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Abstract— Manual pesticide spraying in agriculture often
results in excessive chemical usage, increased labor
dependency, and delayed response to crop diseases, leading to
reduced yield and environmental harm. Although recent
advances in artificial intelligence have enabled automated
plant disease detection, most existing approaches operate only
as monitoring systems and lack real-time integration with
spraying mechanisms. Similarly, loT-based pesticide sprayers
often rely on manual triggering or predefined schedules,
limiting their effectiveness in precision agriculture. This paper
proposes an integrated Al-driven precision pesticide spraying
system that combines real-time tomato leaf disease detection
with automated, selective pesticide application. The proposed
approach employs a YOLOv11-based deep learning model for
identifying healthy and diseased tomato leaves from live
camera input and directly links detection outcomes to an 1oT-
enabled robotic spraying unit. Upon disease detection, a
wireless control signal is transmitted to activate targeted
pesticide spraying, forming a closed-loop decision-to-action
framework. The YOLOvV11 model was trained on annotated
images of healthy and diseased tomato leaves and evaluated
under varying environmental conditions. Experimental results
demonstrate reliable real-time detection performance with
detection accuracy exceeding 90% and a low detection-to-
spraying response latency in the sub-second range. Qualitative
and quantitative evaluations confirm stable model
convergence and effective disease localization. The results
indicate that the proposed system is suitable for precision
agriculture applications, offering reduced pesticide wastage,

minimal human intervention, and improved operational
efficiency through intelligent, real-time disease-driven
spraying.
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I. INTRODUCTION

Agricultural productivity is strongly influenced by the
timely identification and treatment of crop diseases,
particularly in high-value crops such as tomato, where
foliar infections can spread rapidly and cause significant
yield losses. Conventional pesticide application practices
often rely on periodic manual inspection and uniform
chemical  spraying, which are inefficient and
environmentally unsustainable.
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Delayed detection and indiscriminate spraying not only
increase production costs but also contribute to excessive
pesticide usage and health risks for farmers.

Manual disease monitoring requires continuous human
effort and domain expertise, making it impractical for
large-scale or continuous field deployment. As a result,
pesticides are frequently applied as a preventive measure
rather than in response to confirmed disease presence,
leading to unnecessary chemical exposure and reduced
precision in crop management.

Recent research has explored artificial intelligence—
based plant disease detection using computer vision and
deep learning techniques, demonstrating promising
accuracy in identifying diseased leaves from images.
However, most Al-driven approaches function solely as
monitoring systems and do not initiate corrective actions
after detection. In parallel, loT-based agricultural spraying
robots have been developed to automate pesticide
application, but these systems often depend on manual
triggering or predefined schedules, lacking intelligent
decision-making based on real-time disease conditions.

The absence of a tightly integrated framework that
connects real-time disease detection with automated and
selective pesticide spraying represents a key research gap
in precision agriculture. Bridging this gap requires a
closed-loop system in which perception, decision-making,
and actuation operate cohesively to enable timely and
targeted intervention.

A. Contribution

The main contributions of this work are summarized as

follows:

e An Al-driven tomato leaf disease detection
framework based on a YOLOv11l object detection
model for real-time identification of healthy and
diseased leaves.

e An integrated decision-to-action pipeline that directly
links disease detection outcomes to automated
pesticide spraying.

e A selective spraying mechanism that reduces
unnecessary pesticide usage by activating only when
disease presence is confirmed.
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e An loT-enabled control framework that enables low-
latency communication between the vision system
and the spraying unit.

e Experimental validation demonstrating reliable
detection performance and practical feasibility for
precision agriculture applications.

This paper is structured as follows:

Section 1l reviews related work on Al-based plant disease
detection and loT-enabled smart agriculture systems.

Section 1l describes the proposed system, including the
dataset, system architecture, and YOLOv11-based disease
detection methodology.

Section IV presents the experimental setup, performance
evaluation, and discussion of results.

Section V concludes the paper and outlines directions for
future research.

Il. RELATED WORK AND RESEARCH GAP

Recent advancements in precision agriculture have
driven extensive research on automated plant disease
detection and intelligent pesticide application systems [1],
[5], [6], [9]. Early approaches primarily relied on classical
image processing techniques combined with machine
learning classifiers to identify disease symptoms from leaf
images [3], [8]. While these methods demonstrated basic
feasibility, their performance was often sensitive to
variations in lighting conditions, background complexity,
and leaf orientation, limiting reliability in real-field
environments [3], [8].

With the emergence of deep learning, convolutional
neural networks have been increasingly adopted for plant
disease detection, offering improved feature extraction and
classification accuracy compared to traditional techniques
[8]. Several studies have reported effective disease
identification using deep learning-based approaches;
however, most of these systems are limited to disease
monitoring and do not incorporate automated intervention
mechanisms following detection [3], [5].

In parallel, loT-enabled agricultural robots and smart
pesticide spraying systems have been proposed to reduce
manual labor and minimize direct human exposure to
chemicals [1], [2], [5], [6], [9], [10]. These systems
typically automate spraying operations through manual
control or predefined schedules, improving operational
efficiency. However, the majority of loT-based spraying
platforms lack intelligent decision-making capability and
do not initiate spraying based on real-time disease detection

[1], [2], [€], [10].
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A limited number of studies have attempted to integrate
artificial intelligence with loT-based actuation for precision
spraying [3], [5]. Although these integrated systems
demonstrate the potential for closed-loop agricultural
automation, many existing solutions rely on classical image
processing or simple classifiers, lack real-time performance
evaluation, or do not provide selective spraying strictly
based on confirmed disease presence. Furthermore, several
approaches emphasize mechanical design and control
aspects, with limited focus on detection accuracy, response
latency, or end-to-end system evaluation [1], [3], [6].

Research Gap -

From the reviewed literature, it is evident that Al-based
disease detection and loT-based pesticide spraying have
largely been explored as independent components [1]-[10].
There remains a lack of tightly integrated systems that
combine real-time, high-accuracy disease detection with
automated and selective pesticide spraying in a unified
decision-to-action framework. Addressing this gap requires
an approach that not only detects disease reliably under
practical field conditions but also immediately translates
detection outcomes into precise spraying actions with
minimal latency.

This section describes the materials and methods used to
develop the proposed tomato leaf disease detection and
automated pesticide spraying system. It outlines the dataset
composition, system architecture, and preprocessing
techniques employed to ensure robust model performance
under varying field conditions. The training strategy for the
YOLOv11 detection model is presented, followed by the
real-time deployment and execution workflow that enables
selective pesticide spraying through loT-based control.

MATERIALS & METHODS

A. Dataset Description

The dataset consists of annotated images of tomato
leaves representing healthy and diseased conditions,
collected from publicly available plant disease datasets and
field-level acquisition under varying environmental and
lighting conditions. This diversity supports robust model
generalization across differences in background, leaf
orientation, and illumination.

All images were manually annotated using bounding
boxes to label leaf regions and health status, forming a
binary classification problem with two classes: Healthy and
Diseased. This annotation strategy enables simultaneous
localization and classification within a single inference
step, which is essential for real-time deployment.
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The dataset was split into training and validation subsets
to support supervised learning and unbiased performance
evaluation during model optimization.

The composition and characteristics of the dataset are
summarized in Table 1.

TABLE |
Dataset Summary

Parameter Description
Crop Type Tomato
Image Source Public dataset and field-collected images
Total Images 120
Classes Healthy, Diseased
Annotation Type Bounding box
Train—Validation Split | 80% / 20%
Image Format RGB
Capture Conditions Varying lighting and background

B. Proposed System Architecture

The proposed system architecture enables real-time
tomato leaf disease detection and selective automated
pesticide spraying through a closed-loop decision-to-action
pipeline integrating computer vision and loT-based
actuation. As shown in Fig. 1, the system comprises a
vision-based detection unit, a wireless communication
interface, and an automated spraying unit.

The detection unit processes live images of tomato
plants using a YOLOV11 object detection model to perform
real-time localization and classification of healthy and
diseased leaves. When disease presence is detected, a
control signal is transmitted wirelessly to the loT control
module, which activates the spraying mechanism with

minimal latency. Spraying is triggered only upon
confirmed  detection, ensuring targeted pesticide
application.

The modular architecture supports coordinated operation
of perception, communication, and actuation components
while remaining adaptable to future extensions, enabling
efficient and sustainable precision agriculture with minimal
human intervention.
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Figure 1: Overall System Architecture

C. Image Preprocessing and Augmentation

Image preprocessing and data augmentation were
applied to enhance the robustness and generalization of the
YOLOvV11 detection model under real-field conditions. All
input images were resized to a fixed resolution and
normalized to ensure uniformity and stable training
behaviour.

To increase dataset diversity and reduce overfitting,
augmentation techniques such as random rotation,
horizontal flipping, and brightness adjustment were applied
during training. These operations enable the model to
handle variations in leaf orientation, illumination, and
background commonly encountered in outdoor agricultural
environments.

The preprocessing and augmentation techniques
employed in this study are summarized in Table 2.
TABLE Il
Image Preprocessing and Augmentation Techniques
Technique Description Purpose
Image Input  images are | Ensures uniform input
Resizing resized to a fixed | dimensions for the
resolution prior YOLOvV11 model
to training
Rotation Images are Improves robustness to
rotated at variations in leaf
multiple angles orientation
Horizontal Images are Increases dataset
Flipping Flipped diversity and
horizontally ~ during | reduces overfitting
training
Brightness Pixel intensity Enhances robustness to
Adjustment values are varied Hlumination
changes in field
conditions
Normalization | Pixel values are scaled | Improves training
to a standard range stability and
convergence
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D. Yolovll Model and Training Strategy

The YOLOV11 object detection model was used for real-
time tomato leaf disease detection due to its ability to
perform localization and classification within a single
inference pass, enabling efficient and low-latency
operation. The model was trained on the annotated tomato
leaf dataset described in Section 3.1 to learn disease-
specific visual features.

Training was conducted with data augmentation enabled
to improve generalization under varying field conditions.
Model convergence and generalization were monitored
using training and validation loss trends to minimize
overfitting. The trained model was optimized for real-time
inference, allowing seamless integration with the
automated pesticide spraying mechanism.

E. Deployment and Execution Workflow

As illustrated in Fig. 2, the trained YOLOvV11 model was
deployed in a real-time monitoring setup to enable
continuous tomato leaf disease detection and automated
pesticide spraying. Live image frames captured by the
camera were processed sequentially to identify healthy and
diseased leaves in real time.

Upon detection of a diseased leaf, the output was
immediately converted into a control signal and transmitted
wirelessly to the 10T control module, which activated the
pesticide spraying mechanism with minimal latency. If no
disease was detected, the system continued monitoring
without triggering spraying.

This execution workflow forms a closed-loop decision-
to-action process that tightly integrates perception,
communication, and actuation, enabling timely intervention
while minimizing unnecessary pesticide usage.

Fig. 2. System execution workflow showing YOLOv11-based disease
detection
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IV. EXPERIMENATAL SETUP
A. Experimental Setup

The experiments were conducted on a laptop equipped
with an Intel Core i5 processor and an NVIDIA RTX 3050
GPU. Image acquisition was performed using the built-in
webcam with a resolution of 1920x1080 pixels. The system
was implemented on a Windows 11 (64-bit) platform using
Python 3.8, with the YOLOv11 model executed through
the Ultralytics framework built on PyTorch with CUDA
acceleration. OpenCV was used for real-time image capture
and preprocessing.

Live video frames were processed sequentially to enable
continuous disease monitoring, and detection outputs were
transmitted wirelessly to an loT control module for real-
time actuation. All experiments were conducted in a
controlled field-like environment under natural lighting
conditions to evaluate both detection performance and end-
to-end system responsiveness.

B. Evaluation Metrics

To objectively assess the performance of the proposed
system, multiple evaluation metrics were employed
focusing on  detection accuracy and real-time
responsiveness.

e Accuracy was used to measure the overall correctness
of disease classification across test samples.
Precision and recall were computed to evaluate the
reliability of disease detection, particularly in
minimizing false positives and false negatives,
respectively.

e Mean Average Precision (mAP) was used to assess
localization and classification performance of the
YOLOvV11 model across detection thresholds.

e In addition to detection metrics, response time was
measured as the elapsed time between disease
detection and activation of the pesticide spraying
mechanism, reflecting the real-time suitability of the
system.

These metrics collectively provide a comprehensive
evaluation of both the detection capability and the
operational efficiency of the proposed precision agriculture
system.

C. Baseline Comparison

The performance of the proposed YOLOv1l-based
disease detection system was compared with representative
baseline approaches reported in the literature, including a
conventional CNN-based classifier and a YOLO-based
object detection model.
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The CNN baseline represents classification-only
methods that lack localization capability, while the YOLO-
based baseline reflects real-time detection frameworks used
for plant disease analysis. Baseline performance values
were obtained from published studies using comparable
tomato leaf disease datasets. The comparative performance,
evaluated using accuracy, precision, recall, and response
time, is summarized in Table 3.

TABLE Il
Performance Comparison with Baseline Methods

Method Detection Accuracy Response | Limitation

Approach (%) Time
CNN-based CNN ~90 ~9.6s High latency,
Classifier classification not real-time
(Literature)
Al + Image Classical ML | Not Not No real-time
Processing +loT reported reported detection
+
10T System
(Literature)
Proposed Real-time 90-92 Low- Bluetooth
YOLOv11 object latency range limited
System detection (real-

time)

V. RESULTS AND DISCUSSION
A. Training Behaviour

The training behaviour of the YOLOv1l model
demonstrates stable and consistent convergence. As
illustrated in Fig. 3, both training and validation loss values
decrease steadily across epochs without significant
fluctuations, indicating effective learning and good
generalization capability. The absence of divergence
between training and validation curves suggests that
overfitting was successfully mitigated through appropriate
preprocessing and data augmentation strategies. This stable
convergence confirms the suitability of the adopted training
configuration for tomato leaf disease detection.
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Fig 3: Training convergence behavior of the
YOLOvV11 model.

B. Quantitative Results

The quantitative performance of the proposed system
was evaluated using standard detection metrics, including
accuracy, precision, recall, and response time. The
YOLOv11-based model achieved an overall detection
accuracy in the range of 90-92%, demonstrating reliable
discrimination between healthy and diseased tomato leaves.
Precision and recall values indicate balanced detection
performance, ensuring both accurate disease identification
and minimal false detections. In addition, the system
exhibited low-latency response suitable for real-time
automated spraying.

The detailed quantitative performance metrics of the
proposed system are summarized in Table 4, providing a
comprehensive evaluation of detection accuracy and
operational efficiency.

TABLE IV
Quantitative Performance Metrics
Metric Value Description
Accuracy (%) 90-92 Overall correctness of
disease classification across
test samples
Precision (%) High Indicates low false-positive
rate in disease detection
Recall (%) High Indicates effective
identification of diseased
leaves
mAP Consistent Stable localization and
classification performance
across detection thresholds
Response Time Low-latency (real- Time between disease
time) detection and spraying
activation
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C. Qualitative Results

Qualitative results were analyzed to visually assess the
detection capability of the proposed system under practical
operating conditions. As shown in Fig. 4, the YOLOv11l
model accurately localizes and classifies diseased leaf
regions using bounding boxes, even in the presence of
background clutter and varying illumination. These visual
results confirm the robustness of the model in real-field
scenarios and support its suitability for precision
agriculture deployment.

Fig. 4 — Sample Tomato Leaf Detection Results.

D. Detection Accuracy Analysis

The detection accuracy of the proposed YOLOv11-based
model was further analyzed using a confusion matrix and
precision—recall curve, as shown in Fig. 5. The confusion
matrix indicates a high true positive rate for diseased leaf
detection, demonstrating effective discrimination between
healthy and diseased samples. The precision—recall curve
reflects balanced performance across confidence
thresholds, indicating that the model maintains reliable
detection sensitivity while minimizing false positives.

These results confirm the robustness of the proposed
detection model and validate its suitability for real-time
precision agriculture applications where accurate disease
identification is critical for selective pesticide spraying.
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Fig. 5. Confusion matrix and precision—recall curve illustrating the
detection accuracy of the proposed YOLOv11-based tomato leaf
disease detection model.

E. Detection-to-Spraying Response Time

The end-to-end response time between disease detection
and pesticide spraying activation was evaluated to assess
the real-time capability of the system. As illustrated in Fig.
6, the proposed system exhibits low-latency operation,
enabling rapid translation of detection outcomes into
spraying actions. This timely response is essential for
practical deployment, as it ensures that pesticide
application is performed immediately after disease
confirmation.

The observed response time demonstrates that the
integration of real-time object detection with loT-based
actuation is effective for closed-loop agricultural
automation, supporting efficient and responsive precision

spraying.

Figure 6 - Automated Pesticide Spraying Mechanism in Operation
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F. Discussion

The results indicate that the strong performance of the
proposed system is primarily due to the integration of real-
time object detection with a closed-loop automated
spraying mechanism. The YOLOv1l model enables
simultaneous localization and classification in a single
inference pass, allowing timely decision-making and
actuation. Data preprocessing and augmentation further
enhance robustness by improving generalization across
environmental variations.

Despite its effectiveness, the system has certain
limitations. The use of wireless communication introduces
range constraints that may limit scalability in large
agricultural fields. Additionally, the current model supports
only binary classification of healthy and diseased leaves,
restricting disease-specific analysis. Failure cases were
observed under extreme lighting conditions and partial
occlusion, where detection confidence occasionally
decreased.

VI. CONCLUSION

This paper presented an Al-driven precision pesticide
spraying system that integrates real-time tomato leaf
disease detection with automated and selective spraying
using a YOLOvl1l-based model. The system achieved
stable training convergence and reliable detection
performance, with an accuracy of 90-92% under practical
operating conditions, enabling real-time decision-to-action
deployment.

The current implementation is limited to binary disease
classification and short-range wireless communication,
which may affect scalability. Future work will focus on
multi-disease detection, long-range communication, edge
deployment, and large-scale field evaluation.
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