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Abstract - The escalating challenge of air pollution, 

particularly in dense urban centers, poses a significant threat 

to public health and the environment. While conventional air 
quality monitoring stations provide accurate data, their high 

cost and sparse deployment limit spatial resolution. This 

paper presents the design and implementation of a cost-

effective, Internet of Things (IoT)-based air quality 

monitoring system. The proposed system utilizes the MQ-135 
gas sensor to detect hazardous pollutants like NH₃ , NOₓ, 

CO₂ , and benzene, alongside other volatile organic 

compounds (VOCs). The sensor data is processed by an 

ESP8266 microcontroller to compute an approximate Air 

Quality Index (AQI) and transmitted via Wi-Fi to the 
ThingSpeak cloud platform for real-time visualization and 

analysis. Experimental results from various indoor and 

outdoor settings demonstrate the system's reliability in 

tracking pollution dynamics. The system offers a viable, 

affordable solution for smart-city infrastructure, indoor air 
quality assessment, and fostering community-driven 

environmental awareness. 
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I. INTRODUCTION 

The deterioration of ambient air quality in major cities  

worldwide, such as Delhi and Beijing, has become a critical 

global issue [1]. Extensive medical research has established 

a strong correlation between prolonged exposure to 

airborne pollutants and an increased incidence of 

respiratory ailments, cardiovascular diseases, and other 

long-term adverse health effects [2], [3]. To effectively  

mitigate these risks, there is a pressing need for high-

resolution, spatio-temporal pollution data [4].  

Government-operated monitoring stations, though highly 

accurate, are characterized by significant capital and 

operational expenditures, rendering them stationary and 

sparsely distributed. This limitation has spurred research 

into alternative paradigms, including mobile sensing 

networks [5], [6], data-driven predict ive modeling [7], [8], 

Unmanned Aerial Vehicle (UAV)-based platforms [9], and 

community-powered sensing initiat ives [11], [13].  

 

The proliferation of IoT technology presents a 

transformative opportunity to deploy dense networks of 

low-cost, interconnected sensors. This paper contributes to 

this domain by proposing a robust, IoT-enabled air quality  

monitoring system built around the MQ-135 gas sensor. 

The system delivers real-t ime po llutant concentration 

measurements, approximates the AQI, and facilitates 

remote data access through cloud-based dashboards. Its 

affordability, scalability, and ease of deployment make it  

particularly suitable for personalized exposure tracking and 

integration into smart urban environments. 

II. RELATED WORK 

Previous research has extensively explored various 

approaches to air quality monitoring. Mobile sensing 

systems, such as MAQS [5], have demonstrated the value 

of dynamic, high-resolution data collection. Concurrently, 

advanced computational techniques, including kriging [4] 

and deep learning models [9], [18], have been employed to 

forecast AQI with increasing accuracy.  

The shift towards participatory and personal sensing is 

evident in the development of wearab le pollution monitors 

[15] and community-driven platforms [11]. The core 

enabler for these applications has been the advent of low-

cost solid-state sensors [12], [13]. Studies have also 

leveraged sensor data combined with deep learning to 

characterize indoor air environments [17].  

However, a common shortfall in many existing low-cost 

solutions is the lack of a seamless, integrated pipeline 

encompassing reliable sensing, robust wireless 

communicat ion, and accessible cloud analytics. Our work 

aims to bridge this gap by presenting a cohesive system 

that synergizes a widely-available sensor (MQ-135), a  

ubiquitous microcontroller with Wi-Fi capability  

(ESP8266/ESP32), and a public cloud platform 

(ThingSpeak) to create an end-to-end monitoring solution. 

III. SYSTEM ARCHITECTURE 

The architecture of the proposed system is delineated 

into four primary  layers: Sensing, Processing, 

Communicat ion, and Presentation. 
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A. Hardware Components 

The system is constructed using the following  

components: 

 Sensing Unit: The MQ-135 gas sensor serves as the 

primary data acquisition module. It is sensitive to a 

broad range of pollutants, including NH₃ , NOₓ, CO₂ ,  

and VOCs. 

 Processing Unit: An ESP8266 (or ESP32)  

microcontroller acts as the system's brain. It is 

responsible for reading the analog signal from the 

sensor, performing analog-to-digital conversion (ADC),  

executing the calibration and AQI computation 

algorithms, and managing network connectivity.  

 Communication Module: The embedded Wi-Fi  

capability of the ESP8266/ESP32 enables wireless data 

transmission to the cloud. 

 Power Supply: The system is powered via a standard 5V 

USB source, making it compatible with power banks and 

wall adapters for flexib le deployment. 

B. Working Principle of MQ-135 

The MQ-135 is a semiconductor sensor based on tin 

dioxide (SnO₂ ). In the presence of detectable gases, the 

surface conductivity of the sensing material changes. This 

change in conductivity is measured as a variable voltage 

output. The microcontroller's ADC converts this analog 

voltage into a digital value, which is then mapped to a 

corresponding gas concentration using the sensor's 

sensitivity characteristics and calibration data. 

C. System Workflow 

1. Data Acquisition: The MQ-135 sensor detects the 

concentration of target gases in the ambient air.  

2. Signal Conditioning & Processing: The raw analog  

signal is filtered and digitized. The microcontroller  

applies calibration algorithms to compensate for 

environmental factors and calculates the PPM (Parts Per 

Million) value. 

3. Data Transmission: The processed data, along with the 

computed AQI, is packaged into a message and sent to 

the ThingSpeak cloud server at predefined intervals  

(e.g., every 15 seconds) using the HTTP POST method. 

4. Cloud Storage & Visualization: ThingSpeak receives 

and stores the data, updating graphical widgets (gauges, 

plots) on a dedicated channel dashboard in real-time,  

accessible from any web browser.  

 

IV. METHODOLOGY 

A. Sensor Calibration Process 

Accurate measurement is contingent on proper 

calibrat ion. The procedure involves: 

1. Baseline Establishment (R₀ ): The sensor is placed in 

clean air (approximated or controlled environment) to  

determine its baseline resistance, R₀ . 

2. Environmental Compensation: As the MQ-135's  

readings are influenced by temperature and humid ity, 

correction factors are applied using datasheet curves or 

co-located environmental sensors. 

3. Concentration Mapping: The sensor resistance ratio 

(Rs/R₀ ) is used in conjunction with the log-log plots 

from the datasheet to estimate the PPM concentration of 

the target gases. 

B. Cloud Communication Protocol 

The system employs the MQTT or HTTP protocol for  

lightweight and efficient communication. The ESP8266, 

configured as a Wi-Fi client, connects to a local router and 

transmits JSON-formatted data packets containing sensor 

readings, AQI value, and a timestamp to the ThingSpeak 

API. 

C. AQI Computation 

The system converts the aggregated pollutant 

concentrations into a unified Air Quality Index (AQI) 

based on a standardized scale [e.g., similar to the National 

Air Quality Index (NAQI) of India or the US EPA AQI]. 

The AQI is categorized as follows: 

 0 - 50: Good  

 51 - 100: Satisfactory 

 101 - 200: Moderate 

 201 - 300: Poor 

 301 - 400: Very Poor 

 401 - 500: Severe 

V. RESULTS AND DISCUSSION 

The system was evaluated through a series of tests in 

diverse environments. 

 Indoor Monitoring: Significant spikes in pollutant levels 

were recorded in enclosed spaces like kitchens (during 

cooking) and poorly ventilated rooms, validating the 

system's sensitivity. 

 Outdoor Monitoring: Deployments near roadways 

successfully captured diurnal patterns, with clear peaks  

correlating with morning and evening traffic congestion. 
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 System Performance: The data transmission to the 

ThingSpeak cloud was stable and reliable, with a success 

rate exceeding 98%. The web dashboard provided 

intuitive and real-time visualizat ion of the data trends. 

 Sensor Consistency: Repeated measurements under 

similar conditions showed consistent sensor behavior, 

confirming short-term reliab ility. 

These findings align with prior studies [12], [13], [15],  

affirming that low-cost sensors, when appropriately 

calibrated, can effect ively supplement traditional 

monitoring networks by providing hyper-local data. The 

proposed system successfully addresses the gaps in cloud 

integration and real-t ime accessibility identified in  the 

related work. 

VI. APPLICATIONS 

The versatility of the proposed system enables its 

deployment in numerous scenarios: 

 Urban Environmental Sensing: Deploying sensor nodes 

across a city to create a high-resolution pollution map. 

 Indoor Air Quality (IAQ) Management: Monitoring air 

quality in homes, offices, schools, and hospitals. 

 Industrial Safety: Ensuring worker safety by monitoring  

air quality in factories and workshops. 

 Mobile Pollution Mapping: Installing the system on 

public transport or service vehicles for dynamic, city-

wide coverage. 

 Personal Wearable Devices: Miniaturizing the system 

for individual exposure tracking.  

 Community Science Projects: Empowering cit izen  

scientists to collect and share local air quality data.  

VII. CONCLUSION AND FUTURE WORK 

This paper has detailed the successful development and 

testing of a functional, low-cost IoT-based air quality  

monitoring system. By integrating the MQ-135 sensor with 

the ESP8266 microcontroller and the ThingSpeak cloud 

platform, the system provides a practical and scalable 

solution for real-time, localized pollution monitoring.  

Future work will focus on several enhancements: 

1. Multi-Sensor Fusion: Integrating additional sensors 

(e.g., PMS5003 for PM2.5/PM10, DHT22 for precise 

temperature/humidity) to improve accuracy and 

pollutant discrimination. 

2. Predictive Analytics: Implement ing machine learning  

models (e.g., LSTM networks) on the cloud backend for 

forecasting AQI trends. 

3. Geolocation Integration: Incorporating GPS modules to 

automatically tag data with location coordinates for 

spatial analysis and heat map generation.  

4. Energy Optimization: Developing solar-powered or low-

power sleep-mode algorithms for long-term, battery-

operated deployments. 
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