International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 11, November 2022)

A Review and Analysis of Java Source Code using Graph

Representation

Shubham Kumall, Prof. Sarwesh Site”

IM.Tech Scholar, *Assistant Professor, Department of Computer Science and Engineerving, All Saints’ College of Technology,
Bhopal, India

Abstract--This information is wused for many different
purposes, such as static program analysis, advanced code
search, coding guideline checking, software metrics
computation, and extraction of semantic and syntactic
information to create predictive models. Most of the existing
systems that provide these Kinds of services are designed ad
hoc for the particular purpose they are aimed at. For this
reason, we created ProgQuery, a platform to allow users to
write their own Java program analyses in a declarative
fashion, using graph representations. We modify the Java
compiler to compute seven syntactic and semantic
representations, and store them in a Neo4j graph database.
Such representations are overlaid, meaning thatsyntactic and
semantic nodes of the different graphs are interconnected to
allow combining different Kinds of information in the
queries/analyses. We evaluate ProgQuery and compare it to
the related systems.

I. INTRODUCTION

JAVA was developed by James Gosling at Sun
Microsystems Inc. in the year 1995, later acquired by
Oracle Corporation. Tt is asimple programming language.
Java makes writing, compiling, and debugging
programming easy. It helps to create reusable code and
modular programs. Java is a class-based, object-oriented
programming language and is designed to have as few
implementation dependencies as possible. A general-
purpose programming language made for developers to
write once run anywhere that is compiled Java code can run
on all platforms that support Java. Java applications are
compiled to byte code that can nmm on any Java Virtual
Machine. The syntax of Java is similar to ¢/c++.

Owsktop Gul
Apple st

g dats
TG by

-®

==

=

Ernibedded
syateo

Figure 1: Use of Java In Different Technology.

History: Java’s history is very inferesting. It is a
programming language created in 1991. James Gosling,
Mike Sheridan, and Patrick Naughton, a team of Sun
engineers known as the Green team initiated the Java
language in 1991. Sun Microsystems released its first
public implementation in 1996 as Java 1.0.

It provides no-cost -run-times on popular platforms.
Javal .0 compiler was re-written in Java by Arthur Van
Hoff to sfrictly comply with its specifications. With the
arrival of Java 2, new versions had multiple configurations
built for different types of platforms.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 11, November 2022)

II. METHODOLOGY

Figure 2: Flow Chart of Java

The work presented in this article is inspired by Wiggle,
a prototype source-code querying system based on the
graph data model [9]. Wiggle modifies the Java compiler to
obtain ASTs of each program and store them in a Neo4j
graph database. These persistent ASTs may be consulted
using any of the mechanisms provided by Neodj, such as
the Cypher query language. Wiggle uses overlays as a
mechanism to express queries as a mixture of syntactic and
semantic information [20]. The prototype implementation
provides limifed semantic data about type hierarchy and
attribution (annotation), and method calls.

Frappé is a C/C++ source code query tool that supports
large-scale codebases [25]. A Neo4j graph database is
chosen to gain query efficiency by avoiding repeated join
operations, necessary in the relational model. Frappé
provides a meodification of the Clang compiler to retrieve
and store program information. It provides some scripts
that execute the Clang modification (to insert program
information) and the original C compiler (fo generate
binary code). Although Frappé stores some AST
information, important nodes such as expressions and
statements are not included in the representation. It does not
include such nodes to provide good performance for large
codebases. Frappé represents node types with a string
property, but it does not suppart different types (subtyping
polymorphism). A call dependency graph is provided,

connecting function nodes through calls relationships.

1Prcngram representations are stored in Mango DB, a
Python wrapper for MongoDB [29]. JSON documents in
the database represent syntactic and semantic information
of langnage-agnostic = programs. The semantic
representations include type hierarchy, data dependency
and method call graphs. No information about control flow
or type dependency is stored. For source code queries, they
propose JIns®, an extension of their JIns declarative code
instrumentation language[30]. Users may use JIns' to write
their own analyses. valid for any object-oriented language.
Although expressions are stored in the database, JIns* does
not allow queries about expressions. Therefore, common
queries such as locating expressions calling a method or
using a variable cannot be expressed. This framework
reports analyses results as JSON documents.

Its own additional analyses and metrics. SonarQube finds
not only bugs but also bad smells, which do not prevent
correct program functioning, but usually correspond to
another problem in the system [33] (e.g., code duplication,
forgotten interfaces and orphanabstract classes). SonarQube
can be extended by implementing new Java user-defined
plug-ins, consisting of one or more analyzers. Its GUI
allows hierarchical inspection of source code and provides
multiple views and code statistics (e.g., unit-test coverage,
code duplications, and documentation and coupling
metrics).

| |

I UJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 11, November 2022)

III. DEPLOYMENT RESULT

1) MET53-J (program understandability) [50]. Ensure
that the clone method calls super.clone(). clone may
call another method that fransitively calls
super.clone().

2) MET55-] (reliability) [36]. Return an empty armray or
collection instead of a null value for methods that
return an array or collection. We check all the return
statements and all the types implementing the
Collection interface.

3) SEC56-J (reliability) [48]. Do mnot serialize direct
handles to system resources. Serialized objects can be
altered outside ofany Java program, implying potential
vulnerabilities. We detect types implementing
Serializable with non-transient fields derived from

system resources such as File, Naming Context and
Domain Manager.

4) DCL56-J (defensive programming) [36], [48], [50]. Do
not attach significance to the ordinal associated with an
enum. Ifthe ordinal method is invoked, this analysis
encourages the programmer to replace it with an
integer field.

5) MET50-J (program understandability) [36], [50].
Avoid ambiguous or confusing uses of overloading.
This analysis detects classes with overloaded methods
with a) the same parameter types in a different order;
or b) four or more parameters in different
implementations.

Source code repostonies

oo

GiAb Sowrcelomge Bewcnet
L J

I ‘g, Compiler | plug-in

—

Connected syntactic & somantic
graph ropresentations

Java ProgQuery

—

Jova source coda

ProgQuery user -
) Y.
k — © Oueries s

Software metncs
Dataset extractions

a A a & AST
L 2 : W Cas g
- *oee o A Type pas
> ® e
.9 .e " &« MO
¢ o ome cG
g +—0—% B Package Geagh

Warming messages
(analyses and
Quidelings |

Code excerpts
(queries)

Data & reports
{software matncs)
Datasets

(datast oxtraction)

S| §ow |

=

Figure 3: Java Analysis Source Code

Tt effectively and efficiently detects common defects that
developers will want to review and comrect. It was designed
to avoid generating false warnings (false positives).
FindBugs implements control-flow and intra-procedural
dataflow analyses. It follows a plug-in architecture that
allows users to write their own analyses (detectors) in Java.
Detectors are commonly implemented with the Visitor
design pattern [31].

Detectors may traverse the AST, type hierarchies and
control- and data-flow graphs. Users can runFindBugs from
the command line, and it provides plug-ins for Eclipse,
NetBeans, Ant and Maven. It also implements a GUI that
supports the inspection of analysis results. Find Bugs does
not store program information in a database. Analysis
results are savedas XML documents.

1IJR

|

DET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 11, November 2022)

package drnﬂlc.mlyms@

class Object interface Clonable

A‘}‘\ll‘ INTERFACE

r

IS SUBTYPE
IMPLEMENTS

s IYiE

class PointlD

Ll

ASS DEF

M

ARRAY TYPE

Polygen(Point20.., pts)

{.-.}

final Pointio]]/
points;
CALLS

ITS.TYPEIS

c#G enTRips (BUOC

| tlass Polygon |

PROGRAM

DEFENDS ON_PACKAGE

PROGRAM DECLARES

PROGERAM DECLARES
= ~PACKAGE

PACKAGE __

package drawable

PACKAGE_HAS
COMPUHATION_UNIT

PACKAGE_HAS
COMPILATION _UNIT

[FlgurelD, Java)
(COMPILATION_UNIT

Palypon. Java
COMPILATION_UNIT

interface Figure2D |

doub e ge!?erlnuem

void clonePoints(|
PointdD|] src, ...)
| O |

.J—.l
MAY BE PaintiD... pts | HAS_ | REFERS
esie g DEF O
MOMFIED
By m AST
NEXT STMT
,}} l.\li- clonePoints(pts, points); | = Call Emph
1 ® Type graph
NEXT_STMT
NEXT_STMT m CFG
IF_TRUE
MODIFIED_BY 8 PDG
throw new i i
:::t‘li‘ Ny, |pointssnes Polntm[nn.lmlthll CFG NORMAL _END . G
)T mows ® Package Graph

USED_BY

@‘ FG_EXCEPTIONAL END

Figure 4: Java Call Graph

CFG also models the exceptional jumps performed by
Java checked exceptions,” and assert and throw
instructions. For that puipose, ProgQuery defines CFG
nodes representing exceptional method termination, and
exceptions handled in a
catchorfinallyblock Forexceptionhandling, thestatic types of
the exceptions thrown and caught are analyzed, connecting
them onlyif they could match at muntime—these kinds of
connections represent may relationships. whereas

NEXT STATEMENI and CFG_ENTRIES represent
must relationships. In Figure 4, the throw statement
represented by m13 is commected to the
CFG_EXCEPTIONAL END node n17 through a must
THROWS relationship, because no catch or finally blocks
are used to handle the exception.

(1]

E)

[4]

I UJRDET

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 11, November 2022)

IV. ConNcLusiON

1) Can the ontology defined in Appendix A be used to
express real static program analyses?

2)Does ProgQuery provide reduced analysis times
compared to existing approaches?

3)Does it provide better scalability for increasing
program sizes?

4)Does it provide better scalability for increasing
analysis complexity?

5)Is it able to perform complex analyses against huge
Java programs in a reasonable time?

6) Can program analyses be expressed succinctly, in a
declarative manner, and using standard query-
language syntax?

7) Are there any drawbacks of our system, compared to
related approaches?

REFERENCES

A W. Appel and J. Palsberg, Modem Compiler Implamentation in
Java, 2nd ed. New York, NY, USA: Cambrnidge Umv. Press, 2003.

R -G. Urma and A. Mycroft, *‘Programming language evolution via
source code Query langnages,”” in Proc. ACM 4th Annu Workshop
Eval. UsabilityProgram. Lang. Tools, New York, NY, USA, 2012,
Pp- 3538,

F. Nielson, H R Nielson, and C. Hankm Principles of Program
Analysis. Cham, Switzerland: Sprmger, 2010.

F. Ortin, J. Escalada, and O. Rodriguez-Prieto. ““Big code: New
opportunities for improving software constmction,” J. Softw., voOl.
11, no0 11, pp 10831088, 2016

X. Wang, D. Lo, J Cheng, L. Zhang, H M1, and J X Tu,
“Matching dependence-related queries in the system dependence
graph,’” m Proc. [EEE/ACM Int. Conf Automated Softw. Eng., New
York, NY, USA, 2010,pp. 457-466.

L6l

7
(8]

o1

[10]
[11]
[12]

[13]

[14]

[15]

N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and T.
Penix, “Using static analysis to find bugs,” IEEE Softw., vol 25,
no. 5, pp. 22— 29, Sep. 2008.

R Tvanov. {(2020). Checkstyle. [Online]. Available:
htips://checkstyle. sourceforge 10
Coverity. (2020). Coverity Scan Static Analysiz [Onhine].

Available: https://scan coverity.com

R-G Urma and A Mycrofi, “‘Source-code queries with graph
databases— With application to programming language usage and
evolution,”’ Sc1. Comput. Program , vol. 97, pp. 127-134 Jan 2015
Google. (2020). Big Query. [Onlne]. Available:
htips://cloud. google com/bigquery

R-G. Unna. (2020). Wiggle. [Online]. Available. hitps:/github.
com/raoulDoc/WiggleIndexer

V. Raychev, M. Vechev, and A. Krause, ‘‘Pradicting program
properties from ‘Big Code.”’ m Proc. 42nd Annu. ACM SIGPLAN-
SIGACT Symp. Princ. Program. Lang., New York NY, USA, 2015,
pp 111-124

Defense Advanced Research Projects Agency. (2014). MUSE
Envisions Mining, ‘Big Code’ to Improve Software Reliability and
Construction. [Onlme]. Available: http://www.darpa.milmews-
events/2014-03-06a,

S. Karamivanov, V. Raychev, and M Vechev, ‘‘Phrase-based
statistical translation of programming languages,”” m Proc. ACM Int.
Symp. New Ideas, New Paradigms, Reflections Program. Softw.,
New York, NY, USA, 2014, pp. 173-184.

F. Yamaguchi, M. Lottmann, and K Rieck, “Generalized
vulnerability extrapolation usmg abstract syntax trees,”” in Proc.
28th Annu. Comput Secur. Appl. Conf, New York, NY, USA
2012, pp. 359-368.

L Java, unchecked exceptions are Runtime Exception, Error and
their subclasses.

