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Abstract— For public health officials, forecasting disease 

outbreaks impacted by weather variations has always been a 

difficult task. In this work, we investigate how using real-world 

data and contemporary machine learning algorithms can aid in 

producing more accurate projections. To determine which 

model is most effective at forecasting the risks of weather-

related diseases, we compare three distinct models: Graph 

Neural Networks (GNN), Physics-Informed Neural Networks 

(PINN), and Long Short-Term Memory (LSTM) networks. 

With an R2 score of 0.90 and the lowest RMSE of all the models 

examined, our findings demonstrate that the PINN model 

consistently produces more accurate and dependable 

predictions. The PINN model manages real-world variability 

considerably better by incorporating physical knowledge into 

the learning process, particularly during unforeseen weather 

events. Early warning systems could be greatly enhanced by 

this strategy, improving health organizations' ability to 

anticipate outbreaks. Along with outlining prospects for 

further study to create even more accurate prediction tools, we 

also go over each model's advantages and disadvantages. 
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I. INTRODUCTION 

The link between weather conditions and human health 

results is well-known. According to the World Health 

Organization (WHO), climate change will cause around 

250,000 more deaths year between 2030 and 2050 from 

hunger, malaria, diarrhea, and heat stress. Temperature, 

rainfall, humidity, and other meteorological factors show 

significant relationships with infectious diseases, including 

dengue fever, malaria, cholera, and influenza. Temperature, 

precipitation, humidity, and other climatic factors show very 

strong relationships with infectious diseases including 

dengue fever, malaria, cholera, and influenza. 

 Effective public health planning and intervention depend on 

accurate prediction of disease outbreaks by use of weather 

pattern analysis. Traditional epidemiological models, such 

as the Susceptible-Infectious-Recovered (SIR) frameworks, 

offer valuable insights but often rely on fixed assumptions 

about transmission dynamics. These models struggle to 

accommodate the complex, non-linear relationships between 

multiple weather parameters and disease outcomes [3]. 

Additionally, they generally require manually crafted 

parameters, which limits adaptability across different 

geographical regions and time frames. The rise of Machine 

Learning (ML) presents an opportunity to address these 

challenges. ML algorithms can autonomously learn hidden 

patterns from large datasets, making them particularly 

suitable for modelling the multifactorial dependencies 

between climatic variables and disease risk [4]. For instance, 

studies have demonstrated that ML models can predict 

dengue outbreaks with over 90% accuracy using 

meteorological data [5]. Similarly, ML has been applied to 

forecast malaria incidence and respiratory infections under 

varying weather conditions [6]. 

Recent developments in machine learning—including Long 

Short-Term Memory (LSTM) networks, Graph Neural 

Networks (GNNs), as well as Physics-Informed Neural 

Networks (PINNs)—have opened new possibilities for 

predictive modeling. These models are particularly good at 

handling spatial-temporal data, a vital need for weather and 

disease prediction. 
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• A kind of recurrent neural network (RNN) able to 

learn long-term dependencies in sequential input, 

LSTM networks frequently employed for time-

series forecasting, they are appropriate for 

estimating disease occurrence over time depending 

on weather patterns. [7]. 

• GNNs are perfect for capturing spatial correlations 

among several areas since they are particularly 

good at acquiring from graph-structured data. [8]. 

• PINNs embed differential equations—such as 

transmission dynamics—into the neural network 

design to include domain knowledge straight into 

the training process, hence enhancing 

interpretability and extrapolation [9]. 

Integrating these models into a comprehensive predictive 

framework can significantly enhance the early warning 

systems for public health agencies. Furthermore, combining 

real-time weather data with disease incidence reports can 

enable dynamic forecasting models that continuously update 

risk estimations. 

With a significant emphasis on predictive analytics, a 2022 

study by MarketsandMarkets projects the healthcare 

artificial intelligence market will grow from USD 11.1 

billion in 2021 to USD 64.0 billion by 2027[10]. This 

underscores the increasing demand for intelligent 

forecasting systems in the healthcare sector. 

A general workflow for weather-based disease forecasting 

using ML is depicted in Figure 1 below. 

These positive developments bring still challenges. 

Particularly in low- and middle-income countries, the 

availability and quality of data can limit the accuracy of 

predictive models. Many machine learning algorithms' 

"black-box" nature raises questions about interpretation and 

transparency in public health settings as well [11]. 

Using the Weather-Related Disease Prediction Dataset, this 

work seeks to solve these issues by using and contrasting 

three state-of-the-art ML models—LSTM, GNN, and PINN 

[6,12].  

 

 

Figure 1: Workflow for weather-based disease forecasting using ML 

By benchmarking their performance, we seek to highlight 

the strengths and limitations of each approach and provide 

actionable insights for building more robust disease 

forecasting systems. 

In the sections that follow, we detail the dataset, 

preprocessing steps, model architectures, evaluation results, 

and a discussion on future research directions. 

This document is template. We ask that authors follow some 

simple guidelines. In essence, we ask that you format your 

paper to match this document exactly. The easiest way to do 

this is simply to download the template, and replace(copy-

paste) the content with your own material. 
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II. LITERATURE REVIEW  

The relationship between weather variables and infectious 

diseases has been extensively studied across multiple 

disciplines. Early epidemiological models, such as the 

compartmental Susceptible-Infected-Recovered (SIR) 

frameworks, have long attempted to model disease spread. 

However, these models often assume homogeneous 

populations and fail to capture the nuanced impacts of 

environmental factors like temperature and precipitation 

[13]. 

Recent studies underline the importance of machine 

learning (ML) in forecasting disease outbreaks by use of 

weather data integration. Based on meteorological and 

mosquito data, the study showed that decision trees and 

support vector machines (SVMs) may achieve excellent 

classification accuracy in predicting West Nile Virus 

occurrences [14]. Using Random Forest models, a study 

forecasted dengue outbreaks with more than 95% accuracy 

in several different areas[15]. 

Temporal modeling has particularly benefited from 

advancements in deep learning. Originally intended to 

manage sequential dependencies, long short-term memory 

(LSTM) networks have been effectively used for dengue, 

influenza, and malaria forecasting [16]. For instance, here 

used LSTM-based models to predict dengue cases in cites of 

chine, achieving a notable RMSE reduction compared to 

conventional time series models [17]. 

Spatial modeling has gained traction with the advent of 

Graph Neural Networks (GNNs). By modeling spatial 

interdependencies between regions, GNNs have shown 

remarkable success in epidemic forecasting tasks. EpiGNN, 

proposed by Xie et al., models region-to-region transmission 

dynamics using a graph-based structure and outperformed 

traditional time series models [18]. 

A particularly promising development is the emergence 

of Physics-Informed Neural Networks (PINNs), which 

embed known epidemiological and environmental 

constraints into deep learning models. Raissi et al. 

introduced PINNs to solve complex partial differential 

equations, and their application to disease modeling has 

since gained popularity [8]. By guiding the learning process 

with domain-specific knowledge, PINNs enhance model 

interpretability and extrapolation capabilities—a crucial 

factor in public health forecasting [19]. 

Despite these advancements, challenges remain. Data 

sparsity, non-stationarity of climatic patterns, and the 

"black-box" nature of deep learning models present 

significant hurdles. Some researchers advocate hybrid 

models combining mechanistic epidemiological insights 

with data-driven ML approaches to bridge this gap [20]. 

 

This literature underscores the transformative potential of 

integrating state-of-the-art ML models for weather-based 

disease forecasting. However, careful model selection, 

incorporation of domain knowledge, and emphasis on 

interpretability remain critical for real-world 

applications.An easy way to comply with the conference 

paper formatting requirements is to use this document as a 

template and simply type your text into it. 

III. METHODOLOGY 

This section delineates the data source, preprocessing 

methodologies, and machine learning models utilized for 

forecasting disease risk depending on weather conditions. 

The pipeline was engineered to guarantee equitable 

comparison and maximal model efficacy across various 

topologies. 

3.1 Dataset 

We utilized the Weather-Related Disease Prediction Dataset 

available on Kaggle [6]. This dataset is well-suited for our 

task, as it integrates both weather indicators and 

corresponding disease incidence reports. 

Key Features: 

• Weather Variables: Solar radiation (W/m²), wind speed 

(km/h), rainfall (mm), humidity (%), temperature (°C). 

• Disease Indicators: Reported instances of respiratory 

diseases, vector-borne infections—e.g., dengue, 

malaria. 

• Geographical Attributes: Region codes and names. 

• Temporal Coverage: Monthly records spanning 

multiple years. 

The dataset contains around 25,000 occurrences with 15 

numerical and two categorical parameters. Its temporal and 

spatial granularity enables the use of advanced sequence 

modeling and spatial reasoning techniques. 

3.2 Preprocessing Steps 

Effective preprocessing is crucial for achieving reliable 

model performance, particularly when working with 

heterogeneous data such as weather and disease records. 
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3.2.1 Handling Missing Values 

• K-Nearest Neighbors (KNN) Imputation: Applied for 

missing weather variables, selecting k = 5 based on 

validation performance. 

• Forward Fill and Interpolation: Used for minor gaps in 

disease reporting. 

3.2.2 Feature Engineering 

• Lag Features: Generated 1-month, 3-month, and 6-

month lags for weather variables to capture delayed 

impacts on disease incidence. 

• Moving Averages: Computed rolling averages (window 

= 3 months) for smoothing seasonal noise. 

• Seasonal Indicators: Added binary variables indicating 

wet/dry season based on monthly rainfall thresholds. 

3.2.3 Normalization 

• Min-Max Scaling: Applied to continuous variables to 

scale features to a [0,1] range, facilitating faster model 

convergence. 

• Label Encoding: Categorical features like region codes 

were encoded for input into neural networks. 

3.2.4 Data Partitioning 

• Training Set: 70% of the data 

• Validation Set: Hyperparameter tuning at 15% 

• Testing Set: 15% for final evaluation 

• Time Series Splitting: Ensured that future data points 

were not leaked into training, respecting temporal order. 

 

3.3 Model Architectures 

Three leading-edge machine learning models were chosen 

depending on their fit for temporal, spatial, and physics-

informed learning: 

3.3.1 Long Short-Term Memory (LSTM) Networks 

A kind of Recurrent Neural Network (RNN), LSTM 

networks may catch long-term dependencies in 

sequential data [12]. 

• Input: Sequences of weather variables over previous 6 

months. 

• Architecture: 

• Two stacked LSTM layers (64 and 32 units) 

• Dropout (rate 0.3) for regularization 

• Dense layer with ReLU activation 

• Output layer with linear activation for 

continuous risk prediction 

• Loss Function: Mean Squared Error (MSE) 

• Optimizer: Adam 

3.3.2 Graph Neural Networks (GNNs) 

GNNs allow learning representations over graph-structured 

data, modeling regional relationships and transmission 

patterns [12]. 

• Input: Nodes (regions) with weather and disease 

features; edges representing geographical proximity. 

• Architecture: 

• Two Graph Convolutional layers (32 and 16 units) 

• Batch Normalization and ReLU activation 

• Readout layer aggregating node embeddings 

• Dense output layer 

• Loss Function: MSE 

• Graph Construction: Based on k-nearest regions (k = 4) 

using spatial coordinates. 

3.3.3 Physics-Informed Neural Networks (PINNs) 

By including physical rules or epidemiological restrictions 

straight into the loss function, PINNs provide more 

understandable models [12]. 

• Input: Weather variables over time. 

• Architecture: 

• Three fully connected hidden layers (64, 64, 32 

neurons) 

• Sinusoidal activation functions to better represent 

periodic/seasonal dynamics 

• Additional physics-based loss components 

enforcing disease spread equations (e.g., 

temperature–vector activity relation). 

• Total Loss: 

where λ lambda is a regularization hyperparameter tuned 

via grid search. 
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We hope to test the performance of various ML paradigms 

(sequence modeling, spatial reasoning, physics embedding) 

in the context of weather-driven illness risk predictions 

using these unique but complementary architectures. 

IV. RESULTS 

In this section, we present the performance results of the 

three machine learning models LSTM, GNN, and PINN—

on the test dataset. Evaluation metrics such as Root Mean 

Squared The models' prediction accuracy and generalization 

are evaluated using Error (RMSE), Mean Absolute Error 

(MAE), and R² Score. 

4.1 Evaluation Metrics 

• Root Mean Squared Error: Determines the average size of 

prediction error. 

• Mean Absolute Error : Calculates the mean absolute 

differences between expected and actual data. 

• R² Score (Coefficient of Determination): Represents the 

fraction of variance elucidated by the model. 

The formulas are: 

 

 

 

 

 

 

Figure 1 Actual vs Predicted Disease Risk Over Time 
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4.2 Quantitative Results 

Table 1: Model Performance on Test Data 

Model RMSE ↓ MAE ↓ R² Score ↑ 

LSTM 8.23 6.45 0.87 

GNN 8.75 6.92 0.84 

PINN 7.56 5.88 0.90 

(Legend: ↓ Lower is better, ↑ Higher is better) 

Quick Interpretation: 

• PINN achieves the lowest RMSE (7.56) and highest R² 

(0.90), indicating the best overall performance. 

• LSTM performs very well, especially on temporal 

patterns, but slightly underperforms PINN on extreme 

fluctuations. 

• GNN does a good job capturing spatial relationships but 

shows slightly higher error due to complex inter-regional 

transmission patterns. 

 

4.3 Visualization of Predictions 

The PINN model closely follows the true incidence curve, 

suggesting its ability to incorporate domain constraints 

effectively. 

● Bottom = 1.7cm 
● Left = 1.7cm 
● Right = 1.7cm 

 

 

GNN models exhibit a slightly higher variance in errors, 

possibly due to complex spatial relationships not fully 

captured in smaller regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Error Distribution (Insert boxplot showing error 

distributions for LSTM, GNN, and PINN) 

Figure 3 RMSE Comparison Between Models (PINN achieves the 

lowest RMSE, followed by LSTM and then GNN, reinforcing its 

superior accuracy.) 

Figure 4 R² Score Comparison Across Models (PINN achieves 

the lowest RMSE, followed by LSTM and then GNN, 

reinforcing its superior accuracy.) 
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4.4 Comparative Analysis 

 

• LSTM models captured the temporal dynamics well but 

showed slight lag in forecasting sharp outbreak peaks. 

• GNN models handled spatial heterogeneity effectively, 

particularly in regions with cross-border disease spread. 

• PINNs delivered the most interpretable and physically 

consistent predictions, outperforming the other models on 

RMSE and R². 

These findings underline the value of including domain 

knowledge into ML models for important activities as illness 

forecasting. 

Using LSTM, GNN, and PINN models, real illness risk is 

compared to projected risk over time. Particularly during 

peak and low illness incidence times, the PINN model shows 

closer consistency with actual trends. 

The results of the study clearly demonstrate the advantage of 

applying state-of-the-art machine learning algorithms with 

weather-based sickness risk forecasts. Across all evaluation 

criteria and visual comparisons, the Physics-Informed 

Neural Network (PINN) consistently outperformed the Long 

Short-Term Memory (LSTM) and Graph Neural Network 

(GNN) models. This examination of comparisons uncovers 

numerous significant findings. 

At first, LSTM's use of temporal sequence modeling 

produced strong baseline results, especially for situations 

showing clear seasonal cycles. With a R² of 0.87 and an 

RMSE of 8.23, the LSTM model showed its ability to 

properly catch slow changes over time. LSTM models, 

however, struggled during periods of rapid illness incidence 

shift, particularly in the presence of environmental 

anomalies such sudden severe rain or temperature drops. 

LSTM's dependence on historical patterns, without a direct 

inclusion of physical or environmental knowledge, explains 

much of this limitation. 

By means of modeling interdependencies among several 

areas, the Graph Neural Network (GNN) included spatial 

awareness. Though slightly lower than LSTM, the GNN 

models provided notable insights on the spatial dynamics of 

disease with a R² score of 0.84. Still, more error variance 

was observed in regions defined by complex topographical 

or climatic changes. Though they showed promise, GNNs 

needed more fine-tuning, maybe by combining more 

thorough geographic and climatic elements to optimize 

spatial learning capacity. 

Delivering the best performance was the Physics-Informed 

Neural Network (PINN), which had the lowest RMSE of 

7.56 and the greatest R² score of 0.90. Unlike LSTM and 

GNN, PINNs include physical laws—such as heat transfer 

equations or models of epidemiological spread—directly 

into the training process. Particularly in situations with little 

or noisy data, this allows PINNs to have better 

generalization. Moreover, the more consistent error 

distributions obtained in PINN, as shown in Figure 3, 

suggest a resistance to unanticipated or extreme weather 

events—vital for realistic disease forecasting where erratic 

environmental elements often occur. 

Results' clarity improves significantly with PINNs, which is 

another remarkable discovery. Though often criticized for 

their unclear character, deep learning models offer PINNs a 

framework for epidemiologists to understand how particular 

physical limits, such humidity-driven pathogen spread, 

influence forecasts, therefore helping to create more 

educated policy choices. 

Practically speaking, even if PINNs require more careful 

model design and longer training times because of the 

inclusion of differential constraints, their improved 

generalization and interpretability make them very useful for 

early-warning systems in public health. 

Limitations: 

• The models were trained and tested using a single dataset. 

Generalization to other areas with different climate profiles 

calls for more validation. 

• Compiled over fairly broad time frames (monthly), disease 

risks could show more variation in model behavior with 

more precise forecasting—e.g., weekly or daily. 

• The study mostly concentrated on climatic factors; adding 

data on socio-economic status and healthcare access will 

greatly increase the accuracy of the model. 

 

 

V. CONCLUSION & FUTURE WORK 

 

This work revealed that sophisticated machine learning 

algorithms could forecast disease risk depending on the 

weather. Systematic comparison of LSTM, GNN, and PINN 

performance on a real-world dataset revealed that including 

physical domain knowledge into the learning process 

enhances model accuracy and robustness. With a low RMSE 

of 7.56 and a high R² score of 0.90, the PINN model 

outperformed the other two models. Including 

environmental dynamics straight into forecasting models 

increases generality, particularly under extreme or 

unpredictable weather conditions. While LSTM models 

detected temporal patterns and GNNs offered spatial 

insights, they found it difficult to manage complex real-

world variability without clear physical constraints. 
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Exact disease risk prediction can notify public health 

officials to proactive measures and budget distribution, the 

study finds. More study is required because of dataset 

diversity and feature scope limits. Future contributions 

might be data on healthcare infrastructure, socio-economic 

factors, and real-time climatic conditions for more 

comprehensive and deployable predictive models. 

At last, physics-informed machine learning may connect 

data-driven learning and epidemiological knowledge for 

next generation sickness forecasting systems.Hybrid models 

combining LSTM, GNN, and PINN frameworks, including 

more multi-source datasets, and forecasting in real time or 

near real-time can be researched in the future. Including XAI 

techniques might help public health authorities to better 

understand model forecasts. 
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