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Abstract—Accurate definition of pathological regions in 

medical images is essential for diagnosis and staging of a 

disease, as well as planning and monitoring the response to 

treatment. For example, total lesion load computed from 

segmented multiple sclerosis (MS) lesions in magnetic 

resonance imaging (MRI) is a key indicator of MS 

progression. Fully automatic segmentation methods with 

sufficient accuracy have yet to emerge and medical 

professionals still spend large amounts of time manually 

outlining 2-D cross sections of the 3-D target regions. This 

paper introduces two new statistical shape models (SSMs) that 

combine radial shape parameterization with machine learning 

techniques from the field of nonlinear time series analysis. We 

then develop two dynamic contour models (DCMs) using the 

new SSMs as shape priors for tumor and lesion segmentation. 

From training data, the SSMs learn the lower level shape 

information of boundary fluctuations, which we prove to be 

nevertheless highly discriminate. The above given approach is 

efficient but not effective in case of exact boundary detection 

of the Lesion for the given input. Thus to increase the 

efficiency and sensitiveness of the current system, the 

development of a PVA quantification scheme that is tuned 

specifically for MRI with Lesion.PVA is initially modeled with 

a localized edge strength measure since PVA resides in the 

boundaries between tissues. This map is computed in 3-D and 

is transformed to a global representation to increase 

robustness to noise. Significant edges correspond to PVA 

voxels, which are used to find the PVA fraction α (amount of 

each tissue present in mixture voxels).The method computes 

the volume of lesions with subvoxel precision by accounting 

for partial volume averaging (PVA) artifact. This technique 

does not require any distributional assumptions/parameters 

or tr aining samples and is applied on a single MR modality, 

which is a major advantage compared to the traditional 

methods. 

Keywordsð ctiveshapemodel, biomedical imageprocessing, 

image segmentation, machine learning, stochastic processes. 

I. INTRODUCTION 

Accurate deýnition of pathological regions is that in a 

medical image is essential for diagnosis and staging of a 

disease, as well  as planning and monitoring the response to 

treatment. For example, total lesion load computed from 

segmented multiple sclerosis (MS) lesions in magnetic 

resonance imaging (MRI) is a key indicator of MS 

progression [1] and the precise size, position and shape 

of liver tumors are essential for targeting radiotherapy to 

the right locations and dosage [2]. 

Fully automatic segmentation methods with sufficient 

accuracy have yet to emerge and medical professionals 

still spend large amounts of time (months or years of 

researcher time in large clinical trials) manually outlining 

2-D cross sections of the 3-D target regions. This practice 

may be guided by simple edge seeking algorithms or the 

visualization of an adjustable intensity threshold, but 

statistical shape models (SSMs), which have led to vast 

reductions in error and user burden in the inter-active 

segmentation of whole organs and bones, have not 

translated into applications of tumor and lesion 

segmentation. 
Standard SSMs, based on the PDM popularized by 

Cootes et al. [3], represent an object boundary by an ordered 

list of position vectors that correspond to the same position 

among all example shapes. This places restrictions on the 

class of shape, as boundaries must bare speciýc features 

or ñlandmarksò that correspond between all examples. 

This is not the case for pathological lesions in medical 

images because of how they form in the host tissue. 

Tumors form through abnormal proliferation of cells due to 

genetic mutations. The process is random [4]ï[6] and may 

be constrained to some extent by surrounding structures. A 

key pathology of MS is the formation of localized lesions 

in white matter of the brain. Lesions can form anywhere in 

white matter and, like tumors; have no common features on 

their boundaries. 
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Other SSMs do not use explicit correspondence 

points but share the assumption of spatial 

correspondence through the use of shape alignment. 

Recently, Cremers et al. [12] used statistical shape 

priors in their segmentation algorithm, which do not use 

explicit correspondence points. However, their models 

use an implicit shape representation rather than 

parametric shape boundaries. This removes the need for 

explicit correspondence points but training shapes are 

still  implicitly aligned and the models maintain the 

assumption of correspondence. 
Because of their lack of shape models, state-of-

the-art methods for the segmentation of pathological 

regions are characterized by their image models that locate 

region boundaries based on intensity distributions and 

texture. The state of the art is well represented by the 

recent ñsegmentation challengeò experiments organized by 

the society for Medical Image Computing and Computer 

Assisted Intervention (MICCAI) , for the chosen 

applications of segmenting MS lesions in MRI [13] and 

liver tumors in computed tomography (CT) [14]. For MS 

lesions, the most promising methods use a pipeline of 

contrast enhancement, thresholding and morphological 

operations [15], a probabilistic classiýer based on k-

nearest-neighbor (KNN) clustering in a feature space that 

exploits multimodality imaging [16] and the treatment of 

pathological voxels as outliers to intensity distribution 

models [17]. Among these and the rest of the methods in the 

challenge [18], no shape models are attempted for the 

lesions themselves, whereas atlas-based models of the 

anatomical structures in the brain aid the location of lesions 

in [16], [17]. For li ver tumors in CT, the state of the art 

incorporates image processing steps such as gradient 

ýltering and the calculation of intensity statistics/texture 

features. The most accurate method in the challenge 

combined gradient information derived from the 

watershed transform with constraints of nearby voxel 

similarity introduced by graph-cut and Markov random 

ýeld (MRF) algorithms. 

II. LANGEVIN AND GAUSSIAN PROCESS SSMS 

This section introduces a new class of SSMs, which 

combine radial time series representations with standard 

models of dynamic processes.  

We present two examples, based on Langevin and 

Gaussian process models, which we call the 

LangevinSSM (LSSM) andGaussianprocessSSM . 

The methods use points defined at regular arc-length 

distances from a starting point  on a boundary. 

In the absence of consistent features, the method in 

defines  relative to an unrelated anatomical land- 

mark outside the tumor. The method in exploits the 

automatic training algorithm in to optimize for  

during ñalignmentò of the training shapes. In both cases 

the starting point and therefore all  are arbitrary and 

correspondence is merely implicit. Other examples of 

automatic alignment remove the inaccuracy and time 

consumption associated with manual land marking and 

can in principle be used on shapes from any application. 

However, while these methods may assist in model 

training, their goals differ from our own by seeking to 

align training data and therefore assuming correspondence. 

To understand the motivation for semiautomatic methods, it 

is useful to look at the two extremes of fully automatic and 

fully  manual methods. Fully automatic methods can 

produce the same result for repeated segmentations. The 

removal of variability  can make automatic methods more 

reliable for use in longitudinal studies, but places more 

demand on the results themselves.  In theory, the results of 

automatic methods are not affected by the user.  However, 

in practice the unique segmentation presented by automatic 

procedures often requires post editing before the user is 

satisfied with the results. Other SSMs do not use explici t 

correspondence points but share the assumption of spatial 

correspondence through the use of shape alignment. 

Recently, Cremers et abused statistical shape priors in their 

segmentation algorithm, which do not use explici t 

correspondence points. However, their models use an 

implicit shape representation rather than parametric shape 

boundaries. This removes the need for explicit 

correspondence points but training shapes are still 

implicitl y aligned and the models maintain the assumption 

of correspondence. 

Because of their lack of shape models, state-of-the-art 

methods for the segmentation of pathological regions are 

characterized by their image models that locate region 

boundaries based on intensity distributions and texture.  
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The state of the art is well represented by the recent 

ñsegmentation challengeò experiments organized by the 

society for Medical Image Computing and Computer 

Assisted Intervention (MICCAI) , for the chosen  

applications  of  segmenting  MS  lesions  in MRI  and 

liver tumors in computed tomography (CT).  For MS 

lesions, the most promising  methods  use a  pipeline of 

contrast enhancement, thresholding and morphological 

operations,  a  probabilistic  classifier  based  on  k-

nearest-neighbor (KNN) clustering in a feature space that 

exploits multimodality imaging and the treatment of 

pathological  voxels as outliers to intensity distribution 

models. Among these and the rest of the methods in the 

challenge, no shape models are attempted for the lesions 

themselves, whereas atlas-based models of the anatomical 

structures in the brain aid the location of lesions. For 

liver tumors in CT, the state of the art incorporates 

image processing steps such as gradient filtering and 

the calculation o f  intensity statistics/texture features. 

The most accurate method in the challenge combined 

gradient information derived from the watershed 

transform with constraints of nearby voxel similarity 

introduced by graph-cut and Markov random field 

(MRF) algorithms.  Among these and the rest of the 

methods in the challenge, one introduced a low-level 

shape constraint by penalizing the deviation o f  contours 

from elliptical form. However, this is not a learned 

shape prior and the method gave the lowest accuracy. In 

summary, shape modelling is lacking from the state of 

the art of pathological lesion segmentation due largely 

to their unpredictable form, and as we learn from 

nonpathological regions where the PDM is applicable, 

global shape priors benefit  segmentation 

2.1 Langevin and Gaussian Process SSMS 

This section introduces a new class of SSMs, which 

combine radial time series representations with standard 

models of dynamic processes. We present two examples, 

based on Langevin and Gaussian process models, which 

we call the Langevin SSM (L-SSM) and Gaussian process 

SSM (GP-SSM), respectively. We fi rst explain how to 

construct time series from contours, then present training, 

classification and generative methods specific to each 

method. 

 

2.2 Radial Time Series 

One family of shape models represents an object 

boundary as a vector of N radial distances 

  measured from a fixed location 

 inside the shape. We refer to this 

parameterization generally as a radial time series, where 

specific types differ by the independent variable that 

ñtimeò represents.  One example (used by, e.g., uses the 

boundary arc-length s,  and we denote this model by 

 

The arc-length parameterization can represent any 2ïD 

shape another parameterization (used by, e.g., [35]) uses 

the angle  between radial vectors, and we denote this 

model by  

 

The polar representation in (2) is limited to the ñstar-

shapedò set of shapes, requiring that any radial vector 

intersects with the boundary only once. Despite this 

limitation, star-shaped models are sufficient in many 

medical applications and star-shaped lesions make up 80% 

of the cases in typical MS lesion and liver tumor data 

sets. 

2.3 Training Data 

Training data consist of closed boundaries like the one 

in Fig. 1 stored as lists of pixel locations . For each 

training shape, we automatically define an internal point  

to represent a shapeôs center as follows. For   , we take 

the internal point having maximum closest distance to any 

of the boundary pixels. In the star-shaped case, , we 

first identify the internal points from where all boundary 

points are visible. If no such points exist we omit the 

contour from the star-shaped set, otherwise we compute  

 from the centroid of all such points. We then measure 

radial distances to points around the boundary to form 

 in (1).  
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For star-shaped boundaries (around 80% of our data) 

we also form  as in (2) and Fig. 1 We therefore 

have two data sets, one for each of the two 

parameterization. One contains only star-shaped 

boundaries and the other contains all boundaries. 

For the new models it is convenient to work with 

series in a zero-mean field, meaning that each radius is 

measured from a mean or typical radius. For this 

purpose, we represent each radius  as a difference 

from a central radius  that estimates the mean of the 

hypothetical series as . We use the midpoint 

 between the minimum and 

maximum radius in a series.  

Subtracting  from a series translates it into the 

approximate zero-mean field as in Fig. 1 we separately 

store   as a scale parameter. Finally, we resample all 

training series to the same angular or arc-length resolution 

by fixing N at the maximum number of points of any 

contour in the training set (94 for MS lesions and 279 for 

liver tumors). The risk of over- sampling for smaller 

contours in the set is acknowledged but its impact on the 

models is not apparent. Note that the models could be 

made scale invariant at this stage, either by dividing all 

radii by the scale parameter  or by normalizing 

radial time series to a fixed range such as  

 

 

2.4 Langevin SSM (L-SSM) 

The retinal vasculature appears as piecewise linear 

features, with variation in width and their tributaries visible 

within the retinal image. The concept of employing line 

operators for the detection of linear structures in medical 

images which is modified and extended incorporate the 

morphological attributes of retinal blood vessels. 

2.4.1 Langevin Models 

Langevin models give a statistical description of the 

dynamics of a time-dependent state vector v(t) as a 

stochastic process and are characterized by a deterministic 

part  known as the drift function and a stochastic 

part  known as the diffusion function.  

Switching to the 1-D case of radial time series with 

state variable r, the Langevin equation is written 

 

Where  denotes the independent ñtimeò 

variable (i.e.,  s or  ) and   is uncorrelated  time-

dependent  noise of  expectation zero. Langevin models 

assume a Markov property, encoded in the transition 

density 
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Where  is a constant delay parameter. The 

transition density evolves according to a FokkerïPlanck 

equation. The first and second conditional moments in the 

FokkerïPlanck equation, de- noted  and  by 

convention, relate to the Langevin drift and diffusion 

functions by 

 

and 

 

2.4.2 Offline Learning 

The L-SSM learns the form and parameters of   

and from training data using a scheme adapted 

from the direct estimation method of Friedrich et al., 

which estimates drift and diffusion functions from a 

discrete approximation of how the ransition densities 

vary as a function of the state variable. The method in 

requires that a single series contains enough data for 

reliable estimation of   and . For L-SSMs, training 

shapes provide multiple short series rather than a single 

long one. We consider each radial time series as an 

instance of the same underlying stochastic process, so our 

algorithm estimates each conditional probability  

from their global statistics. Also, where the trajectory 

 overshoots the end of a series at 

 we use trajectories that wrap around to the 

beginning of the series without loss of generality as a radial 

time series de- rived from closed boundaries is periodic.  

2.5 Uses in Supervised Segmentation 

Supervised   segmentation    is    initialized    by    a    

single mouse-click to provide an estimate  of the shape 

center. Boundary  estimates  are  then  calculated  to  

have plausible shape according  to the learned  

information given  previously, constrained  by  evidence  

of  region  edges  in  the  image.   

 

An image  observation  model  for  region  edges is  

used  by  L-SSM  and  GP-SSM  contouring algorithms. 

Each algorithm calculates and displays the optimal 

contour in a fraction of a second.  The user can repeat 

the initialization if  desired, but can also refine the result 

using a postediting method. 

2.5.1 Image Observations 

The two SSMs can be constrained by observations. In 

supervised segmentation, these observations are evidence 

of a shapeôs boundary, provided by image data D and run-

time user interactions. This section de- fines observation 

models in the time series paradigm, given here for the star-

shaped case  

 

The observation model is built from radial profiles of 

both the magnitude  and orientation  of the image 

gradient. Fig. 2 shows how radial profiles are extracted, 

for the example of a synthetic image. Given an estimate 

 of the center point we sample  and  in the 

direction of the radius    at each observation angle. 

We rescale the gradient magnitude along each profile to 

the range 0,é..,1 and fit  a Gaussian function  with mean 

 at the peak of   and variance   given 

by the full -width at half-maximum.  
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We use this information to calculate continuous 

functions of radius, representing the probability of being 

on or off a shape boundary as  

 

and 

 

 

2.5.2 L-SSM Segmentation Algorithm 

We use the data model in a boundary tracking. First, 

we assert that all observation angles correspond to the 

increments  in (9). The algorithm then performs iterative 

computation of (11) in the three steps of prediction, 

weighting and importance sampling. The prediction step 

repeats the SDE solution (9) K times at a fixed 

observation angle , which is equivalent to drawing K 

samples from the transition density . The 

weighting step assigns weights  to 

each prediction, given by 

 

Where  controls the relative influence of shape and 

image. The weights w form a discrete approximation of 

the posterior  specific to   . We 

perform step-wise importance sampling by drawing K 

points with replacement from the posterior. For N 

repetitions of step-wise importance sampling, terminating 

to satisfy the closed boundary constraint, we get K time 

series. We store the series with the maximum total 

weight, which is the solution specific to the estimated 

center point .  

 

The algorithm repeats for a small number of solutions 

by drawing center points from the distribution in (10), 

where  are estimated empirically. The optimal 

contour is obtained by shape-wise importance sampling 

by selecting from these solutions with probabilit y 

proportional to their total weights. This solution, being 

values of continuous r at discrete , is fi rst transformed 

from polar to Cartesian coordinates and then discretized 

by taking the nearest integer x and y for display on the 

pixel grid. 

III.  DISCUSSION 

Classiýcation experiments revealed that the L-SSM 

and GP-SSM capture global information about shape 

boundaries and distinguish tumors and lesions from 

synthetic shapes with similar radial statistics. Comparisons 

with various simple shape descriptors showed that the L-

SSM and GP-SSM capture more global shape information 

than integrating local smoothness around a contour or 

analyzing the frequency spectrum of boundary 

þuctuations. While classiýcation is not an immediately 

obvious role for shape models in pathological region of 

interest analysis, it is used as an indication of model affinity 

and motivation for the use of models in segmentation 

algorithms. For example, the circular autoregressive 

(CAR) model has also been evaluated for shape 

classiýcation of regions in biomedical images.  The CAR 

model struggles to classify shapes with complex 

boundaries and intraclass variability. This limi tation arises 

from the linearity of the CAR model as shown by [36], 

which may explain the absence of CAR models used in 

segmentation algorithms. The nonlinearity of the L- and 

GP-SSM could account for their success. Extra sources of 

within-class variation caused by 2-D slices of tumors and 

lesions at arbitrary depths and orientations throughout the 

3-D objects, could call for nonlinearity in the models. In 

practice, due to the physics of tomography and the 

limitations of digital display systems, both the collection 

of training data and the contouring of unseen lesions are 

expected to remain in the 2-D domain for the foreseeable 

future. 

The shape models show promise for reducing 

intraoperator variabili ty of lesion contouring, as both L-

SSM and GP-SSMs reduced the variability in terms of one 

or both spatial metrics (DSC and MMD) for two out of 

three image types.  
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Arguably, for some applications reducing intraoperator 

variability may be at least as important as reducing user 

demand or increasing contouring accuracy. However, for 

the chosen lesions and con-touring algorithm, reductions in 

variabili ty were only apparent for two out of three image 

types and were not signiýcant. This could be explained by 

the high level of control that users have in post-editing, 

which overrides some of the ofþine learning and 

reintroduces human variabilit y. More work is needed to 

observe the effect of the shape models on user-variability, in 

contouring tools offering less user-control through post-

editing. The interactive DCM algorithms are yet to be 

demonstrated for nonstar-shaped models.  

IV.  CONCLUSION AND FUTURE WORK 

Adaboost, Logitboost and Bootstrap algorithms renders 

better accuracy, sensitivity, and specificity measures than 

other state-of-the-art algorithms for both of the DRIVE and 

STARE databases. The method computes only nine 

features for pixel classification and only four features in the 

case of the reduced feature set, thus utilizing less 

computational time. The performance, effectiveness, and 

robustness along with its simplicity and speed in training as 

well as in classification, make this ensemble based method 

for blood vessel segmentation a suitable tool to be 

integrated in to a complete retinal image analysis system 

for clinical purposes and in particular for large population 

studies. In future, the aim is to incorporate the vessel width 

and tortousity measures into the algorithm and to develop 

an interactive vessel analysis software tool for 

ophthalmologists. 
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