

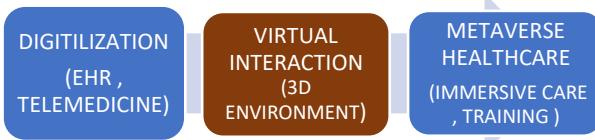
# Metaverse in Healthcare: A Paradigm Shift for Medical Innovation, Patient Engagement and Future of Digital Health Ecosystems

Namya Srivastava<sup>1</sup>, Radhika Rastogi<sup>2</sup>, Shweta Sinha<sup>3</sup>, Gaurvi Shukla<sup>4</sup>

<sup>1,2</sup>Scholar, National P.G. College, Lucknow University, Lucknow, India

<sup>3,4</sup>Assistant Professor, Computer Science Department, National P.G. College, Lucknow, India

**Abstract--** The incorporation of the metaverse in healthcare is a massive paradigm shift in health service design, delivery, and experience, especially in the field of mental health care. The paper will explore the metaverse as a new digital health system that can support an immersive approach to medical innovation, greater patient engagement, digitalization through telemedicine and psychologically conducive care settings. An extensive conceptual model is put forward to show how immersive technologies, clinical practice, and patient's mental health interventions interact. The article explores the innovations that use metaverse that include virtual therapeutic settings, remote clinical collaboration, and experiential medical training. Quantitative data, expressed in bar and column graphs in statistical analyses, show the tendencies in the levels of adoption, the perceived efficacy and the involvement of stakeholders in applied healthcare settings. The study also examines the profile of the effects that critical stakeholders have on the healthcare value chain and identifies changes in value creation and care delivery processes. The evidence of reality on the applications of the metaverse in healthcare highlights the challenges and opportunities of the metaverse implementation. The results indicate that the metaverse can make healthcare more inclusive, data-driven, and patient-centric making mental health care delivery a new possibility to transform digital health ecosystems.

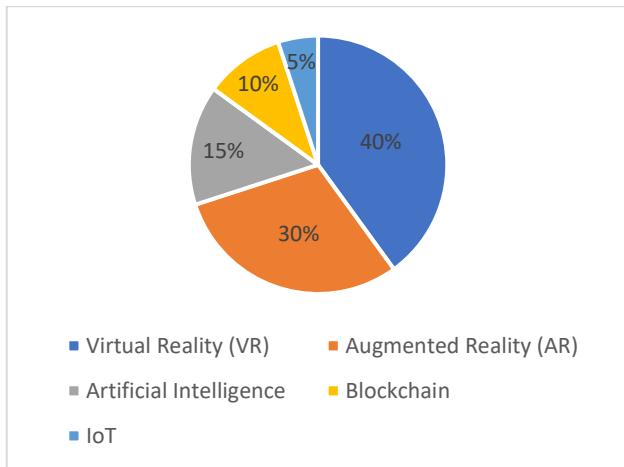

**Keywords--** Telemedicine, Patient Engagement, Digital Health Ecosystems, Stakeholder Impact Analysis, Paradigm Shift.

## I. INTRODUCTION

The healthcare industry is experiencing a major change due to the high rate of innovation in digital technology. The last several decades have witnessed the shift of the healthcare sector, based on the paper-based records and personal visits, to electronic health records (EHR), telemedicine, and AI-aided diagnostics. The necessity to become more efficient, accurate, accessible and achieve better patient outcomes contribute to these changes.

Digitalization has not only enhanced the way medical information is kept and shared, but it has also increased the boundaries of healthcare facilities, and beyond the conventional clinical practice. Simultaneously, it can be seen how real-time virtual environments where people can communicate are gaining popularity in a variety of industries. They are not mere videos or chat rooms on the web but 3D virtual spaces that you can physically move and walk around, chat and collaborate with your avatars. This concept has eventually developed into what is now commonly known as the metaverse an intersecting digital playground comprising digital and physical technologies as well as network technology [1]. Metaverse, a network of virtual space powered by VR/AR, AI, blockchain, and IoT, will disrupt the field of healthcare by opening up physical health care operations to new opportunities. It is one of the most prominent technologies that appeared after the COVID-19 outbreak, helping to plug the loopholes of telehealth, including immersion and haptic response, and allowing worldwide access to expert care.

Besides clinical interaction, medical education, training and research is another field that the metaverse is revolutionizing. Intricate surgical operations, emergencies and anatomical investigations are now modelled in three-dimensional computer simulation, which means that the medical practitioner attains and trains their skills without endangering the lives of the actual patients. These immersive learning systems can be used to improve comprehension, minimize errors and improve decision making, which is why they lead to safer and more efficient health care delivery. In addition to making medical training and service delivery better, Interactive digital spaces can be used for virtual therapy sessions, rehabilitation programs, mental health support, and managing chronic diseases. These settings make patients more motivated and committed to their treatment. Moreover, the technologies allow continuous learning and collaboration between institutions and nations, which leads to the formation of a global healthcare ecosystem[2].




**Figure 1.** Transition from digital healthcare systems to immersive metaverse-enabled healthcare environments.

## II. CONCEPTUAL FRAMEWORK

### A. Learning about the Metaverse: Technologies and Components

The Metaverse is an evolving and sustainable virtual world that intersects physical and digital reality and is facilitated by a complex of new technologies, including virtual reality (VR), augmented reality (AR), artificial intelligence (AI), blockchain, 5G connectivity, and internet of things (IoT)[3]. The Metaverse in the case of healthcare is used to provide immersive experiences in which users, such as patients, clinicians, researchers, etc., can engage in real-time, exchange data, and engage with complicated tasks in a simulated environment.



**Figure 2.** Data Representation of the Adoption of Metaverse Technologies in Healthcare

*Key Components include:*

- *Virtual and Augmented Reality:* This is the technology the Metaverse uses the Virtual Reality (VR) and Augmented Reality (AR) to transform the way healthcare is delivered. VR develops virtual worlds that allow creating simulated space interactions between patients and providers, whereas AR superimposes digital space information on reality [6]. These technologies allow realistic simulation of the medical procedure, its education, and therapy of a patient.

- *Digital twins:* Computerized model of anatomy, organs, or whole health system of patients, which can be simulated, analysed, and planned individually to treat patients in real-time. Digital twins make it easier to predict and intervene proactively in healthcare.
- *Artificial Intelligence and Machine Learning:* To process a large amount of health data, individualize online interaction and automate operations. These systems use large amounts of health data to aid in diagnostics, disease progression prediction, individualized treatment plans, as well as enhance the process of making decisions in virtual settings.
- *Blockchain:* Assuring secure, transparent, and tamper-proof operations of sensitive health data, are guaranteed, which is important in building trust and interoperability among various systems in the Metaverse.
- *IoT Devices:* Wearable technology, sensors, and remote monitoring applications will gather real-time health data and provide precise information into the virtual world to be assessed and adjusted continuously.

### B. The Differences Between the Metaverse and the Traditional Digital Health Tools

Whereas the existing digital health solutions, including telemedicine, electronic health records (EHRs), and mobile health apps, aim at a particular functionality, the Metaverse provides a complete, immersive experience that combines several technologies to provide a fluid experience. As opposed to conventional tools, it allows:

- *Spatial interaction & Multi-sensibility:* Visual, auditory, and tactile feedback allow users to explore 3D virtual environments and interact with objects and have a sense of presence, which enhances activity and perceive more.
- *Increased Cooperation:* The different stakeholders, including patients, clinicians and researchers can engage with each other in a virtual platform in real-time and irrespective of geographical location. This enables multidisciplinary team work, distance consultations and decision making.
- *Realistic Simulation and Training:* The Metaverse offers a very realistic risk-free environment to be able to practice complex procedures, develop skills, and minimize the errors in real-world situations.
- *Individualized Virtual Experiences:* Individualized to the needs, preferences, and conditions of patients, which are likely to enhance adherence and health outcomes.

*C. Important Characteristics that make possible Healthcare Applications*

The Metaverse has a transformative potential in healthcare which is enabled by a number of key features:

- ❖ *Immersive Visualization:* Provides an in-depth, 3D anatomy, pathology and treatment choices in order to help clinicians and patients in the comprehension of complicated medical data.
- ❖ *Remote and Real-Time Collaboration:* Enables high level of precision and coordination in real-time consultations, multidisciplinary meetings and remote surgeries, by cutting geographical boundaries.
- ❖ *Patient Engagement and Education:* Interactive Virtual Environment Virtual environments can
- ❖ enable patients to engage in health literacy, motivate behaviour change, and empower patients to be active participants of their care.
- ❖ *Simulation and Skill Training:* Surgeons, doctors, and other healthcare workers are able to practice surgeries, diagnostic tests, and emergency treatments and practice in virtual environments where the chances of accidents are minimized, and the level of professionalism is increased [17].
- ❖ *Data Integration and Analytics:* Integration of wearables, EHRs, imaging, and other data into the virtual environment will enable the development of a comprehensive analysis of the data, predictive model, and individual care routes.

Thus the immersive technologies, intelligent systems, real-time data and secure digital infrastructure are the pillars of the conceptual framework of the metaverse in healthcare. This framework will facilitate the transition to a less traditional healthcare delivery model

**III. MEDICAL INNOVATION THROUGH THE METAVERSE  
(A PARADIGM SHIFT IN THE HEALTHCARE SECTOR)**

The healthcare sector is interested in new opportunities to enhance patient outcomes, medical training, and international cooperation, the metaverse gives unprecedented opportunities.

It allows healthcare providers and patients to interact in virtual environments that are realistic and interactive and overcome geographic barriers and physical restrictions; through the metaverse, medical providers can practice advanced procedures, diagnose diseases and symptoms more precisely and offer personalized care and treatment to their patients but in a safe and controlled online space.

*A.Improving Medical Training and Education*

Traditionally medical education has been based on the learning of textbooks, cadaver dissection, and supervised clinical practice. The Metaverse is paradigm-shifting because it can offer immensely realistic, interactive, and repetitive training. The trainees are able to study the 3D models of anatomy, alter the virtual organs and simulate the surgeries with real time feedback [4]. This does not only increase the spatial knowledge but also enables the learners to practice rare or complicated processes which they might not come across often in the clinical environment.

Team-based training is also possible through virtual simulations since multidisciplinary teams can work together in a shared virtual environment, enhancing communication and coordination in the event of an emergency. As an example, airway management or trauma response modules of virtual reality make trainees train in critical skills in a safe and controlled setting. Moreover, educational experiences provided in the Metaverse through virtual lectures and interactive tutorials are more engaging and provide some flexibility in learning, since it becomes more accessible.

*B.Enabling Remote Surgery and Diagnostics*

Remote surgery is one of the most radical inventions that the Metaverse has made possible. Armed with robotic surgical systems that are connected with the help of high-speed internet and virtual interfaces, surgeons are now able to perform surgery on patients thousands of miles away. The virtual environment offers real-time 3D visualization, haptic feedback and control accuracy, simulating the real-life surgeries. This would be critical in an area of disaster, rural or even a developing nation that does not have specialized surgeons.

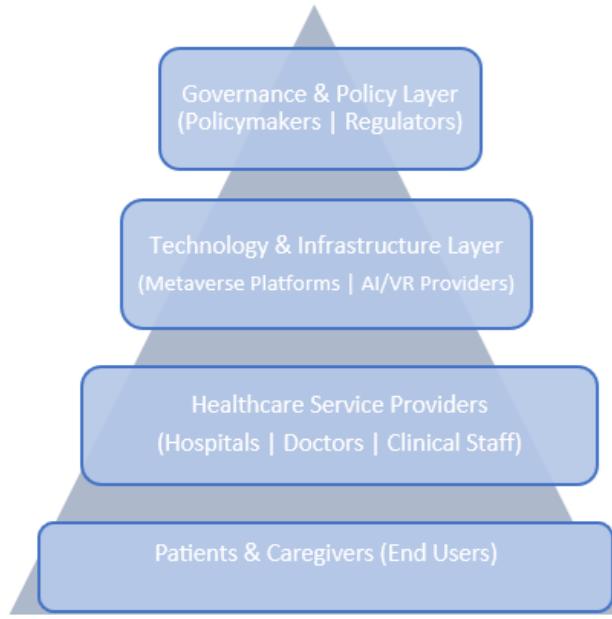
**TABLE I.**  
**Comparative Effect Of Technologies Of Metaverse In Major Healthcare Areas**

| HEALTHCARE DOMAIN         | CONVENTIONAL APPROACH     | METAVERSE ENABLED APPROACH                     | RESEARCH SIGNIFICANCE                               |
|---------------------------|---------------------------|------------------------------------------------|-----------------------------------------------------|
| <b>Medical Training</b>   | Textbooks, cadaver labs   | Immersive VR simulation, virtual anatomy       | Improves skill retention and reduces training cost. |
| <b>Diagnosis</b>          | 2D imaging interpretation | 3D visualization and collaborative diagnostics | Enhances diagnostic accuracy                        |
| <b>Surgery</b>            | On-site manual procedure  | Remote robotic surgery with AR assistance      | Expands access to expert care                       |
| <b>Patient Engagement</b> | In person visits          | Virtual consultation and digital twins         | Increases Patient participation                     |

The Metaverse can be used in a diagnostics process to enable specialists to build complex imaging data in shared virtual spaces, including MRI, CT scans, or ultrasound. To take an example, radiologists and neurologists can collaboratively view 3D reconstructions of brain images, improving the level of diagnostics and decreasing the rate of misinterpretation. Virtual diagnostics clinics also allow patients to meet a number of specialists at the same time, which facilitates the process of diagnosis and treatment planning.

#### *C. Pacing up Drug Discovery and Research Partnerships*

The drug discovery is a process that has always been considered time-consuming and resource-intensive. This is speeded up by the Metaverse as it encourages international cooperation with mutual digital labs and visualizers. Molecular models enable researchers in continents to work on them, simulate drug-target reactions, and collectively analyse data in real-time, which saves the need to use physical samples and to spend hours in meetings [8]. Virtual environments are also used to model diseases and replicate the virtual twins of patients, digital versions of specific patients, to enable researchers to predict drug reactions and optimize personal treatment. Such virtual models assist in the estimation of long-term results, side effects, and interactions and transfer to clinical trials, which lowers cost and risk.


Besides, online conferences and symposia can further promote the spread of research results and build collaborations that can hasten innovation. As an example, the AI-powered virtual environment of the company such as Atom-wise can be used to simulate the molecular interaction, accelerating the process of the identification of promising drug candidates.

#### *D. Case Studies and Innovations in the Process of Emergence*

The metaverse as a revolutionary force in the healthcare sector is proven by numerous projects:

- *AccuVein*: AR device, which shows the map of veins on the skin, which simplify injections and cause less pain, particularly when it comes to children or challenging cases.
- *Medical Realities*: This is a VR platform providing simulated surgery training to surgeons from all around the world, and the modules are created in a way that imitates real-life surgery in its details.
- *Proximie* : A collaboration platform that helps facilitate remote surgical assistance, so that experts can guide and assist surgeons in surgery in real-time using live video and AR overlay.
- *XRHealth*: offering stroke and physical disability patients virtual rehabilitation programs to enhance their mobility and activity.

**IV. THE ANALYSIS OF STAKEHOLDERS IMPACT PROFILE ACROSS THE HEALTHCARE VALUE CHAIN**



**Figure 3. Stakeholder hierarchy across the metaverse-enabled healthcare value chain**

*A. Effect on Patients and Caregivers*

Patients are the most important stakeholders in the healthcare value chain, and the metaverse largely reforms their position as the passive consumers of care and makes them the active participants. Virtual environments help patients to immerse in the healthcare services because of the ability to consult with healthcare providers on a more interactive level, take part in virtual therapy sessions, and have a modified experience of receiving treatment. Improved medical imaging of conditions and processes enhances health literacy, decision-making and treatment compliance.

To caregivers, metaverse can be used to monitor remotely, support networks, and enhance communication with the health practitioners [11]. This eliminates emotional and logistical overheads and removes some of the more informed care giving, especially in the case of chronic and long-term illnesses.

*B. Effect on Healthcare Professionals and Clinical Providers*

Clinical practice and service delivery undergo significant transformations in healthcare professionals such as doctors, nurses, as well as other allied health workers.

The metaverse is conducive to the development of diagnostic devices, training simulation, and group virtual activity, which expand the clinical decision-making process and skill training. Digital consultations and digital twins allow improved treatment planning and minimizing physical limitations to care delivery.

Nevertheless, the transition implies that healthcare specialists must redefine the new digital skills and professional ethical standards in the realm of virtual care. The dynamic quality of the professional roles is the element that makes it necessary to engage in constant training and institutional reinforcements that would permit the effective integration of the metaverse technologies into the clinical activities [12].

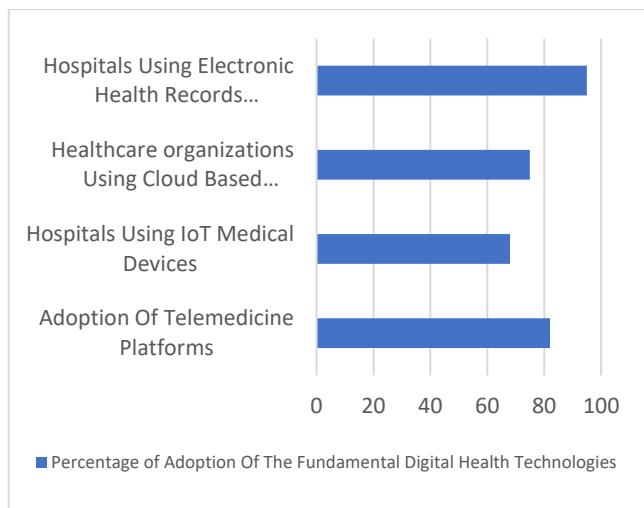
*C. Effect on the Technology Providers and Innovators*

The developers of technology and the providers of the platform are critical to the healthcare metaverse. Some of their contributions are in VR / AR tools, AI-driven analytics, blockchain-based security solutions, and interoperable digital platforms. The increased need in the field of immersive healthcare solutions opens the space of innovation, collaboration, and market growth.

However, technology providers experience issues associated with regulatory compliance, data protection and ethical responsibility. To maintain trust and long-term adoption, interoperability with the healthcare systems and compliance with clinical standards is paramount.

*D. Influence over Policy makers and Regulators*

Policymakers and regulators play an important role in the healthcare value chain as they control the ethical, legal, and operational aspects of healthcare through the use of metaverse. The appearance of virtual care settings provokes the sophisticated problems regarding the data privacy, cross-border care provision, responsibility, and patient safety.


The regulatory authorities should come up with dynamic governance systems that balance between entrepreneurship and ethical protection and citizen confidence. It is crucial to have joint policymaking processes between healthcare facilities, technology-delivery companies, and patient advocates to achieve standardized rules and provide equal opportunities in terms of access to the healthcare of the metaverse. In addition, policymakers have a vital role in guaranteeing fair access to metaverse-based healthcare by resolving the problem of digital inclusion, affordability, and disparities in infrastructure. Metaverse technologies have a risk of enlarging the available inequalities in healthcare systems without the supportive policy interventions.

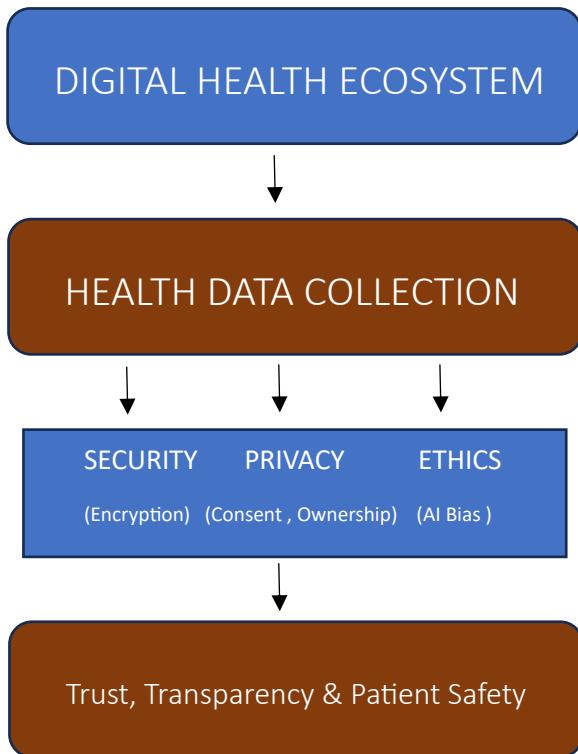
There is therefore a need to engage healthcare institutions, technology providers, patient representatives, and international regulatory bodies in collaborative policymaking to develop standard, open, and transparent regulatory frameworks to enhance the sustainable introduction of the metaverse into global healthcare systems.

## V. THE FUTURE OF DIGITAL HEALTH ECOSYSTEM

### A. Implementation with the Existing Health Information Systems (EHRs, IoT Devices)

The future of digital health ecosystems is dependent on the ability to easily integrate it with other operational health information systems including Electronic Health Records (EHRs) and Internet of Things (IoT) devices. This integration allows sharing of real time data, which increases the accuracy and timeliness of patient information [5]. Linking wearable gadgets, remote tracking equipment, and hospital systems, health practitioners may acquire in-depth understanding of patient health, promote individualized care plans, and promote coordinated care [13]. The solution to interoperability issues will be essential in developing an integrated digital infrastructure that will facilitate scalable and effective healthcare provision.




**Figure 4.** This graph depicts the popularization of fundamental digital health technologies that are necessary in the integration of the metaverse.

### B. Data Security, Privacy and Ethical issues

With increasing complexity in the nature of digital health ecosystems, the issue of the sensitive health data protection becomes central. Hacking, data breaches, and ransomware attacks are some of the cybersecurity threats to patient confidentiality and trust. End-to-end encryption and multi-factor authentication, as well as secure cloud storage are the crucial steps to implement. The issue of privacy is not limited to security, but patients should be in charge of their data, they are to be aware of how the information is utilized and shared [14]. Informed consent, no discrimination on health data, and biases in AI algorithms are all the ethical considerations to be taken into account. Healthcare providers and policymakers should come up with well-defined guidelines and standards of data utilization, which focus on accountability and transparency. Other ethical considerations should be made, such as the ownership of data, such as rights to health information should belong to patients, providers, or third-party organizations; and the responsible use of AI in diagnostics and treatment.

### C. Effect on the Availability and Equity of healthcare

Digital health ecosystems can also help to democratize access to healthcare by breaking the geographical, economic, and social barriers. With telehealth services, patients no longer have to travel long distances to a specialist because they can now access them through video calls in remote or underserved locations. Remote monitoring devices and mobile health applications enable effective health management at all times and minimize the number of hospital visits and emergency care. Nevertheless, digital divides, including lack of internet access, digital illiteracy, and affordability can contribute to the current health disparities [15]. These challenges must be tackled through specific investments in digital infrastructure, low-cost gadgets and education programs to enable all the population to use these technologies appropriately. The policies need to be developed in such a manner that they create an equal access such as the provision of subsidies, community outreach as well as the use of inclusive design methods, which takes into account the difference in literacy and language requirements.



**Figure 5. Structural Overview of Data Security, Privacy, and Ethical Dimensions in Digital Health Ecosystems**

**D. Legal & Political Implications**

Technological change is so fast that it outruns the traditional regulatory systems and requires dynamic and adaptive policies that can enable safe innovation. The regulatory authorities should set clear requirements on the safety of devices, reliability of software and data privacy. As an example, the use of AI-based diagnostic tools should be approved, which will demand strict validation and post-market monitoring [16]. The cross-border data sharing and telemedicine services require international collaboration to establish a uniform standard and legal consensus. Intellectual property rights, reimbursement models, as well as liability concerns in relation to AI and autonomous systems should also be considered by the policymakers. The inclusion of a wide spectrum of stakeholders such as the patients, clinicians, technologists and the regulators in the policymaking processes will guarantee balanced regulations that will encourage innovation and at the same time protect the health of the population.

**E. Global Health Improvement Potency**

Digital health ecosystems have the potential to transform the world health outcome through the ability to achieve disease prevention, disease management, and response plans at scale. Live information gathering and analytics can also help promptly identify the outbreaks, track outbreaks, and organize the international response effectively. Telemedicine has the potential to expand the spectrum of specialist knowledge to underserved areas to reduce health disparities and enhance the health of mothers and children, the control of infectious diseases and chronic diseases [7]. Health education campaigns can also be supported using digital tools and tailored to local cultures and languages and support healthy behaviours globally. In addition, the worldwide partnerships based on the common data and AI can promote innovation in the sphere of vaccine development, drug discovery, and personalized medicine. To achieve these benefits and enjoy equitable health gains the world over, it is important to build resilient and scalable digital health infrastructures, particularly in the low and middle-income nations [10].

**VI. EMPIRICAL STUDIES & APPLIED HEALTHCARE SCENARIOS**

**A. Best Practices in the Metaverse in Healthcare**

**1) Simulation Surgical Training and Skill Development :**

- *Example:* Osso VR and Medical Realities.
- *Rationale:* These systems incorporate high-fidelity virtual reality systems to model complicated surgical procedures. Doctors and medical students can carry out virtual operations and therefore repeat the operations without causing harm to the patients [9]. As an example, Osso VR has collaborated with large institutions to educate laparoscopic and orthopedic surgeons.
- *Implications:* The strategy has been shown to save a lot of money on training and enhances the accuracy of procedures as well as the learning curve. It is also used to provide standardized training among institutions throughout the world.

**2) Diagnosis through Remote means and presence in the metaverse :**

- *Example:* Health-verse and other similar platforms.
- *Rationale:* These virtual spaces are used to conduct remote consultations with patients, which enables the healthcare provider to meet with patients in three-dimensional spaces.

Virtual clinics allow patients to navigate, exchange visual data, and be assessed through interactive means in a more interactive way than traditional telemedicine.

- **Implications:** More patients with remote or underserved could get access, better patient-doctor relationships, and more precise diagnoses due to the use of immersive visualizations.

**3) Mental Health Interventions based on Virtual Reality:**

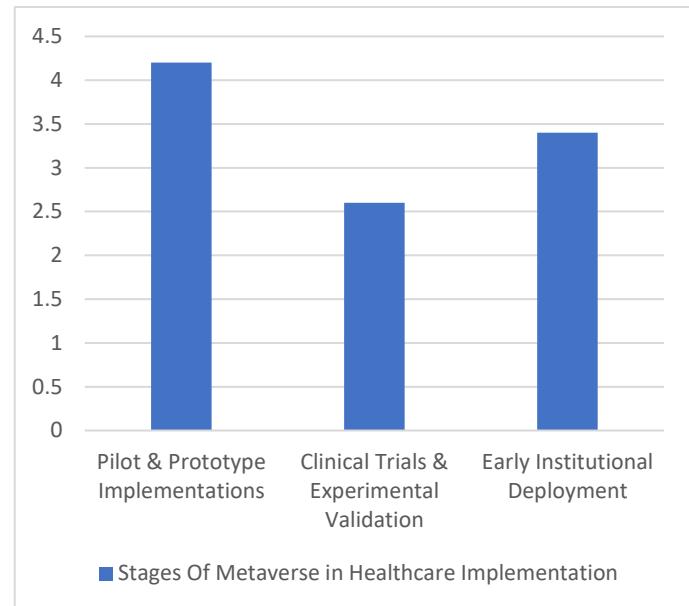
- Psius and Bravemind (fit to use in treating PTSD).
- **Rationale:** VR exposure therapy involves exposure of patients to face fears, phobias and traumatic memories in controlled virtual situations under the supervision of a therapist. As an illustration, the VR acrophobia (fear of heights) or PTSD treatment has yielded encouraging outcomes.
- **Implications:** Increased patient engagement, decreased treatment stigma and better results than when using conventional therapy methods.

**4) Learning Resources and Anatomy Simulation:**

- 3D Organon VR Anatomy and Human Anatomy VR.
- **Rationale:** These applications allow students and patients to learn the intricate biological structures and diseases in more detail and through interactive, 3D models of the human anatomy.
- **Implications:** Improved patient comprehension, increased learning retention and effective health education.

**B. In Progress Analysis & Ongoing Experimental Programs**

**1) Microsoft Mesh in the medical collaboration**


- ❖ A mixed reality platform that will allow the healthcare teams to work with each other across the distances, conduct virtual surgeries, training sessions, and patient education.
- ❖ **Present State:** There are trial ongoing projects in the hospital to test its remotely planning surgical operations and the use of it in multidisciplinary teams.

**2) VR Intervention in the Management of Chronic Diseases**

- ❖ Experiments are being conducted to study VR-based applications in the treatment of chronic pain, obesity and heart diseases.
- ❖ **Goals:** To check the hypothesis that immersive experiences can enhance patient adherence, anxiety, and help them adopt healthier behaviors.

**3) International Cooperation Ventures**

- ❖ Other projects such as VR4Health are meant to support telemedicine services, virtual clinical trials, and health education campaigns with the metaverse as a tool to overcome geographical limitations.
- ❖ **Prospects:** Those initiatives are at the discovery stages but promise to change the landscape of health outreach in the globe.



**Figure 6.**

The column chart draws attention to the present success of metaverse based healthcare programs in various implementation levels. The most active ones are pilot and prototype programs, in which the experimentation and innovation are prevalent.

**VII. CONCLUSION**

The inclusion of the Metaverse in healthcare is a paradigm shift, and it reinvents how medical care, interaction with patients, and digital health economies work. The Metaverse allows developing new solutions to medical education, surgery planning, remote visits, and rehabilitation of patients with the help of immersive technologies like virtual reality, augmented reality, and digital twins. These innovations, besides being more precise and efficiency based in terms of healthcare delivery, enable the empowerment of the patient by providing more interactive and personalized healthcare experiences.

In addition, the Metaverse supports a joint digital space that enables healthcare professionals, researchers, and patients to communicate and cooperate without logistical and geographical limitations. This paradigm shift will bring faster adoption of telemedicine, virtual clinical trials, and remote monitoring and help bring more inclusive and accessible healthcare systems to the world.

Nevertheless, the Metaverse has the potential to be a massively valuable and impactful phenomenon, but at the same time, it brings up significant issues of data security, privacy, ethical standards, and fair access. All these issues are important to be overcome so that the digital transformation can be patient-centered and sustainable.

To summarize, the Metaverse is not a new technological trend but a factor that should drive the reinvention of the healthcare future. Its capacity to integrate immersive experiences and medical innovation is a promise of a new digital age of healthcare, better patient engagement, better clinical outcomes, and a more connected healthcare ecosystem. The current state of technology is in its ever-changing phase and further research, policy formulation and responsible application will be crucial in realizing the true potential of the technology, which will eventually create a smarter, more efficient and accessible healthcare environment.

#### REFERENCES

- [1] Agarwal, R., & Kautz, K. (2022). The rise of virtual reality and the metaverse in healthcare: Opportunities and challenges. *Journal of Medical Internet Research*, 24(3), e27855. <https://doi.org/10.2196/27855>
- [2] World Health Organization. (2021). Global strategy on digital health 2020–2025. WHO Press.
- [3] Lee, L. H., Braud, T., Zhou, P., Wang, L., Xu, D., Lin, Z., ... Hui, P. (2021). All one needs to know about metaverse: A complete survey. *IEEE Access*, 9, 146714–146726.
- [4] Radiani, J., Majchrzak, T. A., Fromm, J., & Wohlgemant, I. (2020). A systematic review of immersive virtual reality applications. *Computers & Education*, 147, 103778.
- [5] Keesara, S., Jonas, A., & Schulman, K. (2020). Covid-19 and health care's digital revolution. *New England Journal of Medicine*, 382, e82.
- [6] Mantovani, F., Castelnovo, G., & Riva, G. (2003). Virtual reality training for health-care professionals. *CyberPsychology & Behavior*, 6(4), 389–395.
- [7] Al-Shamsi, H. O., Alhazzani, W., Alhurajji, A., et al. (2020). A practical approach to telemedicine. *Journal of Global Health*, 10(2), 020310.
- [8] Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development. *Drug Discovery Today*, 24(3), 773–780.
- [9] Accenture. (2023). Healthcare meets the metaverse. Accenture Research.
- [10] Deloitte. (2022). Metaverse and the future of healthcare. Deloitte Insights.
- [11] Porter, M. E., & Lee, T. H. (2013). The strategy that will fix health care. *Harvard Business Review*, 91(10), 50–70.
- [12] Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
- [13] Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research commentary—The digital transformation of healthcare. *Information Systems Research*, 21(4), 796–809.
- [14] Rumbold, J. M. M., & Pierscionek, B. (2017). The effect of the General Data Protection Regulation on medical research. *Medical Law Review*, 25(3), 474–501.
- [15] United Nations. (2022). Digital technologies and universal health coverage. UN Publications.
- [16] World Economic Forum. (2023). Global governance of the metaverse. WEF White Paper.
- [17] Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. *Frontiers in Robotics and AI*, 3, 74.