

Polypropylene (PP) Nonwoven Fabric — New Application Development

Rahul Kumar

Ph.D. researcher Vikrant University - Gwalior, M.P., India

Executive Summary-- Polypropylene (PP) nonwovens—principally spunbond and melt-blown—remain the most widely used synthetic nonwoven family due to their low density, hydrophobicity, processability, and cost-effectiveness. Recent advances extend PP nonwovens beyond hygiene and medical disposables into high-efficiency filtration, oil–water separation, antimicrobial textiles, agriculture microclimate covers, and components like battery separators, while parallel work targets charge-stable electret media, surface functionalization (Ag/Cu), and circularity via pyrolysis and chemical upcycling (Hossain et al., 2024; Fang et al., 2025).

I. BACKGROUND: WHY PP NONWOVENS?

PP's semi-crystalline structure, chemical resistance, and low surface energy make it ideal for nonwoven processes. Recent reviews catalog PP innovations—including nanofiller-enhanced matrices and fiber/membrane forms—with highlighted sectors in air/water filtration, biomedical, and automotive. Challenges remain in UV stability, bonding, and flammability, motivating additive packages and coatings (Hossain et al., 2024). Nonwoven processes include:

- *Melt-blown*: produces micro/nano fibers with high specific surface area and small pore size—key for filtration, adsorption, and separation (Fang et al., 2025).
- *Spunbond*: yields strong, durable webs for agriculture covers, geotextiles, and durable hygiene back-sheets (Plastics Engineering, 2025).

II. STATE OF THE ART IN PP MELT-BLOWN ELECTRET FILTRATION

Electret Performance & Material Factors. Electret charging (corona, thermal, water-assisted) enhances particle capture without increasing pressure drop. Polymer crystallization behavior strongly affects charge trap density and stability; PP grades with higher crystallization onset and slower rates form stronger electrets and filter more effectively (Larsen et al., 2021). **Charge Stability Innovations.** Thermally stimulated charging optimizes crystal structure and deep trap population, achieving >99% efficiency with stable performance after repeated charging cycles; nucleating agents (e.g., Mg-stearate) and high-k additives (e.g., BaTiO₃) further enhance durability (Zhang et al., 2020; Zhang et al., 2018; Kilic et al., 2015).

Environmental Effects. Elevated temperature can increase charge storage via crystallinity changes, while high humidity degrades electrostatic charge over time (Cheng et al., AUTEX; Muhaiminul Alam et al., 2019). **Decontamination/Reusability.** Controlled heat and humidity (e.g., 75 °C/30 min or 85 °C/20 min at 100% RH) decontaminate melt-blown PP without efficiency loss; alcohol exposure discharges electrets and should be avoided (Campos et al., 2020; Halamicek et al., 2023). **Emerging Uses.** Beyond respiratory PPE, PP melt-blown nonwovens are applied in media filtration, oil–water separation, heavy metal/organic pollutant removal, and battery separators (Fang et al., 2025).

III. SPUNBOND PP IN AGRICULTURE & CONTROLLED ENVIRONMENTS

Crop Covers & Weed Management. Spunbond PP covers create breathable microclimates, reduce frost damage, suppress weeds, and moderate moisture/temperature—commonly in 17–35 gsm with UV stabilization. Product and technical literature detail performance and GSM selection, while historic technical work ties physical properties to field outcomes (NWfabric, 2025; Avril, 2001; HYFabric Supply, 2025; ReallyTextiles, 2025).

IV. ANTIMICROBIAL PP NONWOVENS (SURFACE FUNCTIONALIZATION)

Ag/Cu Coatings & Green Synthesis. PP nonwovens acquire antimicrobial function via plasma sputtering Ag/Cu (ion release), magnetron-deposited Ag–Cu nanolayers (facemask fabrics), and biosynthesized Ag nanoparticles, often after corona activation or chitosan priming for binding. These treatments show broad activity against bacteria and surrogate viruses—promising for medical textiles and high-touch surfaces (Woskowicz et al., 2020; Reyes-Carmona et al., 2023; Krkobabić et al., 2023; Dube & Okuthe, 2025).

V. MEDICAL COMPATIBILITY & STERILIZATION PATHWAYS FOR PP NONWOVENS

PP is broadly compatible with Ethylene Oxide (EtO) sterilization and is generally autoclavable at 121 °C depending on product geometry and grade; radiation methods can affect PP properties unless stabilized. Industrial charts and bulletins support material selection for single-use and reusable devices, while post-EtO aeration is essential to remove residuals; avoid solvent exposure (e.g., IPA) for electret filtration media (ISM, 2019; Darwin Microfluidics, 2024; PlasticPractical, 2024; Solvay, 2018; Halamicek et al., 2023).

VI. SUSTAINABILITY & CIRCULARITY: RECYCLING AND UPCYCLING

Chemical Recycling & Pyrolysis. Reviews highlight pyrolysis and gasification as routes for hard-to-recycle plastics (including PP); catalytic pyrolysis using regenerated FCC catalysts lowers degradation temperatures and tunes liquid yields. Emerging mechano-chemical upcycling protocols target controlled oligomer formation, enabling value-added copolymers from PP residues (Shah et al., 2023; CUWP/UW-Madison, 2024; Palmay et al., 2023; APS/AIChE proceedings, 2022).

Market & Policy Signals. Industry associations caution that oxo-degradable/bio-assimilating additives threaten recyclate quality, and EU-aligned guidance discourages such additives given microplastics risks and uncertain biodegradation—supporting a design-for-recycling stance for PP nonwovens (APR, 2024; Ellen MacArthur Foundation, 2017).

Scientific Evidence on Oxo-Additives. Independent reviews report insufficient proof of complete biodegradation in temperate conditions and potential microplastic generation; kinetic/mechanistic surveys describe metal-salt catalyzed oxidation but stress variability of outcomes (Hutton Institute, 2022; UCL review coverage, 2023; Mamin et al., 2023; Abdelmoez et al., 2021).

VII. ADJACENT & EMERGING APPLICATIONS

Oil-Water Separation & Adsorptive Media. PP melt-blown webs, tailored for hydrophobic/oleophilic behavior, demonstrate promise in oil spill remediation and pollutant capture (Fang et al., 2025).

Battery Separators. PP nonwovens—engineered for porosity and thermal stability—are under study for separator substrates in energy storage (Fang et al., 2025).

Smart Textiles (Context). While PP is not piezoelectric, smart textile energy harvesting commonly uses PVDF/PVDF-HFP nanofiber nonwovens; recent works show knitted multilayers and yarn-electrospun PVDF-HFP/CNC with improved β -phase and sensing—useful context for hybrid systems where PP layers provide mechanical support/encapsulation (Maestri et al., 2025; Chen et al., 2024; Chen et al., 2020; Tuncay, 2014).

VIII. MARKET LANDSCAPE & GROWTH DRIVERS

Analyst and industry reports (2024–2025) forecast continued PP nonwoven growth driven by hygiene, medical PPE, automotive filtration, construction/geotextiles, and agricultural covers; sustainability initiatives (e.g., certified circular PP) and energy-efficient melt-blown/spunbond lines support capacity additions (Research & Markets, 2025; Plastics Engineering, 2025; True Insights, 2025).

IX. TECHNICAL DESIGN GUIDE — NEW APPLICATION DEVELOPMENT

A. Filtration Media (Air/HVAC, PPE, Industrial):

- **Fiber diameter & pore size:** Target micro/nano via melt-blown; adjust die-to-collector distance for porosity/pressure drop (Fang et al., 2025; Zhang et al., 2018).
- **Electret strategy:** Combine corona + thermal stimulation; consider charge enhancers (Mg-stearate) or high-k fillers (BaTiO₃). Avoid IPA exposure during service/maintenance (Zhang et al., 2020; Zhang et al., 2018; Kilic et al., 2015; Halamicek et al., 2023).
- **Reuse/decontamination:** Apply 75–85 °C moist heat protocols proven to retain efficiency (Campos et al., 2020).

B. Liquid Separation & Environmental Media:

- **Surface chemistry:** Add hydrophobic/oleophilic finishes; explore composite layering for adsorption of ions/organics (Fang et al., 2025).

C. Antimicrobial Medical/Consumer Textiles:

- **Activation & deposition:** Corona treat PP → sputter or chemically immobilize Ag/Cu; verify ion release profiles & coating stability (Woskowicz et al., 2020; Krkobabić et al., 2023).
- **Risk management:** Assess cytotoxicity and durability; compare Ag vs Cu trade-offs per target environment (Woskowicz et al., 2020).

D. Agriculture Microclimate Covers:

- *GSM/UV package:* 17–35 gsm spunbond PP with 3–5% UV stabilizer typical; tailor width/color per crop and climate (NWfabric, 2025).
- *Performance claims:* Document frost reduction, pest suppression, and moisture retention via controlled trials (HYFabric Supply, 2025).

E. Sterilization & Regulatory:

- *Sterilization path:* Prefer EtO for heat-sensitive assemblies; autoclave where grade permits; plan aeration & material verification per ISO/AAMI guidance (ISM, 2019; Darwin Microfluidics, 2024; Solvay, 2018).

F. Circularity:

- *Design-for-recycling:* Avoid degradable additives that compromise PCR; consider take-back + pyrolysis-based chemical recycling partnerships (APR, 2024; CUWP/UW–Madison, 2024).

X. RISKS & MITIGATIONS

- *Electret decay under humidity/solvents:* Define handling/cleaning SOPs; incorporate deeper charge traps and humidity-resistant additives (Muhaminul Alam et al., 2019).
- *Antimicrobial safety & regulation:* Perform cytotoxicity, leachate, and wash-durability testing; comply with biocidal regulations (Woskowicz et al., 2020).
- *Recyclability conflicts:* Avoid oxo-additives; clearly label products for mechanical or chemical recycling streams (APR, 2024; EMF, 2017).

XI. CONCLUSION

PP nonwovens continue to diversify beyond traditional disposable markets. The combination of advanced electret engineering, surface antimicrobial functionalization, and sustainable end-of-life pathways positions PP nonwovens for growth in filtration, environmental remediation, agricultural protection, and selected energy storage components. Strategic R&D—grounded in crystallization-aware electret design, robust antimicrobial coatings, and circular chemistry—will enable high-performance, compliant, and recyclable products (Fang et al., 2025; Hossain et al., 2024).

REFERENCES

- [1] Hossain, M.T. et al. (2024). Research and application of polypropylene: a review. *Nanoscale Research Letters*. <https://link.springer.com/article/10.1186/s11671-023-03952-z>
- [2] Fang, Z. et al. (2025). Advancements in PP-based materials utilizing melt-blown technology. *Polymers*. <https://www.mdpi.com/2073-4360/17/8/1013>
- [3] Larsen, G.S. et al. (2021). Polymer, Additives, and Processing Effects on N95 Filter Performance. *ACS Appl. Polym. Mater.* <https://pubs.acs.org/doi/pdf/10.1021/acsapm.0c01294>
- [4] Zhang, H. et al. (2020). Thermally stimulated charging for PP electret melt-blown. *Polymers*. <https://www.mdpi.com/2073-4360/12/10/2341>
- [5] Zhang, H. et al. (2018). PP melt-blown with nucleating agent for PM2.5 capture. *RSC Advances*. <https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra10916d>
- [6] Kilic, A. et al. (2015). BaTiO₃ additive for PP electret filters. *Aerosol Sci. Technol.* <https://www.tandfonline.com/doi/pdf/10.1080/02786826.2015.1061649>
- [7] Cheng, S. et al. Effect of electret temperature on PP melt-blown filtration. *AUTEX Research Journal*. https://www.researchgate.net/publication/338542050_Effect_of_Te_mperature_on_the_Structure_and_Filtration_Performance_of_Polypropylene_Melt-Blown_Nonwovens/fulltext/5e1b160e92851c8364c79fe4/Effect-of-Temperature-on-the-Structure-and-Filtration-Performance-of-Polypropylene-Melt-Blown-Nonwovens.pdf
- [8] Muhaminul Alam, M. et al. (2019). Effect of temperature & humidity on PP electret charge. *IOSR-JPTE*. <https://www.iosrjournals.org/iosr-jpte/papers/Vol6-Issue6/Series-1/A06060106.pdf>
- [9] Campos, R.K. et al. (2020). Decontamination of meltblown PP using heat/humidity. *ACS Nano*. <https://www.osti.gov/pages/biblio/1769615>
- [10] Halamicek, R. et al. (2023). Treatment effects on FFP2 masks. *PLOS One*. <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291679>
- [11] Woskowicz, E. et al. (2020). Plasma deposition of Ag/Cu antimicrobial coatings on PP. *Polimery*. <https://scispace.com/pdf/plasma-deposition-of-antimicrobial-coatings-based-on-silver-31dv0junzm.pdf>
- [12] Reyes-Carmona, L. et al. (2023). Ag–Cu nanolayer on spunbond PP. *PLOS One*. <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294972>
- [13] Krkobabić, A.G. et al. (2023). Biosynthesis of Ag NPs on PP nonwoven. *J. Serb. Chem. Soc.* <https://doiserbia.nb.rs/img/doi/0352-5139/2023/0352-51392300020K.pdf>
- [14] Dube, E. & Okuthe, G.E. (2025). Silver nanoparticle-based antimicrobial coatings. *Microbiology Research*. <https://www.mdpi.com/2036-7481/16/6/110>
- [15] ISM (2019). Plastics Compatibility with Sterilization Methods. <https://www.industrialspec.com/images/files/plastics-sterilization-compatibility-chart-from-is-med-specialties.pdf>

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 14, Issue 12, December 2025)

- [16] Darwin Microfluidics (2024). EtO Sterilization Compatibility Chart. <https://blog.darwin-microfluidics.com/ethylene-oxide-eto-sterilization-compatibility-chart/>
- [17] PlasticPractical (2024). Can Polypropylene Be Autoclaved? <https://plasticpractical.com/can-polypropylene-be-autoclaved/>
- [18] Solvay (2018). Healthcare Sterilization Compatibility Overview. https://www.solvay.com/sites/g/files/srpnd616/files/2018-08/Healthcare-Sterilization-Compatibility-Overview_EN-v4.0_0_0.pdf
- [19] Shah, H.H. et al. (2023). Review on gasification and pyrolysis of waste plastics. *Frontiers in Chemistry*. <https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchm.2022.960894/full>
- [20] CUWP/UW-Madison (2024). Pyrolysis of Plastic Waste White Paper. https://cuwp.org/wp-content/uploads/2024/01/2_PYROLYSIS_112023.pdf
- [21] Palmay, P. et al. (2023). Catalytic pyrolysis of recycled PP using regenerated FCC catalyst. *Clean Technologies and Environmental Policy*. <https://link.springer.com/article/10.1007/s10098-022-02453-4>
- [22] APS (2022). Upcycling of Polypropylene through Mechano-Chemical Functionalization. <https://archive.aps.org/mar/2022/b16/5/>
- [23] AIChE (2022). Upcycling of Polypropylene through Thermal Pyrolysis Using Mechano-Chemical Methods. <https://proceedings.aiche.org/conferences/aiche-annual-meeting/2022/proceeding/paper/291a-upcycling-polypropylene-through-thermal-pyrolysis-using-mechano-chemical-methods>
- [24] APR (2024). Degradable Additives — Position. <https://plasticsrecycling.org/wp-content/uploads/2024/08/APR-Position-Degradable-Additives.pdf>
- [25] Ellen MacArthur Foundation (2017). Oxo-degradable Plastic Packaging Statement. <https://content.ellenmacarthurfoundation.org/m/234ef9a951f490bd/original/Oxo-Statement-New-Plastics-Economy.pdf>
- [26] Hutton Institute (2022). Review of evidence on oxo-biodegradable plastic products. <https://www.hutton.ac.uk/sites/default/files/files/publications/Review-evidence-on-Oxo-biodegradable-Plastic-Products-SDevalla.pdf>
- [27] PackagingInsights (2023). UCL study on oxo-biodegradables. <https://www.packaginginsights.com/news/ucl-study-flames-oxo-biodegradable-plastics-controversy-as-industry-denies-greenwashing-and-sidesteps-bans-335139.html>
- [28] Mamin, E.A. et al. (2023). Oxo-Additives for Polyolefin Degradation: Kinetics and Mechanism. *Macromol*. <https://www.mdpi.com/2673-6209/3/3/29>
- [29] Abdelmoez, W. et al. (2021). Bio- and oxo-degradable plastics: insights. *Polym. Adv. Technol.* (preprint). https://www.researchgate.net/profile/Ahmad-Mustafa-26/publication/349427318_Bio-and_oxo-degradable_plastics_Insights_on_facts_and_challenges/links/602f7048a6fdcc37a837a9bc/Bio-and-oxo-degradable-plastics-Insights-on-facts-and-challenges.pdf
- [30] NWfabric (2025). Agricultural non-woven crop cover spec. <https://www.nwfabric.com/product/agricultural-non-woven-crop-cover/>
- [31] Avril, D. (2001). Innovative spunbond agricultural crop cover. *Journal of Industrial Textiles*. <https://journals.sagepub.com/doi/reader/10.1106/0VW5-GELB-KRL8-FGQY>
- [32] HYFabric Supply (2025). Winter covers for crops. <https://www.hyfabricsupply.com/news/Why-Choose-Polypropylene-Spunbond-Nonwoven-Fabric-as-Winter-Cover-for-Agricultural-Crops.html>
- [33] ReallyTextiles (2025). PET Spunbond vs PP Anti-UV Nonwoven. <https://reallytextiles.com/pet-vs-pp-nonwoven-agriculture-comparison/>
- [34] Maestri, G. et al. (2025). Textile multilayered piezoelectric device. *RJTA*. <https://www.emerald.com/insight/content/doi/10.1108/rjta-04-2023-0047/full.html>
- [35] Chen, J. et al. (2024). PVDF-HFP/CNC yarns for pressure sensing (CANCOM). https://www.cacsma.ca/wp-content/uploads/2024/10/CANCOM_2024_paper_10.pdf
- [36] Chen, G. et al. (2020). Smart Textiles for Electricity Generation. *Chem. Rev.* <https://www.bioeng.ucla.edu/wp-content/uploads/bioeng/acs.chemrev.9b00821.pdf>
- [37] Tuncay, A. (2014). Piezoelectric PVDF sensor integrated textile yarn (PhD). <https://research.manchester.ac.uk/en/studentTheses/development-of-piezoelectric-pvdf-sensor-integrated-textile-yarn>
- [38] Plastics Engineering (2025). Non-woven PP trends in hygiene. <https://www.plasticsengineering.org/2025/01/non-woven-polypropylene-trends-in-the-hygiene-industry-007818/>
- [39] Research & Markets (2025). PP Nonwoven Textile Market Review. <https://www.globenewswire.com/news-release/2025/12/02/3197924/28124/en/Polypropylene-Based-Non-Woven-Textiles-Market-Review-2020-2025-and-Growth-Forecast-to-2030-Featuring-ABG-Fibertex-Nonwovens-Asahi-Kasei-Huesker-Synthetic-Typar-Geosynthetics-Polyme.html>
- [40] True Insights (2025). PP Nonwoven Fabric Strategies 2025–2033. <https://www.trueinsightsreports.com/reports/polypropylene-pp-nonwoven-fabric-80645>