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Abstract— Manual pesticide spraying in agriculture often 

results in excessive chemical usage, increased labor 

dependency, and delayed response to crop diseases, leading to 

reduced yield and environmental harm. Although recent 

advances in artificial intelligence have enabled automated 

plant disease detection, most existing approaches operate only 

as monitoring systems and lack real-time integration with 

spraying mechanisms. Similarly, IoT-based pesticide sprayers 

often rely on manual triggering or predefined schedules, 

limiting their effectiveness in precision agriculture. This paper 

proposes an integrated AI-driven precision pesticide spraying 

system that combines real-time tomato leaf disease detection 

with automated, selective pesticide application. The proposed 

approach employs a YOLOv11-based deep learning model for 

identifying healthy and diseased tomato leaves from live 

camera input and directly links detection outcomes to an IoT-

enabled robotic spraying unit. Upon disease detection, a 

wireless control signal is transmitted to activate targeted 

pesticide spraying, forming a closed-loop decision-to-action 

framework. The YOLOv11 model was trained on annotated 

images of healthy and diseased tomato leaves and evaluated 

under varying environmental conditions. Experimental results 

demonstrate reliable real-time detection performance with 

detection accuracy exceeding 90% and a low detection-to-

spraying response latency in the sub-second range. Qualitative 

and quantitative evaluations confirm stable model 

convergence and effective disease localization. The results 

indicate that the proposed system is suitable for precision 

agriculture applications, offering reduced pesticide wastage, 

minimal human intervention, and improved operational 

efficiency through intelligent, real-time disease-driven 

spraying. 
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I. INTRODUCTION 

Agricultural productivity is strongly influenced by the 

timely identification and treatment of crop diseases, 

particularly in high-value crops such as tomato, where 

foliar infections can spread rapidly and cause significant 

yield losses. Conventional pesticide application practices 

often rely on periodic manual inspection and uniform 

chemical spraying, which are inefficient and 

environmentally unsustainable.  

Delayed detection and indiscriminate spraying not only 

increase production costs but also contribute to excessive 

pesticide usage and health risks for farmers. 

Manual disease monitoring requires continuous human 

effort and domain expertise, making it impractical for 

large-scale or continuous field deployment. As a result, 

pesticides are frequently applied as a preventive measure 

rather than in response to confirmed disease presence, 

leading to unnecessary chemical exposure and reduced 

precision in crop management. 

Recent research has explored artificial intelligence–

based plant disease detection using computer vision and 

deep learning techniques, demonstrating promising 

accuracy in identifying diseased leaves from images. 

However, most AI-driven approaches function solely as 

monitoring systems and do not initiate corrective actions 

after detection. In parallel, IoT-based agricultural spraying 

robots have been developed to automate pesticide 

application, but these systems often depend on manual 

triggering or predefined schedules, lacking intelligent 

decision-making based on real-time disease conditions. 

The absence of a tightly integrated framework that 

connects real-time disease detection with automated and 

selective pesticide spraying represents a key research gap 

in precision agriculture. Bridging this gap requires a 

closed-loop system in which perception, decision-making, 

and actuation operate cohesively to enable timely and 

targeted intervention. 

A. Contribution  

The main contributions of this work are summarized as 

follows: 

 An AI-driven tomato leaf disease detection 

framework based on a YOLOv11 object detection 

model for real-time identification of healthy and 

diseased leaves. 

 An integrated decision-to-action pipeline that directly 

links disease detection outcomes to automated 

pesticide spraying. 

 A selective spraying mechanism that reduces 

unnecessary pesticide usage by activating only when 

disease presence is confirmed. 
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 An IoT-enabled control framework that enables low-

latency communication between the vision system 

and the spraying unit. 

 Experimental validation demonstrating reliable 

detection performance and practical feasibility for 

precision agriculture applications. 

This paper is structured as follows: 

Section II reviews related work on AI-based plant disease 

detection and IoT-enabled smart agriculture systems. 

Section III describes the proposed system, including the 

dataset, system architecture, and YOLOv11-based disease 

detection methodology.  

Section IV presents the experimental setup, performance 

evaluation, and discussion of results. 

Section V concludes the paper and outlines directions for 

future research. 

II. RELATED WORK AND RESEARCH GAP 

Recent advancements in precision agriculture have 

driven extensive research on automated plant disease 

detection and intelligent pesticide application systems [1], 

[5], [6], [9]. Early approaches primarily relied on classical 

image processing techniques combined with machine 

learning classifiers to identify disease symptoms from leaf 

images [3], [8]. While these methods demonstrated basic 

feasibility, their performance was often sensitive to 

variations in lighting conditions, background complexity, 

and leaf orientation, limiting reliability in real-field 

environments [3], [8]. 

With the emergence of deep learning, convolutional 

neural networks have been increasingly adopted for plant 

disease detection, offering improved feature extraction and 

classification accuracy compared to traditional techniques 

[8]. Several studies have reported effective disease 

identification using deep learning-based approaches; 

however, most of these systems are limited to disease 

monitoring and do not incorporate automated intervention 

mechanisms following detection [3], [5]. 

In parallel, IoT-enabled agricultural robots and smart 

pesticide spraying systems have been proposed to reduce 

manual labor and minimize direct human exposure to 

chemicals [1], [2], [5], [6], [9], [10]. These systems 

typically automate spraying operations through manual 

control or predefined schedules, improving operational 

efficiency. However, the majority of IoT-based spraying 

platforms lack intelligent decision-making capability and 

do not initiate spraying based on real-time disease detection 

[1], [2], [9], [10]. 

A limited number of studies have attempted to integrate 

artificial intelligence with IoT-based actuation for precision 

spraying [3], [5]. Although these integrated systems 

demonstrate the potential for closed-loop agricultural 

automation, many existing solutions rely on classical image 

processing or simple classifiers, lack real-time performance 

evaluation, or do not provide selective spraying strictly 

based on confirmed disease presence. Furthermore, several 

approaches emphasize mechanical design and control 

aspects, with limited focus on detection accuracy, response 

latency, or end-to-end system evaluation [1], [3], [6]. 

Research Gap - 

From the reviewed literature, it is evident that AI-based 

disease detection and IoT-based pesticide spraying have 

largely been explored as independent components [1]–[10]. 

There remains a lack of tightly integrated systems that 

combine real-time, high-accuracy disease detection with 

automated and selective pesticide spraying in a unified 

decision-to-action framework. Addressing this gap requires 

an approach that not only detects disease reliably under 

practical field conditions but also immediately translates 

detection outcomes into precise spraying actions with 

minimal latency. 

III. MATERIALS & METHODS 

This section describes the materials and methods used to 

develop the proposed tomato leaf disease detection and 

automated pesticide spraying system. It outlines the dataset 

composition, system architecture, and preprocessing 

techniques employed to ensure robust model performance 

under varying field conditions. The training strategy for the 

YOLOv11 detection model is presented, followed by the 

real-time deployment and execution workflow that enables 

selective pesticide spraying through IoT-based control. 

A. Dataset Description 

The dataset consists of annotated images of tomato 

leaves representing healthy and diseased conditions, 

collected from publicly available plant disease datasets and 

field-level acquisition under varying environmental and 

lighting conditions. This diversity supports robust model 

generalization across differences in background, leaf 

orientation, and illumination. 

All images were manually annotated using bounding 

boxes to label leaf regions and health status, forming a 

binary classification problem with two classes: Healthy and 

Diseased. This annotation strategy enables simultaneous 

localization and classification within a single inference 

step, which is essential for real-time deployment.  
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The dataset was split into training and validation subsets 

to support supervised learning and unbiased performance 

evaluation during model optimization. 

The composition and characteristics of the dataset are 

summarized in Table 1. 

TABLE I  

 Dataset Summary 

Parameter Description 

Crop Type Tomato 

Image Source Public dataset and field-collected images 

Total Images 120 

Classes Healthy, Diseased 

Annotation Type Bounding box 

Train–Validation Split 80% / 20% 

Image Format RGB 

Capture Conditions Varying lighting and background 

B. Proposed System Architecture 

The proposed system architecture enables real-time 

tomato leaf disease detection and selective automated 

pesticide spraying through a closed-loop decision-to-action 

pipeline integrating computer vision and IoT-based 

actuation. As shown in Fig. 1, the system comprises a 

vision-based detection unit, a wireless communication 

interface, and an automated spraying unit. 

The detection unit processes live images of tomato 

plants using a YOLOv11 object detection model to perform 

real-time localization and classification of healthy and 

diseased leaves. When disease presence is detected, a 

control signal is transmitted wirelessly to the IoT control 

module, which activates the spraying mechanism with 

minimal latency. Spraying is triggered only upon 

confirmed detection, ensuring targeted pesticide 

application. 

The modular architecture supports coordinated operation 

of perception, communication, and actuation components 

while remaining adaptable to future extensions, enabling 

efficient and sustainable precision agriculture with minimal 

human intervention. 

 

 

Figure 1: Overall System Architecture 

C. Image Preprocessing and Augmentation 

Image preprocessing and data augmentation were 

applied to enhance the robustness and generalization of the 

YOLOv11 detection model under real-field conditions. All 

input images were resized to a fixed resolution and 

normalized to ensure uniformity and stable training 

behaviour. 

To increase dataset diversity and reduce overfitting, 

augmentation techniques such as random rotation, 

horizontal flipping, and brightness adjustment were applied 

during training. These operations enable the model to 

handle variations in leaf orientation, illumination, and 

background commonly encountered in outdoor agricultural 

environments. 

The preprocessing and augmentation techniques 

employed in this study are summarized in Table 2. 

TABLE II 

Image Preprocessing and Augmentation Techniques 

Technique Description Purpose 

Image 

Resizing 

Input images are 

resized to a fixed 

resolution prior 

to training 

Ensures uniform input 

dimensions for the 

YOLOv11 model 

Rotation Images are 

rotated at 

multiple angles 

Improves robustness to 

variations in leaf 

orientation 

Horizontal 

Flipping 

Images are 

Flipped 

horizontally during 

training 

Increases dataset 

diversity and 

reduces overfitting 

Brightness 

Adjustment 

Pixel intensity 

values are varied 

Enhances robustness to 

Illumination 

changes in field 

conditions 

Normalization Pixel values are scaled 

to a standard range 

Improves training 

stability and 

convergence 
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D. Yolov11 Model and Training Strategy 

The YOLOv11 object detection model was used for real-

time tomato leaf disease detection due to its ability to 

perform localization and classification within a single 

inference pass, enabling efficient and low-latency 

operation. The model was trained on the annotated tomato 

leaf dataset described in Section 3.1 to learn disease-

specific visual features. 

Training was conducted with data augmentation enabled 

to improve generalization under varying field conditions. 

Model convergence and generalization were monitored 

using training and validation loss trends to minimize 

overfitting. The trained model was optimized for real-time 

inference, allowing seamless integration with the 

automated pesticide spraying mechanism. 

E. Deployment and Execution Workflow 

As illustrated in Fig. 2, the trained YOLOv11 model was 

deployed in a real-time monitoring setup to enable 

continuous tomato leaf disease detection and automated 

pesticide spraying. Live image frames captured by the 

camera were processed sequentially to identify healthy and 

diseased leaves in real time. 

Upon detection of a diseased leaf, the output was 

immediately converted into a control signal and transmitted 

wirelessly to the IoT control module, which activated the 

pesticide spraying mechanism with minimal latency. If no 

disease was detected, the system continued monitoring 

without triggering spraying. 

This execution workflow forms a closed-loop decision-

to-action process that tightly integrates perception, 

communication, and actuation, enabling timely intervention 

while minimizing unnecessary pesticide usage. 

 
Fig. 2. System execution workflow showing YOLOv11-based disease 

detection 

 

 

IV. EXPERIMENATAL SETUP  

A. Experimental Setup 

The experiments were conducted on a laptop equipped 

with an Intel Core i5 processor and an NVIDIA RTX 3050 

GPU. Image acquisition was performed using the built-in 

webcam with a resolution of 1920×1080 pixels. The system 

was implemented on a Windows 11 (64-bit) platform using 

Python 3.8, with the YOLOv11 model executed through 

the Ultralytics framework built on PyTorch with CUDA 

acceleration. OpenCV was used for real-time image capture 

and preprocessing. 

Live video frames were processed sequentially to enable 

continuous disease monitoring, and detection outputs were 

transmitted wirelessly to an IoT control module for real-

time actuation. All experiments were conducted in a 

controlled field-like environment under natural lighting 

conditions to evaluate both detection performance and end-

to-end system responsiveness. 

B. Evaluation Metrics 

To objectively assess the performance of the proposed 

system, multiple evaluation metrics were employed 

focusing on detection accuracy and real-time 

responsiveness. 

 Accuracy was used to measure the overall correctness 

of disease classification across test samples. 

Precision and recall were computed to evaluate the 

reliability of disease detection, particularly in 

minimizing false positives and false negatives, 

respectively. 

 Mean Average Precision (mAP) was used to assess 

localization and classification performance of the 

YOLOv11 model across detection thresholds. 

 In addition to detection metrics, response time was 

measured as the elapsed time between disease 

detection and activation of the pesticide spraying 

mechanism, reflecting the real-time suitability of the 

system. 

These metrics collectively provide a comprehensive 

evaluation of both the detection capability and the 

operational efficiency of the proposed precision agriculture 

system. 

C. Baseline Comparison 

The performance of the proposed YOLOv11-based 

disease detection system was compared with representative 

baseline approaches reported in the literature, including a 

conventional CNN-based classifier and a YOLO-based 

object detection model.  
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The CNN baseline represents classification-only 

methods that lack localization capability, while the YOLO-

based baseline reflects real-time detection frameworks used 

for plant disease analysis. Baseline performance values 

were obtained from published studies using comparable 

tomato leaf disease datasets. The comparative performance, 

evaluated using accuracy, precision, recall, and response 

time, is summarized in Table 3. 

TABLE III 

Performance Comparison with Baseline Methods 

Method Detection 

Approach 

Accuracy 

(%) 

Response 

Time 

Limitation 

CNN-based 

Classifier 

(Literature) 

CNN 

classification 

~90 ~9.6 s High latency, 

not real-time 

AI + Image 

Processing 

+ 

IoT System 

(Literature) 

Classical ML 

+ IoT 

Not 

reported 

Not 

reported 

No real-time 

detection 

Proposed 

YOLOv11 

System 

Real-time 

object 

detection 

90–92 Low-

latency 

(real-

time) 

Bluetooth 

range limited 

V. RESULTS AND DISCUSSION  

A. Training Behaviour 

The training behaviour of the YOLOv11 model 

demonstrates stable and consistent convergence. As 

illustrated in Fig. 3, both training and validation loss values 

decrease steadily across epochs without significant 

fluctuations, indicating effective learning and good 

generalization capability. The absence of divergence 

between training and validation curves suggests that 

overfitting was successfully mitigated through appropriate 

preprocessing and data augmentation strategies. This stable 

convergence confirms the suitability of the adopted training 

configuration for tomato leaf disease detection. 

 

 

 

Fig 3: Training convergence behavior of the 

YOLOv11 model. 

B. Quantitative Results 

The quantitative performance of the proposed system 

was evaluated using standard detection metrics, including 

accuracy, precision, recall, and response time. The 

YOLOv11-based model achieved an overall detection 

accuracy in the range of 90–92%, demonstrating reliable 

discrimination between healthy and diseased tomato leaves. 

Precision and recall values indicate balanced detection 

performance, ensuring both accurate disease identification 

and minimal false detections. In addition, the system 

exhibited low-latency response suitable for real-time 

automated spraying. 

The detailed quantitative performance metrics of the 

proposed system are summarized in Table 4, providing a 

comprehensive evaluation of detection accuracy and 

operational efficiency. 

TABLE IV 

Quantitative Performance Metrics 

Metric Value Description 

Accuracy (%) 90–92 Overall correctness of 

disease classification across 

test samples 

Precision (%) High Indicates low false-positive 

rate in disease detection 

Recall (%) High Indicates effective 

identification of diseased 

leaves 

mAP Consistent Stable localization and 

classification performance 

across detection thresholds 

Response Time Low-latency (real-

time) 

Time between disease 

detection and spraying 

activation 
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C. Qualitative Results 

Qualitative results were analyzed to visually assess the 

detection capability of the proposed system under practical 

operating conditions. As shown in Fig. 4, the YOLOv11 

model accurately localizes and classifies diseased leaf 

regions using bounding boxes, even in the presence of 

background clutter and varying illumination. These visual 

results confirm the robustness of the model in real-field 

scenarios and support its suitability for precision 

agriculture deployment. 

 
Fig. 4 – Sample Tomato Leaf Detection Results. 

D. Detection Accuracy Analysis 

The detection accuracy of the proposed YOLOv11-based 

model was further analyzed using a confusion matrix and 

precision–recall curve, as shown in Fig. 5. The confusion 

matrix indicates a high true positive rate for diseased leaf 

detection, demonstrating effective discrimination between 

healthy and diseased samples. The precision–recall curve 

reflects balanced performance across confidence 

thresholds, indicating that the model maintains reliable 

detection sensitivity while minimizing false positives. 

These results confirm the robustness of the proposed 

detection model and validate its suitability for real-time 

precision agriculture applications where accurate disease 

identification is critical for selective pesticide spraying. 

 

 

 

 

  
Fig. 5. Confusion matrix and precision–recall curve illustrating the 

detection accuracy of the proposed YOLOv11-based tomato leaf 

disease detection model. 

E. Detection-to-Spraying Response Time 

The end-to-end response time between disease detection 

and pesticide spraying activation was evaluated to assess 

the real-time capability of the system. As illustrated in Fig. 

6, the proposed system exhibits low-latency operation, 

enabling rapid translation of detection outcomes into 

spraying actions. This timely response is essential for 

practical deployment, as it ensures that pesticide 

application is performed immediately after disease 

confirmation. 

The observed response time demonstrates that the 

integration of real-time object detection with IoT-based 

actuation is effective for closed-loop agricultural 

automation, supporting efficient and responsive precision 

spraying. 

 

  Figure 6 - Automated Pesticide Spraying Mechanism in Operation 
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F. Discussion 

The results indicate that the strong performance of the 

proposed system is primarily due to the integration of real-

time object detection with a closed-loop automated 

spraying mechanism. The YOLOv11 model enables 

simultaneous localization and classification in a single 

inference pass, allowing timely decision-making and 

actuation. Data preprocessing and augmentation further 

enhance robustness by improving generalization across 

environmental variations. 

Despite its effectiveness, the system has certain 

limitations. The use of wireless communication introduces 

range constraints that may limit scalability in large 

agricultural fields. Additionally, the current model supports 

only binary classification of healthy and diseased leaves, 

restricting disease-specific analysis. Failure cases were 

observed under extreme lighting conditions and partial 

occlusion, where detection confidence occasionally 

decreased. 

VI. CONCLUSION 

This paper presented an AI-driven precision pesticide 

spraying system that integrates real-time tomato leaf 

disease detection with automated and selective spraying 

using a YOLOv11-based model. The system achieved 

stable training convergence and reliable detection 

performance, with an accuracy of 90–92% under practical 

operating conditions, enabling real-time decision-to-action 

deployment. 

The current implementation is limited to binary disease 

classification and short-range wireless communication, 

which may affect scalability. Future work will focus on 

multi-disease detection, long-range communication, edge 

deployment, and large-scale field evaluation. 
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