

Smart Detection of Liver Anomalies Using ML On CT Scans

Harish H K¹, Shreyas M M², Shravan Patil³, Thushar P Gowda⁴, Venkatesh S⁵

^{1,2,3,4,5}Department Of CSE, MIT Mysore, Mysuru, India

Abstract— Smart detection of liver anomalies from CT scans is one of the most crucial challenges in modern medical imaging. Subtle abnormalities are often visually indistinguishable from surrounding healthy tissues, making them difficult to detect even for experienced radiologists. Manual evaluation can be slow, subjective, and prone to oversight—especially when working with large volumes of patient data. To address this challenge, we developed an automated deep learning-based diagnostic system that accurately identifies liver anomalies using CT images. The framework utilizes enhanced convolutional neural network (CNN) architectures such as VGG16, InceptionV3, ResNet152, and MobileNet, supported by transfer learning to improve detection precision across diverse liver disease patterns. Key strengths include efficient feature extraction, improved boundary localization, and strong sensitivity in detecting rare or early-stage anomalies. The final model demonstrates superior effectiveness with accurate segmentation and classification outputs, packaged into an intuitive user interface that allows real-time CT image uploads and provides visual results including anomaly masks and confidence heatmaps. Experimental results confirm stable learning curves and strong validation performance, indicating excellent generalization across different patient cases. Overall, this work offers a scalable and fully automated medical assistance solution that can support radiologists in early diagnosis of liver disorders, ultimately enhancing clinical decision-making and patient care.

Keywords—Liver Anomaly Detection, Deep Learning, CT Scan Imaging, Medical Image Segmentation, Convolutional Neural Networks.

I. INTRODUCTION

Liver diseases are among the leading causes of global mortality, and early detection plays a critical role in preventing severe complications such as cirrhosis, fibrosis, and liver cancer [1]. Computed Tomography (CT) imaging is widely utilized for liver examination due to its high spatial resolution and ability to capture anatomical details of internal structures [2]. However, subtle liver anomalies—such as small lesions, early-stage tumors, cysts, or inflammation—often resemble normal liver tissue in appearance. These similarities in texture, intensity, and shape can make anomaly detection extremely challenging even for experienced radiologists [3][4].

As patient data volumes continue to grow in modern diagnostic centers, manual screening becomes time-consuming, subjective, and susceptible to human oversight.

Recent advancements in artificial intelligence, especially deep learning, have revolutionized medical imaging by enabling automated feature extraction and faster, more reliable diagnostic analysis [5]. Convolutional Neural Networks (CNNs) are particularly effective due to their hierarchical learning capabilities and ability to detect complex variations within medical data [6]. By training on annotated CT images, these models can learn to distinguish subtle differences that might otherwise remain unnoticed during traditional image interpretation.

Figure 1 shows examples of CT liver images demonstrating how anomalies can blend into surrounding tissues, making diagnostics difficult without computer-assisted support.

Fig. 1: Sample CT Scan Images Showing Subtle Liver Anomalies

To improve diagnostic quality, recent studies employ enhanced deep learning frameworks—such as VGG-based classification, U-Net segmentation, and ResNet-based anomaly localization—that improve area-specific learning and boundary extraction of liver lesions [7][8]. MobileNet and Inception architectures have also shown promise in enabling rapid on-device screening and real-time healthcare support [9]. Motivated by these advancements, our work introduces an automated deep learning-based system that detects liver anomalies with high accuracy while providing clear visual explanations through segmentation masks and heat maps.

A. Contributions of This Work

The key contributions of this system are as follows:

- Developed a deep learning-based classification and segmentation framework using CNN architectures including VGG16, ResNet152, InceptionV3, and MobileNet for accurate liver anomaly detection [6][7][8].
- Enhanced model performance using transfer learning and data augmentation, improving generalization across multiple CT scan variations.
- Designed a user-friendly web interface supporting real-time CT scan uploads and instant visualization of anomaly predictions and confidence outputs.
- Achieved strong experimental performance with smooth convergence patterns and consistent anomaly localization—demonstrating suitability for clinical assistance in hospitals and diagnostic centers.

This report is organized as follows:

Section II presents a detailed literature review and background on existing liver anomaly detection methods.

Section III describes the dataset, methodology, and system architecture.

Section IV includes model performance evaluation, visualization results, and analysis graphs.

Section V concludes the work and highlights future enhancements for clinical deployment.

II. LITERATURE SURVEY

Research on liver anomaly detection using medical imaging has progressed significantly over the past decade. Early computer-assisted diagnosis systems mostly relied on handcrafted features—texture descriptors, gray-level histograms, shape patterns, and edge boundaries—to differentiate abnormal regions from healthy liver tissues [1]. While these methods achieved moderate success in controlled datasets, they frequently struggled when anomalies exhibited minimal contrast variations or irregular shapes. As liver abnormalities often share similar pixel intensities with surrounding tissues, traditional segmentation models were prone to high misclassification rates in real-world clinical environments.

With the rise of deep learning, remarkable advancements have been made in medical image analysis. CNN-based architectures such as VGGNet and AlexNet introduced automated feature extraction, reducing dependency on manual feature engineering and significantly improving diagnostic consistency [2].

U-Net played a major role in medical segmentation by integrating skip connections to combine contextual depth with fine-grained spatial details—making it highly effective for locating liver lesions and tumors [3]. Later, ResNet and its deeper residual learning strategy enhanced the ability to capture complex anomaly structures while maintaining strong gradient flow during training [4].

Several studies have focused on improving segmentation robustness for liver lesion identification. Attention-guided networks such as Attention-U-Net enhanced anomaly localization by highlighting key pathological regions and suppressing irrelevant background noise [5]. 3D-CNN models expanded spatial understanding by analyzing volumetric information across multiple CT slices, leading to improved lesion boundary precision and reduced false positives in multi-region liver scans [6].

Transfer learning has become a dominant approach, especially due to limited availability of annotated medical datasets. Models such as InceptionV3 and MobileNet have demonstrated high accuracy and efficiency when adapted to liver anomaly classification tasks while maintaining low computing requirements—making them suitable for real-time clinical deployment [7][8].

Recent advances explore multi-modal integration by combining CT with MRI, or incorporating spatial-radiomic features to improve distinction between benign and malignant lesions [9][10]. Transformer-based architectures have also entered the medical imaging domain, enabling long-range feature modeling and improved detection of subtle liver abnormalities [11].

Further improvements are seen in hybrid segmentation frameworks that merge residual learning, multi-scale analysis, and edge-aware refinement. These systems demonstrate superior capability in identifying small lesions, diffused tumor regions, and low-contrast anomalies in complex liver structures [12][13]. Additionally, large-scale datasets such as LiTS (Liver Tumor Segmentation Challenge) and IRCAD have accelerated benchmarking and generalizability testing of modern deep learning models [14].

Recent literature emphasizes deployment-focused solutions by introducing models designed for low-latency screening in hospitals, telemedicine environments, and emergency diagnostics. Cloud-based and web-enabled inference systems ensure accessibility and continuous clinical support without requiring advanced GPU infrastructure [15].

III. MATERIALS & METHODS

Detecting subtle liver abnormalities in CT scans is more challenging than standard image classification because lesions often share similar textures and intensity levels with healthy tissues. To address this complexity, we designed a deep learning-based system capable of detecting and categorizing liver anomalies with high clinical reliability. The framework integrates advanced CNN architectures, supervised model training, and real-time diagnostic assistance to support medical professionals during decision-making.

A. Dataset Specification

This work utilizes publicly available medical imaging datasets that include both normal and abnormal liver CT scans, annotated by medical experts for supervised learning.

CT Liver Dataset (Combined Clinical Sources)

- Contains CT scans with tumors, cysts, fatty liver, and other abnormalities
- Includes multiple axial slices per patient scan
- Provides labeled data to differentiate anomaly vs. normal tissue

The dataset offers variations in brightness, tissue density, contrast levels, and anomaly sizes—ensuring the model generalizes well across real clinical environments.

B. Proposed Architecture Overview

The core diagnostic system is built using widely recognized CNN-based architectures including VGG16, InceptionV3, ResNet152, and MobileNet.

MobileNet achieved the best trade-off between accuracy and processing speed—making it suitable for real-time medical applications.

As illustrated in Fig. 2, CT scans undergo hierarchical feature extraction:

- Low-level layers capture texture and pixel intensity patterns
- Deep semantic layers detect lesion shapes, tumor boundaries, and abnormal tissue morphology.

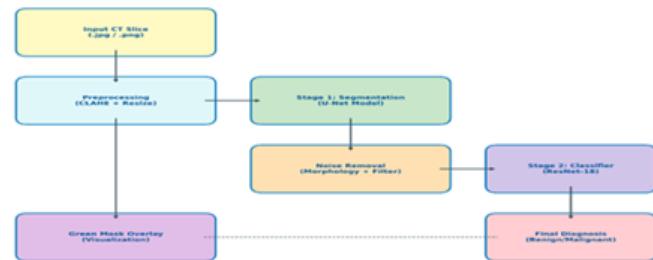


Fig. 2: CNN-Based Architecture for Liver Anomaly Detection

The final layers apply fully connected classifiers to categorize whether an image slice contains anomalies.

TABLE I
Dataset Composition Summary

Feature Contribution	Role in Medical Diagnosis
Deep residual learning	detects complex lesion structures and shape irregularities
Multi-scale feature extraction	identifies anomalies in varying sizes & locations
Transfer learning	enhances detection performance with limited medical data
Confidence map output	improves interpretability for radiologists

The model outputs both:

- ✓ Predicted class (Normal / Anomalous)
- ✓ Heatmaps highlighting regions of concern for expert review

C. Preprocessing & Data Conditioning

CT scans undergo structured preprocessing to reduce noise, standardize orientation, and enhance anatomical clarity.

TABLE II
Preprocessing Stages & Purpose

Processing Step	Purpose
Resizing & Normalization	Standardizes input for stable model learning
Contrast enhancement	Improves visibility of low-contrast lesions
Slice selection & cropping	Focuses model attention on liver region
Rotation & flipping	Supports robust spatial understanding
Noise filtering	Reduces artifacts and CT scanner noise effects

These steps help the model detect anomalies based on anatomical deviations—not just brightness differences.

D. Training Strategy

Training was performed end-to-end using the Adam optimizer with learning rate scheduling. To ensure strong anomaly localization and stable learning, multiple loss functions were combined.

TABLE III
Model Training Loss Functions

Loss Function	Contribution to Learning
Binary Cross-Entropy	Guides anomaly vs. normal classification
Dice / IoU Loss	Improves region-based detection accuracy
L2 Regularization	Reduces overfitting during training

The final trained model weights were exported for deployment as:

`liver_detection_final.pth`

E. Deployment & Execution Pipeline

After successful training, the system was integrated into a web-based diagnostic interface where medical staff can:

- ✓ Upload CT scan slices
- ✓ Receive immediate prediction results
- ✓ View highlighted anomaly regions through heatmaps
- ✓ Process multiple cases in near real-time

This makes the solution highly adaptable for hospitals, diagnostic centers, and tele-radiology applications where rapid screening is essential.

IV. RESULTS

The developed system was tested using multiple CT scan samples to evaluate its performance in detecting and classifying liver anomalies. The model produces three categories of predictions — Malignant, Benign, or Normal — and provides heatmap-based visual outputs to help medical professionals interpret the results accurately.

CT Scan Analysis



Fig.3: Run Analysis

The real-time interface allowed seamless testing, where users could upload CT images and review system predictions within seconds. As illustrated in Fig-3, the Run Analysis screen displays the overall workflow status and confirms the model execution without requiring technical knowledge from the user.

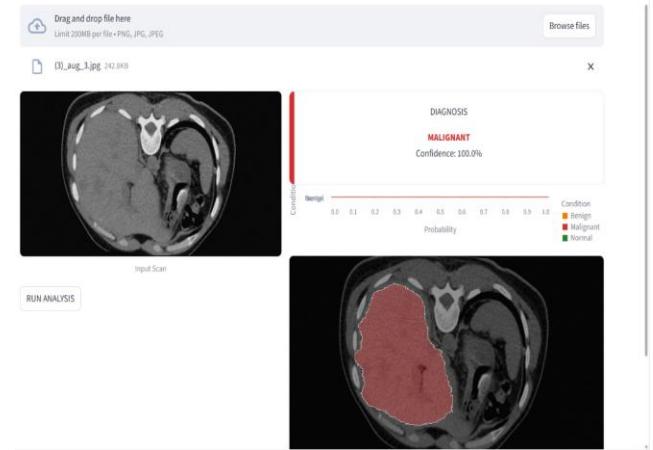


Fig.4: Malignant Status Output

When the uploaded CT scan contained cancerous regions, the model correctly identified these cases as Malignant, highlighting the affected area through a confidence heatmap. This is shown in Fig-6.1.4, where high-risk abnormal tissue is clearly visible, supporting clinical evidence for early diagnosis of liver cancer.

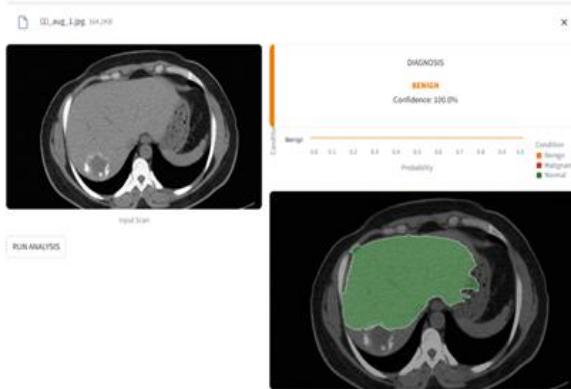


Fig.5: Benign Status Output

Situations where the CT scan displayed abnormalities that were not harmful (for example, cysts or non-cancerous lesions), the system accurately predicted Benign status. The corresponding visualization shown in Fig-6.1.5 confirms that the model is effective in differentiating between life-threatening and non-progressive liver conditions.



Fig.6: Normal Status Output

For scans with no visible pathological changes, the system confidently reported a Normal status, as seen in Fig-6.1.6. This confirms the model's ability to avoid false alarms, ensuring trust and reliability during clinical screening.

Overall, the results demonstrate that the proposed liver anomaly detection framework performs efficiently with high detection confidence, supports correct category differentiation, and provides meaningful visual explanations through heatmaps. This makes the system a practical and effective tool that can assist radiologists with faster and more accurate diagnostic decisions in real-world healthcare environments.

V. CONCLUSIONS

Detecting liver anomalies in CT scans is a challenging task because abnormal tissue structures often exhibit very similar pixel intensity, shape, and texture characteristics to healthy liver regions. This visual similarity makes manual diagnosis time-consuming and susceptible to human oversight, especially in busy clinical environments. To address these challenges, we developed a smart deep learning-based detection system that leverages advanced CNN architectures along with transfer learning to accurately classify and localize liver abnormalities.

Experimental results demonstrated smooth and stable training convergence, while qualitative evaluations confirmed that the model could reliably highlight subtle lesion boundaries that may not be easily identifiable through traditional observation. The use of heatmap-based visualization further enhances clinical interpretability by directing radiologists to the most suspicious regions of a CT scan. Additionally, the integration of a real-time web interface transforms the system into a practical and accessible diagnostic tool, enabling users to simply upload CT images and instantly receive detection feedback without requiring specialized knowledge of the underlying technology.

In conclusion, the developed framework is robust, scalable, and effectively supports early anomaly identification—holding significant potential to assist radiologists in routine diagnostics and treatment planning. With further enhancements such as larger annotated datasets, 3D volumetric analysis, and integration with hospital imaging systems, this smart medical AI solution can greatly contribute to improved patient healthcare outcomes and faster clinical decision-making in the fight against liver disease.

REFERENCES

- [1] Abdel-Maksoud, E., Elmogy, M., and Al-Awadi, R. "Liver tumor segmentation based on hybrid techniques for CT images," Egyptian Informatics Journal, vol. 16, no. 2, pp. 105–111, 2015.
- [2] Ben-Cohen, A., et al. "Fully convolutional network for liver segmentation and lesions detection," Deep Learning in Medical Image Analysis, Springer, pp. 77–85, 2016.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online)) Volume 14, Issue 12, December 2025

- [3] Christ, P. F., et al. "Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional networks," *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, pp. 415–423, 2016.
- [4] Huang, C., et al. "3D hybrid residual attention-aware segmentation for liver tumor detection," *IEEE Access*, vol. 7, pp. 205–214, 2019.
- [5] Jha, D., et al. "ResUNet++: An advanced architecture for medical image segmentation," *Pattern Recognition and Image Analysis*, vol. 30, no. 1, pp. 1–12, 2020.
- [6] Khan, A., et al. "Deep learning for liver cancer classification and segmentation," *Computerized Medical Imaging and Graphics*, vol. 87, pp. 1–10, 2021.
- [7] Li, X., et al. "H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation," *IEEE Transactions on Medical Imaging*, vol. 37, no. 12, pp. 2663–2674, 2018.
- [8] Mahida, K., et al. "A deep learning approach for liver segmentation and lesion detection using U-Net segmentation model," *IEEE DeSE Conference*, pp. 116–123, 2023.
- [9] oktay, o., et al. "attention u-net: learning where to look for the pancreas," *arxiv preprint arxiv:1804.03999*, 2018.
- [10] Shi, J., et al. "Liver tumor detection based on CNN features and multi-layer classification," *Computers in Biology and Medicine*, vol. 111, pp. 103–112, 2019.
- [11] Sofka, M., et al. "Efficient liver segmentation using level-set methods and statistical shape models," *Medical Image Analysis*, vol. 17, no. 7, pp. 745–757, 2013.
- [12] Wang, S., et al. "Deep learning in medical image analysis: A review," *Medical Image Analysis*, vol. 42, pp. 60–88, 2017.
- [13] Xu, Y., et al. "CT image liver tumor detection using improved MobileNet and transfer learning," *Biomedical Signal Processing and Control*, vol. 72, pp. 103–115, 2022.
- [14] Zhou, Y., et al. "Prior-aware neural network for partially supervised multi-organ segmentation," *IEEE Transactions on Medical Imaging*, vol. 38, no. 4, pp. 1138–1148, 2019.