

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 87

A LOW COMPLEXITY PACKET SCHEDULER FOR EFFICIENT

SCHEDULING WITH EFQ ON WIRELESS SENSOR NETWORK

 S.Arunkumar
1
,S.Senthil

2

1
JP College of Engineering, Ayikudy.

2
JP College of Engineering, Ayikudy.

1
arun.me.cse2012@gmail.com

2
jaysen1984@gmail.com

Abstract— The main objective of this project is to create a new

packet scheduling technique. Packet scheduling is one of the

decision process. It is used to choose which packets should be

serviced or dropped. The packet scheduling is needed in network

for providing maximum bandwidth, a minimum delay, a

minimum packet loss rate at all times. The issues in packet

scheduling techniques are space, time complexity, and tight

guarantees about packets. To solve the issues in packet

scheduling this project uses one method. This method is called

Efficient Fair Queuing (EFQ). In this method the space and time

complexity is reduced by using the flow grouping and timestamp

rounding respectively. This method use a new O(1) scheduler

that provides near-optimal tight guarantees. The algorithm has

no loops. It has simple data structures and instructions involved

makes it well suited to hardware implementations. The execution

time is within two times that of DRR and consistently about three

times faster than S-KPS. Speed does not sacrifice service

guarantees: the WFI of EFQ is slightly better than S-KPS. From

the experimental result shows that the EFQ performs well than

the other existing methods.

Index Terms— EFQ,wireless sensor network,packet scheduling,

low complexity.

I. INTRODUCTION

Packet scheduling refers to the decision process. It is used

to choose which packets should be serviced or dropped. The

packet scheduling is needed for providing maximum

bandwidth, a minimum delay, a minimum packet loss rate at

all times.

This packet scheduling policy is simple to implement, and

yields good performance in the common case that node

schedules are known, and information about node availability

is accurate. A potential drawback is that a node crash (or other

failure event) can lead to a number of wasted RTSs to the

failed node.

The Deficit Round-Robin (DRR) which is a scheduling

algorithm devised for providing fair queuing in the presence

of variable length packets. The main attractive feature of DRR

is its simplicity of implementation: in fact, it can exhibit O(1)

complexity, provided that specific allocation constraints are

met. However, according to the original DRR implementation,

meeting such constraints often implies tolerating high latency

and poor fairness[5]. The Self-clocked fair queueing scheme

which is feasible for broadband implementation. This scheme

is based on the adoption of an internally generated virtual time

as the index of work progress, hence the name self-clocked

fair queueing[7]. The Generalized Processor Sharing (GPS)

algorithm has desirable properties for integrated services

networks and many Packet Fair Queueing (PFQ) algorithms

have been proposed to approximate GPS. However, there have

been few high speed implementations of PFQ algorithms that

can support a large number of sessions with diverse rate

requirements and at the same time maintain all the important

properties of GPS[8]. The per-flow fair queueing has not been

deployed in the Internet mainly because of the common belief

that such scheduling is not scalable. The objective of this

paper is to demonstrate using trace simulations and analytical

evaluations that this belief is misguided. This paper show that

although the number of flows in progress increases with link

speed, the number that needs scheduling at any moment is

largely independent of this rate.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 88

 The number of such active flows is a random process

typically measured in hundreds even though there may be tens

of thousands of flows in progress[4].

 To proposed and developed an O(1) scheduler of the third

family, called Efficient Fair Queuing (EFQ). It provides tight

service guarantees at an extremely low per-packet cost. A

prototype running on a commodity PC takes about 110ns per

packet, only twice the time consumed by a Deficit Round

Robin scheduler, and about 2.5 to 4 times faster than the

fastest competitor providing comparable guarantees.

 The remainder of this paper is,section 2 describes the

methodologies,section 3 describes the experimental setup and

finally conclude this paper.

II. METHODOLOGIES

 Packet scheduling, together with classification, is one of the

most expensive processing steps in systems providing tight

bandwidth and delay guarantees at high packet rates. This

technique makes two contributions:

1) A new O (1) scheduler that provides near-optimal

guarantees, and is the first to achieve that goal with a truly

constant cost also with respect to the number of groups and the

packet length.

2) To develop a production-quality implementations of EFQ

and of its closest competitors, which we use to present a

detailed comparative performance analysis of the various

algorithms.

The EFQ algorithm has no loops, and uses very simple

instructions and data structures which contribute to its speed of

operation.

Packet scheduling is one of the decision process. It is used to

choose which packets should be serviced or dropped. The

scheduling algorithm allowed only eligible packets, ineligible

packets are blacked. The EFQ scheduler set the every packets

in stating time and ending time. So constant cost every packet

flow. Finally the algorithm send the eligible packet to group set

without any loss.

Fig. 1. System Design

A. Model System And Definitions

 Here we outline the original WF2Q+ algorithm for a

variable-rate system WF2Q+ is a packet scheduler that

approximates, on a packet by- packet basis, the service

provided by a work-conserving ideal fluid system that delivers

the following, almost perfect bandwidth distribution over any

time interval

 The packet and the fluid system serve the same flows and

deliver the same total amount of work W(t) (systems with these

features are called corresponding in the literature). They differ

in that the fluid system may serve multiple packets in parallel,

whereas the packet system has to serve one packet at a time,

and is non preemptive. Because of these constraints, the

allocation of work to the individual flows may differ in the two

systems. WF2Q+ has optimal B-/T-WFI and O(logN)

complexity, which makes it of practical interest. WF2Q+

operates as follows.

Eligibilit

y

checking

Ready to

send

Update

the flow

queue

Packet

sending

Time

stamp

Pack

et

Pool

Flow

groping

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 89

 Each time the link is ready, the scheduler starts to serve,

among the packets that have already started5 in the ideal fluid

system, the next one that would be completed in the fluid

system; ties are arbitrarily broken.WF2Q+ is a work-

conserving on-line algorithm, hence it succeeds in finishing

packets in the same order as the ideal fluid system, except

when the next packet to serve arrives after one or more out-of-

order packets have already started.

B. Packet Enqueue

 Function enqueue(), is called on the arrival of a packet.

As a first step, the packet is appended to the flow’s queue, and

nothing else needs to be done if the flow is already backlogged.

Otherwise, the flow’s timestamps are updated , and checks

whether the group’s state needs to be updated: this happens if

the group was idle, or if the new flow causes the group’s

timestamp to decrease The update is done by , which possibly

remove the group from the ineligible sets, and update the

group’s timestamps (being the slot size 2i, the start time

calculation only needs to clear the last i bits of Sk). Once the

group’s timestamps are set, a constant-time bucket insert sorts

the flow with respect to the other flows in the group. At this

point, if needed, V (t) is updated according to the calculation.

Finally, function compute group state() computes the new state

of the group (which may have changed because of the new

values of Si, Fi and V (t)), and puts the group in its new set.

C. Packet Dequeue

 Function dequeue() is called to return the next packet to

send. The packet selection is straightforward. If there are

queued flows, at least one flow is eligible, so ER is not empty:

a first FFS instruction picks the group with the lowest index in

ER, then another FFS is used to locate the first flow in the

bucket list, and the head packet from that flow is the next

packet to serve. Before returning, the function updates the

scheduler’s data structures in preparation for further work. The

flow’s timestamps are updated, and the flow is possibly

reinserted in the bucket list. Virtual time is increased in line 19,

to reflect the service of the packet selected for transmission.

Next ,the group’s timestamps and state are updated. If the

group has increased its finish time or it has become idle, it is

moved to the new set, and function unblock groups() described

possibly unblocks other groups.

Finally, make sure that at least one backlogged group is

eligible by bumping up V if necessary, and moving groups

between sets using function make eligible() which will be

discussed next. Support Functions: The remaining support

functions, mostly used in the dequeue() code. Function move

groups() uses simple bit operations to move groups with

indexes in mask from set src to set dest.

 Function make eligible() determines which groups become

eligible as V (t) grows after serving a flow. The properties of

rounded timestamps are used to implement the check in

constant time, which gives a graphical representation of the

possible values of Si’s and V (t), and the binary representations

of V (t) (the vertical strings of binary digits). Since slot sizes

are powers of two (i = 2i), the binary representation of the

timestamps of the i-th group’s ends with i − 1 zeros; in any

given slot belonging to group i, the value of the i-th bit is

constant during the whole slot. Whenever the i-th bit of V (t)

changes, the virtual time enters a new slot of size i. As a

consequence, on each V (t) update, the highest bit j that

changes in V (t) indicates that all backlogged groups Gi, i ≤ j

are now eligible.

This is exactly the algorithm implemented by function make

eligible(): it computes the index j using a XOR followed by a

Find Last Set (FLS) operation; then computes the binary mask

of all indexes i ≤ j, and calls function move groups to move

groups whose index is in the mask from IR to ER and from IB

to EB.

III. EXPERIMENTAL RESULTS

To analyse the performance of the proposed system lots of

simulation experiments are conducted. The proposed system is

implemented in Network Simulator (NS2). The proposed

system is compared with the Droptail and RED. In the

simulation experiments several parameters are used. They are

listed in the below table.

TABLE I. LIMITATION OF SYSTEM

Number of Nodes 50

Area Size 1000 x 1000

Target Size [500,500] x [500,500]

Simulation Duration 50

Queue Limit 20

Queue Size 100

Packet Size 552

Packet Interval 2

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 90

To analysis the performance the proposed method several

performance metrics are used. They are Enqued Packet Ratio,

Sended Packet Ratio, Dropped Packet Ratio, Received Packet

Ratio, Average packet delay and Average throughput.

A. Enqued Packet Ratio

Enqued Packets defines the total number of enqued packets

from the available packets. This is one of the performance

metrics. This metric is used to analyse the performance of this

proposed method. It is calculated by using the below formula

EP=Total number of enqued packet/Total number of packets

The enqued packet ratio of the EFQ, Drop Tail and RED is

shown in the below table

TABLE II. ENQUED PACKET RATIO

Network Size Drop Tail RED EFQ

10 950 1000 1350

20 1200 1600 2000

30 1800 2300 2680

40 2400 2900 3200

50 3500 4000 4500

Fig. 2. Performance Analysis of Enqued Packet Ratio

 The above figure shows that the EFQ method performs

well than the other two methods such as RED and Drop Tail.

Because the enqued packet ratio is higher for EFQ only.

So its performance overcome the performance the Drop Tail

and RED.

B. Sended Packet Ratio (SP)

Sended Packet Ratio defines the total no of sended packets

from the available packets. This is one of the performance

metrics. This metric is used to analyse the performance of this

proposed method. It is calculated by using the below formula

SP= Total number of sended packet/Total number of packet

 The sended packet ratio of the EFQ, Drop Tail and RED

is shown in the below table

TABLE III. SENDED PACKET RATIO

Network Size Drop Tail RED EFQ

10 840 900 1150

20 920 1100 1640

30 1600 2090 2420

40 2100 2390 2980

50 2300 2860 3200

Fig. 3. Performance Analysis of Sended Packet Ratio

 The above figure shows that the EFQ method performs

well than the other two methods such as RED and Drop Tail.

Because the sended packet ratio is higher for EFQ only. So its

performance overcome the performance the Drop Tail and

RED.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 91

C. Dropped Packet Ratio (DP)

 Dropped Packet Ratio defines the total no of dropped

packets from the available packets. This is one of the

performance metrics. This metric is used to analyse the

performance of this proposed method. It is calculated by using

the below formula

 DP=Total number of dropped Packet/Total number of packet

 The dropped packet ratio of the EFQ, Drop Tail and RED is

shown in the below table

TABLE IV. DROPPED PACKET RATIO

Network Size Drop Tail RED EFQ

10 640 587 200

20 932 863 400

30 1300 1023 650

40 2000 1090 890

50 2200 2380 1200

Fig. 4. Performance Analysis of Dropped Packet Ratio

 The above figure shows that the EFQ method performs

well than the other two methods such as RED and Drop Tail.

Because the dropped packet ratio is lower for EFQ only. So its

performance overcome the performance the Drop Tail and

RED.

D. Received Packet Ratio (RP)

 Received Packet Ratio defines the total no of received

packets from the available packets. This is one of the

performance metrics. This metric is used to analyse the

performance of this proposed method. It is calculated by using

the below formula

 RP=Total number of Received Packet/Total number of packet

 The received packet ratio of the EFQ, Drop Tail and RED

is shown in the below table

TABLE V. RECEIVED PACKET RATIO

Network Size Drop Tail RED EFQ

10 610 640 1148

20 820 876 1345

30 934 1013 1832

40 1213 1320 2400

50 1421 1632 2800

Fig. 5. Performance Analysis of Received Packet Ratio

 The above figure shows that the EFQ method performs

well than the other two methods such as RED and Drop Tail.

Because the received packet ratio is higher for EFQ only. So its

performance overcome the performance the Drop Tail and

RED.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 92

E. Average Packet Delay (APD)

 Average Packet Delay defines the total no of time to

receive the packets to destination. This is one of the

performance metrics. This metric is used to analyse the

performance of this proposed method. It is calculated by using

the below formula

APD= Ending Time - Starting Time

 The average packet delay of the EFQ, Drop Tail and RED

is shown in the below table

TABLE VI. AVERAGE PACKET DELAY

Network Size Drop Tail RED EFQ

10 0.6428 0.3008 0.297

20 0.8325 0.4128 0.321

30 0.9267 0.6285 0.451

40 1.3727 0.7283 0.532

50 1.6283 0.8921 0.621

Fig. 6. Performance Analysis of Average Packet Delay

 The above figure shows that the EFQ method performs

well than the other two methods such as RED and Drop Tail.

Because the average packet delay ratio value is lower for EFQ

only. So its performance overcome the performance the

DropTail and RED.

IV. CONCLUSION

 In this paper EFQ, an approximate implementation of

WF2Q+ is presented which can run in true constant time, with

very low constants and using extremely simple data structures.

The algorithm is based on very simple instructions, and uses

very small and localized data structures, which make it

amenable to a hardware implementation. Together with a

detailed description of the algorithm, we provide a theoretical

analysis of its service properties, and present an accurate

performance analysis, comparing EFQ with a variety of other

schedulers. The experimental results show that EFQ lives up to

its promises: it is faster than other schedulers with optimal

service guarantees, only two times slower than DRR, and

operates, even in software, at a rate compatible with 10Gbit/s

interfaces.

In this project the packet scheduling algorithm is worked out

on the wired and wireless sensor network. In future this packet

scheduling algorithm will apply on several networks and then

the performance will analyzed. Not only that, In this project the

performance of EFQ is compared with the Drop Tail and RED.

In future several other queuing techniques will be considered

for performance.

V. REFERENCES

[1] Fabio Checconi, Paolo Valente, and Luigi Rizzo. QFQ: Efficient

Packet Scheduling with Tight Bandwidth Distribution

Guarantees.

[2] Chuanxiong Guo. SRR: An O(1) time complexity packet

scheduler for flows in multi-service packet networks.

Proceedings of ACM SIGCOMM 2001, pages 211–222, August

2001.

[3] Martin Karsten. Approximation of generalized processor sharing

with stratified interleaved timer wheels. IEEE/ACM

Transactions on Network- ing, 18(3):708–721, 2010.

[4] Abdesselem Kortebi, Luca Muscariello, Sara Oueslati, and

James Roberts. Evaluating the number of active flows in a

scheduler realizing fair statistical bandwidth sharing.

SIGMETRICS Performance Evaluation Review, 33(1):217–

228, 2005.

[5] Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. Tradeoffs

between low complexity, low latency, and fairness with deficit

round-robin schedulers. IEEE/ACM Transactions on

Networking, 12(4):681–693, 2004.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 93

[6] M. Shreedhar and George Varghese. Efficient fair queuing using

deficit round robin. IEEE/ACM Transactions on Networking,

4(3):375–385, 1996.

[7] S.J.Golestani. A self-clocked fair queueing scheme for

broadband applications. Proceedings of IEEE INFOCOM ’94,

pages 636–646, June 1994.

[8] Donpaul C. Stephens, Jon C.R. Bennett, and Hui Zhang.

Implementing scheduling algorithms in high-speed networks.

IEEE Journal on Selected Areas in Communications,

17(6):1145–1158, June 1999.

[9] Dimitrios Stiliadis and Anujan Varma. A general methodology

for designing efficient traffic scheduling and shaping

algorithms. Proceedings of IEEE INFOCOM ’97, pages 326–

335, April 1997.

[10] Jun Xu and Richard J. Lipton. On fundamental tradeoffs

between delay bounds and computational complexity in packet

scheduling algorithms. IEEE/ACM Transactions on

Networking, 13(1):15–28, 2005.

[11] P.Goyal, H.M. Vin, and H. Chen. Start-time Fair Queuing: A

scheduling algorithm for integrated services. In Proceed-ings of

the ACM-SIGCOMM 96, pages 157{168, Palo Alto, CA,

August 1996.

[12] S.Keshav. A control-theoretic approach to ow control.In

Proceedings of ACM SIGCOMM'91, pages 3{15,

Zurich,Switzerland, September 1991.

[13] P. McKenney. Stochastic fair queueing. In Proceedings ofIEEE

INFOCOM'90, San Francisco, CA, June 1990.

[14] O.Ndiaye. An e_cient implementation of a hierarchical weighted

fair queue packet scheduler. Master's thesis, Mas- sachusetts

Institute of Technology, May 1994.

[15] A.Parekh and R. Gallager. A generalized processor

sharingapproach to ow control - the single node case.

ACM/IEEETransactions on Networking, 1(3):344{357, June

1993.

[16] M.Shreedhar and G. Varghese. E_cient fair queueing using

de_cit round robin. In Proceedings of SIGCOMM'95, pages

231{243, Boston, MA, September 1995.

