

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 01, January 2022)

14

An Optimization Method for Performing Operation on Map

Reduce
Manoj Saini

1
, Upendra Varshney

2

Department of Master of Computer Application, Compucom Institute of Information Technology and Mangement

Abstract—There is a significant number of data that needs

to be stored and processed nowadays as internet technology

develops quickly. This developing technology generates data,

of which only 20% is structured and 80% is unstructured,

which is known as the "big data dilemma."

Therefore, there is a demand for technologies that can

effectively manage massive data. Large data sets can be

processed in a distributed fashion using the Apache Hadoop

platform. Having two modules in TheHadoop Map Reduce

and the Hadoop distributed file system. The data will be

handled more quickly with Hadoop and an increasing number

of nodes when utilising the hive query language.

This article explores the MapReduce Join operation, which

is used to merge two huge datasets. The process of joining two

datasets begins by comparing their sizes. In this paper, we

proposed a distributed cache, so the smaller dataset is stored

into the cache memory of each mapper node and all the

lookups are performed by mapper to produce a final records.

If one dataset is smaller than the other dataset, then either

Mapper uses the smaller dataset to perform a lookup by

Reducer for matching records from the large dataset and then

combines ethoser records to form output records. Therefore,

by utilising distributed cache, data load will be managed well

at mapper ends, resulting in overall superior performance

compared to regular join.

Keywords—Bigdata, Hadoop, Mapreduce, performance,

Hive, Query Optimization,

I. INTRODUCTION

Big Data is the term used to describe the collection of

data sets that are so complex and massive that they are

challenging to analyse using conventional management or

processing techniques. Volume, Velocity, and Variety are

the three V's that Gartner uses to describe big data in terms

of the resources needed to handle it [1]. Additionally, other

Vs including Validity, Veracity, Visibility, and Value have

been introduced by certain academics to clarify Big Data

Data is processed and analysed using a variety of

applications and tools, including Hadoop, an open-source

Map-Reduce project funded by Yahoo that first appeared in

2006 and is used to process Exabyte or Zettabyte-sized

amounts of data on a cluster of commodity hardware

connected by ethernet cables [3][4].

Hive may be an Apache Foundation data warehousing

tool built on top of the Hadoop distributed framework that

will handle and query data stored in HDFS in a way similar

to that of traditional management systems (RDBMS).

Originally created by Facebook, Hive is currently used and

developed by others business models like Netflix [5]. Hive

also leverages HDFS for storage and provides convenient

data retrieval for users as if they were using a typical

database engine, as the Hadoop distributed file solution has

been the easiest option for parallel, execution, and

aggregating flatfiles [6]. Process unstructured data as if it

were structured using Hive Derby Language (No-RDBMS

schema). Hive processes data and stores it in various

softables and partitions that can be accessed using a

command language exclusive to Hive called HiveQL,

which is quite similar to SQL and is undoubtedly handled

by those familiar with traditional management systems.

Hive being comparatively small Hive is still not in a stable

condition, therefore query optimization may be a topic that

comes into emphasis for young projects. As a result,

developers are improving the performance of Hive at this

development stage. Performance of any database engine are

often measured by its reaction time and amount of labour

done by it. At an equivalent time, this language also allows

programmers who are familiar with the MapReduce

framework to plug in their own mappers and reducers

programmes to perform more sophisticated analytical tasks.

II. LITERATURE REVIEW

Hadoop may be a widely used open-source map-reduce

implementation for storing and processing extremely big

datasets, but using Hadoop is difficult for end users,

especially for those who are unfamiliar with the map-

reduce methodology. Users must build map-reduce

algorithms even for simple tasks like obtaining raw

numbers or averages. Users may easily query, summarise,

and analyse Big Data with SQL-like expressions called

HiveQL thanks to Apache Hive, which supports a number

of file formats for data input and export to and from the

storage filing system. Hive's goal is to make processing

petabytes of data simple and effective. Unlike RDBMS,

Hive stores data throughout time.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 01, January 2022)

15

Document-based structures that use joins have poor

performance and use a lot of resources. However, by

correctly setting Hive, it is possible to improve

performance for the relational data. In this study, we

employ a number of optimization strategies to improve

query performance and assess the outcomes to reflect their

impact on the outcome.

According to [2], distributed Big Data storage,

specifically Hadoop, has attracted more attention than ever

due to the development of ever-expanding online services,

and as a result, fundamental criteria like fault tolerance and

data availability have become a worry for these platforms.

In Big Data applications, data replication strategies are

moving toward dynamic techniques based on the

recognition of files. The dynamic replication factor's

formulation made it possible to address the issues it had

caused

But from the empirical facts, it can be inferred that file

popularity is temporary rather than permanent in nature

and, after a given period, content's popularity ceases most

of the time, introducing the I/O bottleneck of updating

replication inside the disc.

In [3], indexing offers quick searching over large

amounts of data. It is a data structure strategy to effectively

retrieve entries from database files supported by some

indexing-related features. With the assistance of indexing,

queries typically lead to much better results.

Performance oriented data ware houses software. We

will carry out the work of query processing and data

analysis with the aid of hive. Hive is well-liked because it

supports the majority of SQL procedures in electronic

database administration systems. Many query optimization

strategies have focused on improving database system join

performance. As a result, this study has two goals: first, we

develop the index-based join technique and integrate it into

Hive, and second, performance is predicted after

performing the join operation.

III. PROBLEMDEFINITION

To store, retrieve, and analyse big data effectively, a

relational database is used. The relational database used is

the Hadoop architecture, which includes Hive, HDFS, and

MapReduce. The queries must be executed, and the

execution times are recorded, after the data has been placed

into the HDFS storage space offered by Hadoop. A

database schema must also be constructed, and the data

must be loaded into the database utilised by Hive, which

offers an interface for the SQL-like syntax.

On large-scale data clusters, MapReduce is a well-liked

programming paradigm for carrying out time-consuming

analytical queries as a variety of tasks.

Many chances for sharing scan and/or joincomputation

tasks might exist in contexts where numerous queries with

comparable selection predicates, commutables, and join

jobs arrive simultaneously. As a result, overall performance

suffers.

IV. CONCLUSION

In this paper, we proposed a distributed cache where the

smaller dataset is stored into cache memory of each mapper

node and allthe lookups are performed by mapper to

produce a finalrecords. By using distributed cache we

didn't use reducer means data load would be managed.

REFERENCES

[1] MelihGunay; M. Numan Ince; Alper

Cetinkaya’“ApacheHivePerformanceImprovementTechniquesforRel

ational Data” in IEEE 2019.

[2] Pinchao Liu, Adnan Maruf, Farzana Beente

Yusuf,LabibaJahan,HailuXu,BoyuanGuan,LitingHu,Sitharama S.
Iyengar “Towards Adaptive Replication forHot/Cold Blocks in

HDFS using MemCached” in IEEE2019.

[3] Akshay Kumar Suman,
Dr.ManasiGyanchandani“ImprovedPerformanceofHiveusingIndex-

BasedOperationon BigData” in IEEE 2018

[4] http://www.hadooptpoint.com/introduction-hive/

[5] Yue Liu1,6,7 , Songlin Hu1 “DGFIndex for

SmartGrid:EnhancingHivewithaCost-
EffectivemultidimensionalRangeIndex”40thInternationalConference

on Very Large Data Bases, September 1st -5th2014, Hangzhou,

China.

[6] ANTLR[Online].Available:http://www.antlr.org/

[7] An, M., Wang, W., Wang, Y., “Using Index in theMapReduce
Framework, ”, 12th Intl. Asia Pacific WebConf.(APWEB),Beijing,

China,2010, pp.52-58

[8] Dean,J.,Ghemawat,S.“MapReduce:SimplifiedDataProcessingonLarg

eClusters,”Mag.Commun.ACM50thanniversary,vol.51,issue1,2008,p

p.107-113

[9] Capriolo,E.,Rutherglen,J.,Wampler,D.ProgrammingHive:DataWareh

ouseandQueryLanguagefor Hadoop,1sted, O'ReillyMedia,2012

[10] TPC-H[Online].http://www.tpc.org/tpch/

[11] HIVE 1694[Online].

 Available:https://issues.apache.org/jira/browse/HIVE-1694

[12] Hiveindexdesigndoc[Online].Available:https://cwiki.apache.org/conf

luence/display/Hive/IndexDe

[13] HiveJIRA[Online].Available:https://issues.apache.org/jira/browse/H

IVE

[14] HIVE-1644 [Online].

Available:https://issues.apache.org/jira/browse/HIVE-1644

[15] N.Jain,L.Tang,“JoinstrategiesinHive”,Facebook,Rep.

Hadoopsummit2011,2011 [Online].

[16] Li,Z.,Ross,K.
A.“Fastjoinsusingjoinindices”,inTheInternationalJournalonVeryLarg

eDataBases,vol.8, issue 1,1999, pp.1–24

http://www.hadooptpoint.com/introduction-hive/
http://www.antlr.org/
http://www.tpc.org/tpch/

