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Abstract--An observer that estimates system state vector x(t) 

is a state observer. Although a state observer can generate 

state feedback control signal Kx(t) where the constant gain K 

can bese parately designed before its realizing observer, the 

actual observer feedback system cannot have its loop transfer 

function equal K(sI – A)-1B, the loop transfer function of the 

direct state feedback control, for a great majority of plant 

systems. Because loop transfer function determines the 

sensitivity function and robust properties of the 

corresponding feedback system, this implies that the robust 

properties of the Kx(t)-control are failed to be realized by 

state observers for a great majority of plant systems.Because 

robustness against system model uncertainty and terminal 

disturbance is foremost of feedback control even above 

performance, state observers are unsuitable for feedback 

control. 

Although this problem has initiated a vibrant robust 

control research in the past 40+ years, the result of that 

research has been unsatisfactory if parameter K is designed 

separately and prior to observer design. As a result, control 

theory remains essentially stagnant and a large amount of 

works still applied Kalman filters and state observers to 

feedback control applications. 

Fortunately, this vital problem has found a fundamentally 

novel yet decisively satisfactory solution, that is to design 

parameter K based on the key observer parameters! These 

new observers are not restricted to be state observers, and can 

have freely designed and reduced observer order for the first 

time, and thus can guarantee the full realization of loop 

transfer function and robust properties of their corresponding 

Kx(t)-control. Such an observer exits for a great majority of 

plant systems!In addition, this new design principle is very 

simple to be learned, and adjusted very easily. Thus, a design 

methodology that can achieve high performance and 

robustness for general L-T-I systems is finally developed! 

Keywords-- Fundamentally new design principle, general 

robustness and performance, simple design techniques. 

I. STATE OBSERVERS ARE UNSUITABLE FOR FEEDBACK 

CONTROL FOR A GREAT MAJORITY OF PLANT SYSTEMS 

For linear time invariant (L-T-I) state space model of an 

irreducible plant system (A, B, C) with n states, p inputs 

and m outputs. Let the general state space model of the 

corresponding observer be 

 

     d/dt z(t) = Fz(t) + Ly(t) + TBu(t)       (1.1) 

      Kx(t) = Kzz(t) + Kyy(t)                      (1.2) 

Where y(t) (= Cx(t)) and u(t) are the plant system 

outputs and inputs, respectively, and F, L, T, Kz, and Ky are 

the observer parameters to be designed. 

To generate a Kx(t) signalwhereKisconstant, we require 

that [1, 5] 

    TA – FT = LC and F is stable,    (2.1) 

which guarantees z(t) converge to Tx(t),and this 

convergence further implies that in (1.2), 

K = KzT + KyC = [Kz: Ky] [T
T
:C

T
]

T≡KC,  

And where Rank(C)≡ q = r + m, where r = the number of 

rows of T and the order of the observer/controller. 

A state observer that estimates x(t) = Ix(t) = C
-1

Cx(t), 

requires  

                  Rank(C) = n,                      (2.2) 

And guarantees the satisfaction of the above equation K 

= KC for any separately designed and arbitrarily given 

K, with solution K = K C
-1

. 

A Kalman filter with state space model 

     d/dt z(t) = Az(t) + Bu(t) + L[y(t) – Cz(t)] 

                   = [A – LC]z(t) + Ly(t) +Bu(t), 

is a special state observer with F = A-LC and T = I. 

In addition to generate the Kx(t) signal, we also require  

    TB = 0   (2.3) 

Which, together with (2.1), is necessary and sufficient 

for the actual loop transfer function of observer feedback 

system, L(s), equal that of the Kx(t)-control LKx(s) ≡ -K(sI 

– A)
-1

B, if K or KCis practically designed or is designed 

for a good feedback system state matrix A – BK [1: 

Theorem 3.4, 4, 6, 7]. 

The proof is very simple. The loop transfer function of 

the observer feedback system L(s) = -K(sI – A)
-1

B if and 

only if, in addition to (2.1),  [4, 21] 

      Lu(s) ≡Kz(sI– F)
-1

TB = 0   for all s.           (2.4) 
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Because Kz of (1.2) must be designed only for a good 

matrix A – BK but not for Lu(s) = 0, and because (sI – F)
-1

 

must be invertible for all s, Lu(s) = 0 if and only if TB = 0.   

The observer (1) satisfying (2.1) to (2.3) is equivalent of 

an ―unknown input observer (UIO)‖, if matrix B is the gain 

of the unknown inputs. This is the only existing observer 

satisfying (2.3). According to [1, 3], a UIO exists if and 

only if the plant system satisfies m ≥ p, Rank(CB) = p, and 

all transmission zeros are stable (minimum-phase). For 

example, Rank(C) = n implies dimension of matrix T must 

be n – m, while TB = 0 implies that T must be within the 

Null Space of B with dimension n – p only. Therefore m ≥ 

p is required [1]. 

A great majority of plant systems cannot satisfy these 

three conditions.The systems with m = p and Rank(CB) = p 

have n – m transmission zeros [15]. Based on the 

reasonable assumption that each transmission zero is 

equally likely to be stable/unstable, almost all random 

setsof n – m transmission zeros (n > 2m) have at least one 

unstable (or stable) transmission zeros among them [1]. We 

also assume about half of systems with m > p cannot 

satisfy Rank(CB) = p such as airborne systems. 

Hence, assume among all plant systems, 20% is m < p, 

50% is m = p, and 30% m > p, then20% of plants cannot 

satisfy condition m ≥ p, almost all plants with m = p (50%) 

have at least one unstable transmission zero, and about half 

(15%) of the remaining plant systems with m > p cannot 

satisfyRank(CB) = p. That means altogether 85% of the 

plant systems cannot satisfy the above three conditions of 

[1, 3], or cannot realizethe loop transfer function of its 

Kx(t)-control at all! 

Because loop transfer function L(s) determines the 

sensitivity function [I – L(s)]
-1

 and robustness of the 

corresponding feedback system, and robustness against 

system model uncertainty and terminal disturbance is 

foremost of feedback control even above performance [1, 4, 

7], this implies that state observers/Kalman filters are 

generally unsuitable for feedback control. 

This conclusion implies the well-known LQ optimal 

control which can be achieved only by the existing Kx(t)-

control with Rank(C) = n, cannot have its robust properties 

realized for 85% of plants! 

This vital problem also appeared from practice ever 

since the start of modern control theory 60+ years ago. The 

theoretical research of this problem and loop transfer 

functions started in 1978 [4], and has initiated a vibrant 

robust control research in the past 40+ years. 

Because all other existing designs followed the 

―separation principle‖ [16] so that parameter K is designed 

separately and prior to observer design, requirements (2.1) 

to (2.3) especially (2.2) are necessary and about 85% of 

plant systems cannot satisfy them.  

The results of approximate realization of L(s) towards 

LKx(s) are very ineffective and unpredictable either.  

For example, the dominant result of approximate 

realization of L(s) towards LKx(s)is called ―asymptotic 

LTR‖,and is to asymptotically increase the observer gain L 

(to y(t)) so that the gain TB (to u(t)) of (1.1) is 

overwhelmed [21]. This design approach is obviously 

indirect and thus very ineffective. It is also impractical 

because a large gain L is prohibited in any robust control 

design in the first place [1, 7, 20]. 

Furthermore, what makes these LTR results even more 

unsatisfactory is because sensitivity function [I – L(s)]
-1

 is 

itself very sensitive to any variation between L(s) andLKx(s), 

and because robustness/reliability guarantee is by definition 

against this variation and unpredictability. 

This situation has forced a backward research trend to 

the direct design of L(s), such as minimizing the H∞ norm 

of [I – L(s)]
-1

 starting in the 1980’s. However, transfer 

function model is far more complicated yet reveals far less 

information than state space model, and classical control 

analysis/design techniques are far less effective than that of 

modern control theory.  

The Kx(t)-control aimed at improving feedback system 

state matrix A – BK and, indirectly, its loop transfer 

function K(sI – A)
-1

B, of modern control theory, is based 

on the far more detailed and far more explicit information 

on system’s internal structure (A, B, C) and on the ―filtered‖ 

system’s states x(t). This is why Kx(t)-control is superior if 

parameter K is designed wisely, or is designed only for 

improving feedback system state matrix A – BK, even if K 

is constrained by K = KC. 

For example, the Kx(t)-control has eigen-structure 

assignability, which is superior and far more superior than 

any other design results in improving feedback system 

performance and robustness [1, 7]. It is well-known that 

system poles most generally accurately determine system 

response and performance (as compared to bandwidth), and 

the sensitivity of the poles (determined by the 

corresponding eigenvectors) is far more focused than the 

raw and gross frequency response data of the sensitivity 

function or loop transfer function. [1, 12, 13, 14]. 

This should be the reason that people forwarded to 

modern control theory from classical control theory since 

the 1960’s in the first place, and the reason that most 

applications today including those reported at 2023CCC 

used state observers/Kalman filters. It seems that people 

have been wandering between these two theories, and 

control textbooks especially their design part remain 

essentially unchangedin the past 60+ years! 
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A critical question is, if high performance and 

robustness control cannot be realized generally for the most 

simple and basic L-T-I systems, then how can control 

theory be useful really and generally at all? 

It is apparent that the only future of modern control 

theory or the whole control theory, is to find a way that can 

realize the loop transfer function of Kx(t)-control generally 

and effectively, or that can satisfy design requirements (2.1) 

and (2.3) generally and effectively. 

II. THE SIMPLE AND BASIC REASON IS IN RATIONALITY 

Why is the direct Kx(t)-control with K designed based 

on the assumption of ideal plant system condition with the 

availability of ideal information of the whole set of x(t), 

unrealizable for about 85% of all plants that are far from 

ideal? The answer simply lies in the words of this question 

itself [1, 7]. 

2.1 How can a Kx(t)-control designed based on the invalid 

and unrealistic assumption that the plant systems are 

ideal, be expected realizable for 85% of actual plant 

systems which are far from being ideal (not satisfying 

the three conditions of [1, 3])? How can such an 

expectation be realistic and rational? 

This is like expecting a true and non-disastrous 

realization of an ideal Communistic society, to an actual 

society that is deemed only at primary Socialistic economic 

development stage and condition. 

2.2 The existing Kx(t)-control design is aimed at 

improving feedback system state matrix A – BK only. 

It ignores parameter T which is key to the realizing 

observer and parameter C which is key to the output 

measurement information, in K = K [T
T
:C

T
]

T
. This 

ignorant design cannot be rational and fully realizable. 

For instance, ignoring parameter C means ignoring 

completely whether the available number of system output 

measurements is 100%, or 50%, or 10%, or even 1%, of the 

number n of system states, when designing the state 

feedback control law K. How can such an ignorant design 

be rational and fully realizable? 

2.3 The requirement of n-dimensional information insignal 

Cx(t) (Rank(C) = n) for the generation of an actual p-

dimensional control signal Kx(t) (Rank(K) = p), at the 

common situation that n > p, is unnecessary, excessive, 

and irrational. 

In fact, excellent control (though not ideal control) can 

be designed if p + Rank(C)>n because it guarantees full 

eigenvalues and partial eigenvector assignment[1, 11]!,and 

powerful control (though not excellent control) orgenerical 

eigenvalue assignability is guaranteed if p x Rank(C) > n 

[2]! 

Specifically, if q + p > n (Rank(C) ≡ q), then the design 

algorithms of [11] can assign n - q or n – p eigenvectors 

each with q or p basis vectors, and assign the rest of q or p 

eigenvectors each with q + p – n basis vectors [1, 11]. 

2.4 Technically, unable to satisfy generally TB = 0 means 

unable to avoid input feedback, which has been 

avoided by almost all successful and rational 

controllers of classical control [18]!  

Input disturbance is a top concern of feedback control [1, 

4, 7, 21]. This is why the failed robust realization (TB ≠ 0) 

is a fatal drawback of KalmanFilters/modern control theory! 

Four more basic theoretical and rational drawbacks of 

the existing design are articulated in [1, 20]. 

Is there any actual advantage of the ideal Kx(t)-controlif 

its most critical robust properties cannot be actually 

realized at all? Is there any rationality of separation 

principle that designs an ideal control but cannot be 

actually realized? Is there any rationality of separation 

principle whose state observers/Kalman filters cannot 

realize at all the critical robust properties of their Kx(t)-

control which they are supposed to realize? 

III. A FAR MORE RATIONAL AND SUPERIOR REMEDY 

The following is an excerpt from this author’s previous 

publications: 

―In 1990, and in an 85°F room one summer after noon, 

while stuck by the dilemma that making TB = 0 can cause 

Rank(C) <n generally, it suddenly occurred to this author 

that Rank(C) does not need to be n, and that parameter K 

does not need to be designed separately because parameter 

K can be designed instead (while satisfying (2.1) and (2.3) 

in priority), and that separation principle does not need to 

be adhered after all!‖. 

By designing K instead of K, K = KC is satisfied 

automatically and design requirement (2.2) (Rank(C) = n) 

is eliminated [1, 7-9, 17]. 

This new design of K by designing K instead, is based 

on the valid and realistic assumption that information Cx(t) 

is available and is reliable because TB = 0 (2.3) is satisfied 

(see Subsection 2.1), is not ignorant of theactual parameters 

T and C in matrix C that are key to the realization of the 

KCx(t)-control (see Subsection 2.2), is based on only q 

(can be less than n) signals of Cx(t) (see Subsection 2.3), 

and eliminates or minimizes the fatal input feedback by 

satisfying TB = 0 as design priority (see Subsection 2.4). 

Therefore, this new design is named ―synthesized design 

principle‖ [1] versus the existing ―separation design 

principle‖ [16],and overcomes completely the above four 

basic drawbacks in rationality of the existing separation 

principle. 

 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 13, Issue 3, March 2024) 

11 

This new design also has the following overwhelming 

advantage over the existing separation design principle. 

Because design requirement (2.2) (Rank(C) = n) is 

eliminated, only (2.1) and (2.3) need to be satisfied. These 

two equations can be re-written as 

 𝒕𝑖 ∶  𝒍𝑖  
𝐴 − 𝑓𝑖𝐼 𝐵

−𝐶 0
 = 0                 (3) 

Where fi is the i
th

 element of a diagonal matrix F, ti 

andliare the rows of matrices T and L corresponding to fi. It 

is obvious from (3) that exact non-zero solution [ti:li] exists, 

if the plant system (A, B, C) satisfies either one of the 

following two sufficient conditions: m > p, or has at least 

one stable transmission zerofi and this fi is assigned as the 

i
th

 eigenvalue of matrix F [1, 7-9, 22]. This result can be 

easily generalized to generaleigenvalue cases. 

Based on the same assumption of 20% m < p, 50% m = 

p, and 30% m > p, of plant systems of Section 1, 30% of 

plants satisfy m > p and almost all plants with m = p (50%) 

have at least one stable transmission zeros (see Section 

1).Altogether, at least80% of plant systems can have the 

loop transfer function and robust properties of theirKCx(t)-

control fully realizedusing our synthesized design principle. 

This is 500% more general and is decisively more general 

and superior than separation design principlewhich can 

realize robustness of Kx(t)-control for only 15% of plant 

systems.! 
Table 1 

summarizes this comparison: 

Separation Principle 
Kx(t)-control Rank(C) = n 

Synthesized 

PrincipleKCx(t)-control 

Ranh(C) ≤ n 
Three necessary conditions Two sufficient conditions 

 1) m ≥ p        -20% 1) m > p+30% 

2) Minimum-phase  -50% 2)Have stable zeros+50% 

3) Rank(CB) = p     -15%  

Ony 15% of plants satisfy! 80% of plants can satisfy! 

TheKCx(t)-control with eigen-structure assignability is 

superior and far more superior than any other design results 

in improving feedback system performance and robustness 

[1, 7].It is well-known that system poles most generally 

accurately determine system response and performance as 

compared to bandwidth, and pole sensitivity s(λi) can be 

measured as the product of the norms of its left and right 

eigenvectors, and is far more focused than the raw and 

gross frequency response data of the sensitivity function or 

loop transfer function[1, 12, 13, 14].  

 

 

For example, based on system poles λi and its sensitivity 

s(λi) (i = 1, …, n), a new robust stability margin is 

proposed as min{s(λi)
-1

|Re(λi)|} [13, 1]. This stability 

margin is proven to be far more generally accurate in 

indicating robust stability as well as overall system 

performance and robustness, than other design criteria 

including that of L-Q optimal control [1, 7]. This new 

stability margin can be easily optimized by the existing 

eigen-structure assignment algorithms [1, 14, 11].  

IV. A DESIGN EXAMPLE 

Many design examples and exercise problems were 

presented in [1]. The following example is presented in 

[20]. This is a 3
rd

 order (n = 3), 2-inputs (p = 2) and 1-

output (m = 1) system with state space model 

(A, B, C) =  
0 1 0
0 0 1
0 0 0

 ,  
1 0
3 1
2 1

 ,  1 0 0  . 

This system has one stable transmission zero (-1).The 

following design solution is presented in Figure 1: 

 
Figure 1 

Because all parameters of Figure 1 satisfy (2.1) and (2.3), 

a KCx(t)-control signal is generated and its loop transfer 

function -KC(sI – A)
-1

B and associated robust properties 

are fully realized. 

Although Rank(C) ≡ q = 2 < n in this example, the 

corresponding KCx(t)-control still can assign all poles({-2, 

-1±  j√3} in this example) and one eigenvector (for 

eigenvalue -2 in this example) because q + p = 4 > n as 

predicted [1,11]. This is just a little less than the full 

eigenvalue/eigenvector assignability of the idealdirect 

Kx(t)-control corresponding to rank(C) = n, and is therefore 

an excellent control. 

In comparison, the existing direct Kx(t)-control cannot 

be realized because this plant system has lessoutputs than 

inputs (m < p), while the existing static output feedback 

control cannot even assign all poles such as the poles of 

this example because m + p ≤ n [2, 20]. 
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An equally significant advantage of the new design 

principle is at its simplicity --- the entire design 

computation of this example is carried out by hand! 

Therefore, synthesized design principle is a once in a 

life-time apperception of any control theoreticians. Its 

novelty and technical superiority and significance can 

match that of any other results in control system history. 

V. FURTHER SIGNIFICANCE OF THIS NEW DESIGN 

PRINCIPLE 

The comparison of overall performance and robustness 

levels analyzed in the previous sections, of our new 

synthesized design principle and the existing separation 

design principle, is depicted in Figure 2: 

 

Figure 2 

Figure 2 shows that the results of our new design 

principle (solid line) can reach at least very good level for 

80%of all plant systems (or plant systems with m ≥ p), 

because robustness of the KCx(t)-control can be fully 

realized for these plant systems.  

For plant systems with m = p (50%), they generically have 

n – m transmission zeros and always have n – m 

transmission zeros if Rank(CB) = p [15]. Based on a 

conservative yet most reasonable assumption that each 

transmission zero is equally likely to be stable or unstable, 

extensive statistical analysis in [1] indicates that almost all 

such plant systems (50% of all plant systems)) can satisfy q 

x p > n, and indicates that about half of such plant systems 

(25% of all plant systems) can satisfy q + p > n. Here q = m 

+ the number of stable transmission zeros [1, 7-9, 22]. 

For plant systems with m > p which are better than plant 

systems with m = p (more output measurement information 

to use and less control signals need to generate), the cause 

for Rank(C)< n is either non-minimum-phase or Rank(CB) 

< p [1, 3]. Because systems with m ≠ p generically have no 

transmission zeros [15], Rank(C) < n is generically due to 

Rank(CB) < p only.  

 

Because Rank(CB) cannot be lower than p by more than 

p, this lowing of Rank(C) (from n) cannot be more than p. 

Thus, Rank(C) + p > n generically in such systems, as 

demonstrated by many examples of [1]. 

Conclusions of the past two paragraphs are summarized 

in the solid line of Figure 2: 80% of plant systems can 

satisfy q x p > n which guarantees a very good control with 

generic pole assignability [2]or better, and 55% of plant 

systems can satisfy Rank(C) + p > n which guarantees an 

excellent control with full eigenvalue and partial 

eigenvector assignability or better [1, 11]. 

Figure 2 (dotted line) shows that the existing separation 

design principle cannot realize at all the critical loop 

transfer function and robustness of its Kx(t)-control, for 85% 

of plant systems. That means that there is actually no 

guaranteed robustness level at all for these systems! 

The difference between the solid and dotted lines of 

Figure 2 is at the middle 65% of plant systems. This 

difference is undeniably decisive and overwhelming. 

This advantage is enabled by our unique technical ability 

to freely design and adjust our Rank(C) from a previously 

fixed value of n to lower values, which is further enabled 

by our unique ability to freely design and adjust our 

number of rows T or observer/controller order r, and which 

is further enabled by our unique feature of solution matrix 

T of (2.1) of 1985 such that all rows of T are decoupled 

from each other [1, 7, 10]. 

This flexibility of our Rank(C) and controller order 

rfurther enables, uniquely and effectively, the tradeoff 

between feedback system performance and robustness: a 

higher order or a higher Rank(C) implies a more powerful 

KCx(t)-control that can better improve feedback system 

performance and robustness and meet the design 

requirements, while a lower order or a lower Rank(C) 

implies the robust property of our KCx(t)-control can be 

more easily realized (or TB = 0 can be more easily satisfied) 

[1, 19]. More than a dozen such design examples and 

problems are presented in [1]. 

A far more effective approximate realization to LKx(s) 

is to minimize TB, if a higher number of rows of T is 

required by the design requirement so that TB = 0 cannot 

be satisfied exactly [1, 19]. Thus, our design methodology 

can be applied to all plant system conditions and design 

requirements. 

Overall, a design principle and methodology that can 

achieve high performance and robustness generally (say 

80%+ of plant systems), that is basically rational and far 

more rational, that can adjust effectively the tradeoff 

between performance and robustness, and that is simple to 

be easily learned and implemented, has been thought after 

by the whole control community for 76 years since the start 

of control theory!  
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It is obvious and undeniable that, our new synthesized 

design principle has finally achieved this core and basic 

goal unachieved for so long. Therefore, this is an 

undeniably, a historical and monumentalachievement in 

control systems history! 

For some reasons, this seminal and monumental result 

has been denied, doubted, ignored and apathetic by many 

and for years. This is apparently an unprecedented and 

continuing scandal in control theory’s history. It harms the 

whole control theory and control community severelyas 

evidenced by the fact thatthe design parts of modern 

control textbooks remain essentially unchanged for the past 

60+ years, by the fact that no other existing design 

technology can achieve high performance and robustness 

generally, and by the factthatlarge amount of recent works 

still applied Kalman filters and state observers to feedback 

control unaware of robustness. 

Because of its overwhelming significance and simplicity, 

synthesized design principle should replace the existing 

separation design principle in all control textbookswithin a 

couple of decades, and control systems theory has finally a 

brilliant prospect. 
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