

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 10, Issue 8, August 2021)

8

A Generalized Time Based Compression with Differential

Method Compared with ASCII
Sushil Kumar

1
, Dr. Anoop Kumar Chaturvedi

2

1
Research Scholar,

2
Prof., LNCTU, Bhopal, India

Sushil.tit@gmail.com,anoop.chaturvedi77@gmail.com

Abstract-- Now days it is very tedious job to keep files for

personal as well as commercial computing. There are various

type of compressing technique used, but one step ahead from

them available technique is described here. Almost every

application the backend used is database. That why my

technique is dedicated to this type of databases. In this

proposed technique we consider every type of compression,

but when comes to date and time based database, not much

compression technique deals with it. For text type

compression there are many techniques same for images. But

here we are proposing mainly for time and date type data

bases. The practical use for this compression may useful for

LIC policies, Stock Exchange, Railways Reservations

databases etc. It may also useful for Employees working in a

firm, maintaining daily database for salary purposes like

Time in and Time out. For this type of database the proposed

technique will give a big amount of compressions than any

other type of techniques. We have techniques regarding

database compression are character, memo, number, date,

time compression which can work for individual fields in a

database. In this paper main concentration has been given for

time compressions. We suggested one example in tabular form

on that our differential and time method has been applied.

Keywords--Compression, Compression Ratio, Compression

factor, Fixed Length Coding (FLC), Huffman after using

Fixed Length Code (HFLC), LZW(Lampel Ziv Welch), Lossy

Compression, Nonlossy Compression, RLE (Run Length

Encoding), Saving Percentage, Temporal Database.

I. INTRODUCTION

As Compression is known as, it is art of presenting the

information in a compact form rather than of uncompressed

form. There are various compressions proposed but for

particularly date and time very rare one. In this type of

compression a substantial amount of memory can be saved.

Our methodology will compress even more than earlier

available compression types. What we are proposing it can

be implemented on any type of software. It does not require

any special type of software. What our methodology is, it

can use daily today life, as we said in abstract it very much

used in different types of databases.

We have taken one example of employee time in and

time out, which is all most every organizations are using in

today computer era. Because it is very easy to keep track of

all employee working under one organization.

Many compression techniques available are Run Length

Encoding, Huffman Encoding, Lempel Zev Welch,

Different Dictionary Based Compression, Delta and

Differential Compression, Fixed Length Code, Burrow

Wheeler Transform, Move to Front Technique, Word based

Text Compression, Pattern Matching in Compression Form

etc. some of them are described here [19].

1.1 RLE

If a data item d occurs n consecutive times in the input

stream, replace the n occurrences with the single pair nd.

The n consecutive occurrences of a data item are called a

run length of n, and this approach to data compression is

called run length encoding or RLE [18, 20].

1.2 Huffman Encoding

It uses the probability distribution of the alphabets of the

source to develop the code word for symbols. According to

the probabilities the code word has been assigned. Shorter

word code words for higher probabilities and longer code

words for smaller probabilities are assigned. For this type

of work binary tree is created using the symbols as leaves

according to their probabilities and path of those are used

as code words. There are two types of Huffman Family are

used: Static Huffman and Adaptive Huffman. In static

coding first frequencies and then it generates a tree for both

compression and decompression process. But adaptive

method develops the tree while calculating the frequency

and there will be two trees in both the process [22, 23].

1.3 Shannon Fano Coding

This is similar to Static Huffman Coding only difference

is the creation of code word. All other process is similar

one [20].

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 10, Issue 8, August 2021)

9

1.4 LZW

LZW is a general compression algorithm capable of

working on almost any type of data. It is generally fast in

both compressing and decompressing data and does not

require the use of floating-point operations. Also LZW

writes compressed data as bytes and not as words [20].

LZW is referred as a substitution or dictionary-based

encoding algorithm. The algorithm builds a data

dictionary (also called a translation table or string table) of

data occurring in an uncompressed data stream. Patterns of

data (substrings) are identified in the data stream and are

matched to entries in the dictionary. If the substring is not

present in the dictionary, a code phrase is created based on

the data content of the substring, and it is stored in the

dictionary. The phrase is then written to the compressed

output stream.

Data Compression technique on text Files: A

comparison study has been done by Haroon Altarawneh et.

al., he has taken different methods of data compression

English text files, LZW, Huffman, Fixed Length Coding

(FLC) and Huffman after using Fixed Length Code

(HFLC). He evaluated a test on these algorithms on

different text files or different file sizes and taken a

comparison in terms of comparison: Size, Ratio, Time

(Speed) and entropy. And they found that LZW is the best

algorithm in all the compression scales.

According to them LZW is a general compression

algorithm capable of working on almost any type of data. It

creates a table of strings commonly accruing in the data

being compressed, and replaces original data with reference

into the table. LZW Compression replaces strings of

characters into a single code. Compression occurs when a

single code is output instead of a string of characters. It

starts with a dictionary of all the single character with

indexes. It starts expanding the dictionary as information

gets send through. Pretty soon, redundant strings will be

coded as a single bit, and compression has occurred [23].

II. MEASURING PERFORMANCES OF COMPRESSION

There are various criteria of measuring the performance

of the compression depends on the nature of the application

used. Mainly it is used for space the time efficiency is other

factor. As we all know that the compression behavior

depends on the redundancy of symbols in the source files.

It is very difficult to measure performance of compression

in general. The performance of the algorithms depends on

structure of the input source and also category of the

compression algorithms i.e. lossy or lossless. For example

lossy and lossles examples are given in my previous

paper [15].

The measuring of general performances is difficult and

there should be different measurements to evaluate the

performances of different compression techniques.

2.1 Compression Ratio:

It is the ratio between the size of the compressed file and

the size of the source file [7].

 Size after compression

Compression Ratio =

 Size before compression

2.2 Compression Factor:

It is just reverse of the compression ratio. That is ratio

between the size of the source file and the size of the

compressed file.

 Size before compression

Compression Factor =

 Size after compression

2.3 Saving Percentage:

It calculates the shrinkage of the source file as a

percentage.

 Size before compression - size after compression

Saving Percentage = %

Size before compression

All the above methods evaluate the effectiveness of

compression using file sizes. There are some other methods

to evaluate the performances of compression algorithms

like Compression time, Computational Complexity and

Probability Distribution are also used to measure the

effectiveness [20].

DATA Compression is the science and art of

representing information in a compact form.

The data may also classified as text, audio, image and

video while the real digital data format consists of 0‟s and

1‟s in a binary format

 Text data are usually represented by 8-bit extended

ASCII code or EBCDIC having extension .txt, .tex,

.doc.

 Binary data include data base file spreadsheet data,

excitable files and program codes having extension as

.bin.

 Image data are represented often by a two

dimensional array of pixels in which each pixel is

associated with its color code having extension as

.bmp, and .psd.

 Graphics data are in the form of vectors or

mathematical equations, for example data format is

.png (portable network graphics).

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 10, Issue 8, August 2021)

10

 Sound data are represented by a wave function having

extension as wav [7].

III. PROPOSED NEW METHODOLOGY

 Characters can be coded into 5-bits coding.

 Memo can be coded into 6-bits coding.

 Dates can be coded into 16-bits coding.

 Time can also be coded into 16-bits coding [15].

IV. IMPLIMENTATION OF PROPOSED METHODOLOGY

We have proposed some new techniques that can be

implemented as given below:

4.1 Character

In general 8-bit ASCII code have been used for

representing character, but when one declare any attribute

to be of character type they often interested only in

alphabet character from A-Z or a-z. But with character

some more information is needed while dealing with

character like space, end of line, comma, full stop, single

codes, and nothing. These all will counts only 32 in number

and that can be coded in 5-bit coding only [7].

4.2 Memo

The memo field often includes character other than

alphabets like number underscore plus minus etc. and it is

found that at most 64 symbols are used in general so in this

situation 6 bits are sufficient to represent them. Out of these

32 are the same as that in the previous case and remaining

32 are used for numbers 0 to 9 and special characters like

“”, !, @, #, $, ^, &, *, (,), -, _, =, +, <, >, ?, /, :, ;, |, \. So in

this way 64 symbols can be accommodated in 6-bit coding

only [7].

4.3 Number

An attribute having this type is often used to represent

certain quantity or amount or extent that anything may

have. It can be either the integer or float depending upon

the nature or accuracy of the quantity.

By far the most compact and exact representation of this

type of data is their own binary equivalent. But it has found

that of the following method, which can take advantage of

nature and format of the quantity.

Differential Method, Delta Method, BCD Code [15].

4.3.1 Differential Method

In this approach when one wants to compress this type

of data we can either look out for the smallest or largest

value for this attribute, and store this value together with

the table structure.

Now the original value could be represented as the

difference between the original value and this value, which

in fact will be less than the original quantity, if the values

are distributed in a linear fashion. For example if it has the

following values like755, 762,792,720,725,789 then if one

choose 720 as the base value and store it together with the

attribute definition in the table structure, then the original

data will be stored as 35,42,72,0,5,69 much less than the

original one. Now during the query processing these values

could be used directly without any additional processing if

the query is being modified to process them.

4.4 Date

Date field is often associated with temporal database,

and most often used inside the data ware house, that

contains historical information about any aspect of life.

Most database store the date as 8-byte entry (2 for day, 2

for month & 4 for year). Here we have proposed only 2-

byte format that works with traditional DOS and

WINDOW environment [7].

4.5 Time

The usual ways of storing a time stamp of any event

require 6-byte and implemented in that manner in most of

the database systems. But here again we could save

substantial space by representing a time stamp in a manner

that require only 2-byte for its storage that used in DOS and

WINDOW. The Bit-wise distribution of Hour, Minutes &

Second is shown below.

H H H H H M M M M M M S S S S S

The time can be converted into a 2-byte value using the

following formula.

Time = 2048*HOUR+32* MINUTE + SEC/2.

This scheme is quite common in traditional MS-DOS

file system where second value is measured in two-second

interval. If we want to be more precise we have to add one

more bit to accommodate second entry because 6 bits are

required to represent 60-second domain. We will take the

first mentioned scheme to represent time of any event.

Let we have a time value of 16:40:24 in HH: MM: SS

format, applying this to formula.

We get time = 34060 and its binary equivalent is:

1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

Hour Minutes Second

So in this way we can represent this time stamp. Now to

get each of these separately we have to perform the bit wise

shift operation in the following way. In this field 1952

could be used for temporal variable and 1984 for NULL

value.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 10, Issue 8, August 2021)

11

Hour: Right shift the entry by 11 Bit position.

Minutes: Left shift by 5-Bit position followed by right shift

of 10 times.

Second: Left shift by 11-bit position followed by right shift

of 11 times and multiply it by 2.

There is one problem it counts in 2 seconds intervals,

other than that it works efficiently like other environments.

V. RESULTS AND EVALUATION OF PROPOSED

METHODOLOGY

We have taken some 25 employee records on one day

attendance from an organization. Now apply on that the

different compressions which are proposed in this paper

above. In below table we have applied Differential

Compression for numbers and Time Compression on both

Time fields and also calculated the number of bits before

compression and after compression. Below the table we

have calculated the total number of bits before compression

and after compression. One can see that original size i.e.

ASCII size in bits is 3000. But the same file size has been

compressed to 1064 bits. The same comparison is also can

be seen graphically given below. In modern database

systems table structure is also stored together with the

database file so that any application can make use of it.

When we consider this compression scheme we will store

this structure without any modification, it is only the data

that will be stored according to this new scheme. The file

also store some additional words like field separator, end of

record to mark and distinguish separate attribute and

record, and these will be there in proportion to the number

of records in the file.

From table1 the compression ratio, compression factor

and saving percentage can be found as below:

Compression Ratio = 1064/3000 = 0.035467.

Compression Factor = 3000/1064 = 28.19548.

Saving Percentage = (3000 – 1064) / 3000 = 0.6453 =

64.53 %.

It means there is saving in memory is 64.53. Through

graph shown below is also giving the clear picture of

saving a drastic difference between original size and

compressed size. The blue one is before compression i.e.

full coverage of graph, but the red one is only compressed

one. So after compression only this much area of storage is

required and it is very less, only 100 – 64.53 = 35.47 % of

original size.

Table1.

List of employees for one day attendance

Emp

loyee

ID

Time in Time out Original

size

(Bits)

Compressed

size (Bits)

136 08:30:00 16:30:55 120 44

101 08:35:09 16:20:34 120 38

134 08:37:07 16:10:02 120 44

108 08:39:58 16:10:00 120 38

112 08:45:09 15:55:56 120 44

109 08:45:03 16:40:09 120 38

138 08:46:00 16:30:34 120 44

135 08:47:34 16:50:55 120 44

100 08:47:39 16:00:02 120 38

111 08:48:00 16:01:59 120 44

137 08:48:34 16:02:02 120 44

103 08:48:35 16:10:00 120 38

195 08:48:36 16:34:00 120 44

128 08:48:37 16:01:11 120 44

104 08:49:45 16:55:09 120 38

124 08:50:02 16:20:00 120 44

142 08:51:00 16:21:00 120 44

178 08:52:54 16:04:04 120 44

129 08:52:55 16:04:05 120 44

159 08:53:09 16:06:59 120 44

192 08:53:10 16:12:12 120 44

184 08:53:11 16:11:16 120 44

189 08:53:57 16:00:58 120 44

156 08:54:49 16:23:12 120 44

174 08:55:46 15:56:57 120 44

 TOTAL 3000 1064

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 10, Issue 8, August 2021)

12

VI. CONCLUDING REMARK

In our paper we have taken original size of Employee

record. On that our proposed methodology has been

applied. We have presented a very new compression

technique for temporal database. Our technique will give

better results, so that the proposed technique has better

performance. The CPU utilization will also increases due to

compression. Also compression is beneficiate for Input and

Output performance. The graph above fig.1 will give the

clear picture of compression. The red colour area is only

required after compression rest can be saved. In

comparison to blue area red is much smaller, it shows

better compression.

REFERENCES

[1] A.S. Tanenbaum “Computer Network” (Fourth Edition Prentice-Hall

of India Limited).

[2] Cormack, G. V. 1985. “Data Compression on a Database System”.
Commun. ACM 28 12, (Dec.), 1336-1342.

[3] Debra A. Ielwer and Daniel S. Hirschberg “Data Compression” –
IEEE JUNE 2002.

[4] Navathe S.B, Elmasn R. “Fundamentals of Database System”

(Pearson Education).

[5] Pujari. A. K “Data Mining Technique” (University Press).

[6] Reghbati, H.K “An Overview of Data Compression Technique”
IEEE computer (1981).

[7] Saloman D. “Data Compression the Complete Reference” Springer,
3rd Edition (2004).

[8] William Stallings, “Network Security Essentials Application and

Standard” (Pearson Education)

[9] Holger Kruse, Amar Mukherjee, “Data Compression Using Text

Encryption” FL 32816 Page No. 1068-0314/97 Years 1997 IEEE
Department of Computer Science University of Central Florida

Orlando, 32816.

[10] En-hui Yang and John C. Kieffer, “On the Performance of Data
Compression Algorithms Based Upon String Matching” Fellow

IEEE, IEEE TRANSACTIONS ON INFORMATION THEORY,

VOL, 44, NO. 1, JANUARY 1998 0018-9448 1998 IEEE.

[11] Ming-Bo Lin, Member and Yung-Yi Chang, “A New Architecture of

a Two-Stage Lossless Data Compression and Decompression
Algorithm” IEEE TRANSACTIONS ON VERY LARGE

SCALEINTEGRATION (VLSI) SYSTEMS, VOL, 17, NO, 9,

SEPTEMBER 2009 1063-8210 Years 2009 IEEE.

[12] „N. Magotra‟, W. McCoy‟, S. Stearns‟ Dept. of EECE, “A Lossless

Data Compression In Real Time F. Livingston.” University of New
Mexico, Albuquerque, NM 87131: Dept, 9311, Sandia National

Laboratory, Albuquerque, NM 87185 1058-6393/95 year 1995

IEEE.

[13] Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D.

Flouris, and Angelos Bilas, “ZBD: Using Transparent Compression

at the Block Level to Increase Storage Space Efficiency”,
Foundation for Research and Technology – Hellas (FORTH), P.O.

Box 2208, Heraklion, GR 71409, Greece, 978-07695-2/10, © 2010

IEEE.

[14] Ming-Bo Lin, Member, IEEE, and Yung-Yi Chang, “A New

Architecture of a Two-Stage Lossless Data Compression and
Decompression Algorithm”, 1063-8210, ©2009 IEEE.

[15] Sushil Kumar, Dr. Sarita S. Bhadauria, Dr. Roopam Gupta, “A

Digital Compression Scheme Using Delta and Differential
Methods”, IJCA (0975-8887) Volume 25 – No.7, July 2011, page

No. 18 – 25.

[16] Senthil Shanmugasundaram, Robert Lourdusamy, “IIDBE: A

Lossless Text Transform for Better Compression” International

Journal of Wisdom Based Computing, Vol. 1 (2), August 2011, Page
No. 1 – 6.

[17] Tanakorn Wichaiwong, Kitti Koonsanit, Chuleerat Jaruskulchai, “A
Simple Approach to Optimized Text Compression‟s

Performance” 4th International Conference on Web Services

Practices, IEEE Computer Society, 978-0-7695-3455-8/08, Page no.
66 – 70.

[18] M. Baritha Begum, Dr. Y. Venkataramani, “An Efficient Text

Compression for Massive Volume of Data” IJCA (0975 - 8887),
Volume 21 – No. 5, May 2011, page No. 5 – 9.

[19] Md. Nasim Akhtar, Md. Mamunur Rashid, Md. Shafiqul Islam,
Mohammod Abul Kashem, Cyrll Y. Kolybanov, “Position Index

Preserving Compression for Text Data” JCS&T Vol. !! No. 1, April

2011, Page No. 9 – 14.

[20] S. R. Kodituwakku, U.S. Amarasinghe, “Comparison of Lossless

Data Compression Algorithms for Text Data” IJCSE Vol. 1 No. 4

416-425, ISSN : 0976-5166, Page No. 416-4125.

[21] Rexline S. J, Robert L, “Dictionary Based Preprocessing Methods in

Text Compression – A Survey” IJWBC, Vol. 1 (2), August 2011,
Page No. 13-18.

[22] Umesh S. Bhadade, Prof. A. I. Trivedi, “Lossless Text Compression

using Dictionaries” IJCA (0975 - 8887) Volume 13- No. 8, January
2011, Page No. 27-34.

[23] Haroon Altarawneh, Mohammad Altarawneh, “Data Compression
Techniques on Text Files: A Comparison Study”, IJCA (0975 -

8887) Volume 26- No.5, july2011.

