may require more manual effort for
debugging and reporting, leading to potential time delays
and increased chances of errors.

Untitled 1%

10,040 ns

0 MM A A A FEAEAEA A A S A

10,960 ns

10.980 ns

Fig3: Simulation result of Asynchronous FIFO with UVM environment
1274

~

IJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)

V. CONCLUSION AND FUTURE SCOPE

The proposed UVM-based method not only addresses
current asynchronous FIFO verification challenges but also
lays a foundation for future improvements, leading to the
development of more efficient, reliable, and high-
performance digital systems. This holistic approach to
verification enhances the robustness and integrity of digital
designs, meeting the stringent requirements of modern
applications and technologies.

The future scope for enhancing the verification of
asynchronous FIFO buffers using Universal Verification
Methodology (UVM) is promising, with potential
advancements in coverage metrics tailored for timing
aspects and boundary conditions. Integration of machine
learning can automate test generation, while deepening
formal verification methods can improve property
checking. Power and performance analysis, security
verification, hardware-assisted verification, and functional
safety verification will enhance reliability. Cloud-based
platforms can scale verification efforts, and integration
with Design-for-Test (DFT) can improve testability.
Standardization and tool support will drive industry-wide
adoption, collectively leading to more reliable, efficient,
and secure digital systems.

REFERENCES

Sheela, D., et al. "Verification of Asynchronous FIFO Using
SystemVerilog Assertions and UVM." International Journal of
Engineering and Advanced Technology 8.6 (2019): 2897-2901.
Ramesh, A., & Venkatesan, M. "A Comprehensive Verification
Strategy for Asynchronous FIFO Design Using UVM." Journal of
Semiconductor Engineering 12.2 (2021): 72-80.

Bhaskar, S., & Sinha, K. "UVM-Based Verification of
Asynchronous FIFO Buffers in Mixed-Signal Systems." Journal
of Electronic Design Technology 15.4 (2020): 42-50.

(1]

(2]

(3]

1275

[4]

[3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Kim, Y., & Lee, J. "Verification of Low-Power Asynchronous
FIFOs Using UVM and Advanced Verification Techniques."
IEEE Transactions on VLSI Systems 29.11 (2021): 2257-2265.

Zhang, W., et al. "Enhanced Verification Techniques for
Asynchronous FIFO Designs with UVM Framework."
International Conference on VLS| Design and Embedded Systems
(VLSID). IEEE, 2020.

Gupta, P., & Sharma, V. "Asynchronous FIFO Verification Using
UVM Methodology in Digital Systems." Microelectronics Journal
88 (2020): 79-87.

Wang, H., et al. "Design and UVM Verification of High-
Throughput Asynchronous FIFOs for High-Performance
Applications." Integration, the VLSI Journal 76 (2020): 89-95.

Kumar, P., et al. "Automated UVM-Based Verification of
Asynchronous FIFO Buffers in FPGA Designs.” International
Journal of Electronics and Communications 105 (2020): 84-91.

Singh, A., & Mehra, R. "Power-Efficient Asynchronous FIFO
Design and Verification Using UVM." Journal of Low Power
Electronics and Applications 11.1 (2021): 34-42.

Parikh, M., & Patel, R. "UVM Verification of Asynchronous
FIFOs with Adaptive Clock Domain Crossing." International
Conference on Advances in Electronics, Computers and
Communications (ICAECC). IEEE, 2021.

Chen, S., & Li, X. "Verification of Multi-Port Asynchronous
FIFOs Using UVM for High-Performance Data Transfer." IEEE
Transactions on Computers 70.4 (2021): 562-570.

Rao, D., et al. "Systematic UVM Verification of Complex
Asynchronous FIFOs in System-on-Chip Designs.” IEEE Access
9 (2021): 98745-98755.

Nguyen, T., & Ho, J. "Verification of Fault-Tolerant
Asynchronous FIFO Buffers Using UVM and Formal Methods."
International Symposium on VLSI Design, Automation and Test
(VLSI-DAT). IEEE, 2021.

Patel, S., & Bhattacharya, D. "Scalable UVM-Based Verification
Environment for Asynchronous FIFO Buffers in High-Speed
Networks." Journal of Network and Computer Applications 140
(2020): 102-111.

Lin, C., & Liu, Y. "Advanced UVM Techniques for
Asynchronous FIFO Verification in Mixed-Clock Domains."

ACM Transactions on Design Automation of Electronic Systems
(TODAES) 26.3 (2021): 30-38.

