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Abstract— The main objective of this project is to create a new 

packet scheduling technique. Packet scheduling is one of the 

decision process. It is used to choose which packets should be 

serviced or dropped.  The packet scheduling is needed in network 

for providing maximum bandwidth, a minimum delay, a 

minimum packet loss rate at all times.  The issues in packet 

scheduling techniques are space, time complexity, and tight 

guarantees about packets. To solve the issues in packet 

scheduling this project uses one method. This method is called 

Efficient Fair Queuing (EFQ). In this method the space and time 

complexity is reduced by using the flow grouping and timestamp 

rounding respectively. This method use a new O(1) scheduler 

that provides near-optimal tight guarantees. The algorithm has 

no loops. It has simple data structures and instructions involved 

makes it well suited to hardware implementations. The execution 

time is within two times that of DRR and consistently about three 

times faster than S-KPS. Speed does not sacrifice service 

guarantees: the WFI of EFQ is slightly better than S-KPS. From 

the experimental result shows that the EFQ performs well than 

the other existing methods. 

Index Terms— EFQ,wireless sensor network,packet scheduling, 

low complexity. 

I. INTRODUCTION 

Packet scheduling refers to the decision process. It is used 

to choose which packets should be serviced or dropped.  The 

packet scheduling is needed for providing maximum 

bandwidth, a minimum delay, a minimum packet loss rate at 

all times. 

 

 

 

This packet scheduling policy is simple to implement, and 

yields good performance in the common case that node 

schedules are known, and information about node availability 

is accurate. A potential drawback is that a node crash (or other 

failure event) can lead to a number of wasted RTSs to the 

failed node.  

 

The Deficit Round-Robin (DRR) which is a scheduling 

algorithm devised for providing fair queuing in the presence 

of variable length packets. The main attractive feature of DRR 

is its simplicity of implementation: in fact, it can exhibit O(1) 

complexity, provided that specific allocation constraints are 

met. However, according to the original DRR implementation, 

meeting such constraints often implies tolerating high latency 

and poor fairness[5]. The Self-clocked fair queueing scheme 

which is feasible for broadband implementation. This scheme 

is based on the adoption of an internally generated virtual time 

as the index of work progress, hence the name self-clocked 

fair queueing[7]. The Generalized Processor Sharing (GPS) 

algorithm has desirable properties for integrated services 

networks and many Packet Fair Queueing (PFQ) algorithms 

have been proposed to approximate GPS. However, there have 

been few high speed implementations of PFQ algorithms that 

can support a large number of sessions with diverse rate 

requirements and at the same time maintain all the important 

properties of GPS[8]. The per-flow fair queueing has not been 

deployed in the Internet mainly because of the common belief 

that such scheduling is not scalable. The objective of this 

paper is to demonstrate using trace simulations and analytical 

evaluations that this belief is misguided. This paper show that 

although the number of flows in progress increases with link 

speed, the number that needs scheduling at any moment is 

largely independent of this rate. 
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 The number of such active flows is a random process 

typically measured in hundreds even though there may be tens 

of thousands of flows in progress[4]. 

 To proposed and developed an O(1) scheduler of the third 

family, called Efficient Fair Queuing (EFQ). It provides tight 

service guarantees at an extremely low per-packet cost. A 

prototype running on a commodity PC takes about 110ns per 

packet, only twice the time consumed by a Deficit Round 

Robin scheduler, and about 2.5 to 4 times faster than the 

fastest competitor providing comparable guarantees. 

 

             The remainder of this paper is,section 2 describes the 

methodologies,section 3 describes the experimental setup and 

finally conclude this paper. 

II. METHODOLOGIES 

     Packet scheduling, together with classification, is one of the 

most expensive processing steps in systems providing tight 

bandwidth and delay guarantees at high packet rates. This 

technique makes two contributions: 

1) A new O (1) scheduler that provides near-optimal 

guarantees, and is the first to achieve that goal with a truly 

constant cost also with respect to the number of groups and the 

packet length. 

2) To develop a production-quality implementations of EFQ 

and of its closest competitors, which we use to present a 

detailed comparative performance analysis of the various 

algorithms. 

The EFQ algorithm has no loops, and uses very simple 

instructions and data structures which contribute to its speed of 

operation. 

Packet scheduling is one of the decision process. It is used to 

choose which packets should be serviced or dropped. The 

scheduling algorithm allowed only eligible packets, ineligible 

packets are blacked. The EFQ scheduler set the every packets 

in stating time and ending time. So constant cost every packet 

flow. Finally the algorithm send the eligible packet to group set 

without any loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  System Design  

A. Model System And Definitions 

         Here we outline the original WF2Q+ algorithm for a 

variable-rate system WF2Q+ is a packet scheduler that 

approximates, on a packet by- packet basis, the service 

provided by a work-conserving ideal fluid system that delivers 

the following, almost perfect bandwidth distribution over any 

time interval 

 

 
 

        The packet and the fluid system serve the same flows and 

deliver the same total amount of work W(t) (systems with these 

features are called corresponding in the literature). They differ 

in that the fluid system may serve multiple packets in parallel, 

whereas the packet system has to serve one packet at a time, 

and is non preemptive. Because of these constraints, the 

allocation of work to the individual flows may differ in the two 

systems. WF2Q+ has optimal B-/T-WFI and O(logN) 

complexity, which makes it of practical interest. WF2Q+ 

operates as follows. 
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 Each time the link is ready, the scheduler starts to serve, 

among the packets that have already started5 in the ideal fluid 

system, the next one that would be completed in the fluid 

system; ties are arbitrarily broken.WF2Q+ is a work-

conserving on-line algorithm, hence it succeeds in finishing 

packets in the same order as the ideal fluid system, except 

when the next packet to serve arrives after one or more out-of-

order packets have already started. 

B. Packet Enqueue 

         Function enqueue(), is called on the arrival of a packet. 

As a first step, the packet is appended to the flow’s queue, and 

nothing else needs to be done if the flow is already backlogged. 

Otherwise, the flow’s timestamps are updated , and checks 

whether the group’s state needs to be updated: this happens if 

the group was idle, or if the new flow causes the group’s 

timestamp to decrease The update is done by , which possibly 

remove the group from the ineligible sets, and update the 

group’s timestamps (being the slot size 2i, the start time 

calculation only needs to clear the last i bits of Sk). Once the 

group’s timestamps are set, a constant-time bucket insert sorts 

the flow with respect to the other flows in the group. At this 

point, if needed, V (t) is updated according to the calculation. 

Finally, function compute group state() computes the new state 

of the group (which may have changed because of the new 

values of Si, Fi and V (t)), and puts the group in its new set.  

C. Packet Dequeue  

        Function dequeue() is called to return the next packet to 

send. The packet selection is straightforward. If there are 

queued flows, at least one flow is eligible, so ER is not empty: 

a first FFS instruction picks the group with the lowest index in 

ER, then another FFS is used to locate the first flow in the 

bucket list, and the head packet from that flow is the next 

packet to serve. Before returning, the function updates the 

scheduler’s data structures in preparation for further work. The 

flow’s timestamps are updated, and the flow is possibly 

reinserted in the bucket list. Virtual time is increased in line 19, 

to reflect the service of the packet selected for transmission. 

Next ,the group’s timestamps and state are updated. If the 

group has increased its finish time or it has become idle, it is 

moved to the new set, and function unblock groups() described 

possibly unblocks other groups.  

 

 

 

 

Finally, make sure that at least one backlogged group is 

eligible by bumping up V if necessary, and moving groups 

between sets using function make eligible() which will be 

discussed next. Support Functions: The remaining support 

functions, mostly used in the dequeue() code. Function move 

groups() uses simple bit operations to move groups with 

indexes in mask from set src to set dest. 

       Function make eligible() determines which groups become 

eligible as V (t) grows after serving a flow. The properties of 

rounded timestamps are used to implement the check in 

constant time, which gives a graphical representation of the 

possible values of Si’s and V (t), and the binary representations 

of V (t) (the vertical strings of binary digits). Since slot sizes 

are powers of two (i = 2i), the binary representation of the 

timestamps of the i-th group’s ends with i − 1 zeros; in any 

given slot belonging to group i, the value of the i-th bit is 

constant during the whole slot. Whenever the i-th bit of V (t) 

changes, the virtual time enters a new slot of size i. As a 

consequence, on each V (t) update, the highest bit j that 

changes in V (t) indicates that all backlogged groups Gi, i ≤ j 

are now eligible. 

     

This is exactly the algorithm implemented by function make 

eligible(): it computes the index j using a XOR followed by a 

Find Last Set (FLS) operation; then computes the binary mask 

of all indexes i ≤ j, and calls function move groups to move 

groups whose index is in the mask from IR to ER and from IB 

to EB. 

III. EXPERIMENTAL RESULTS 

To analyse the performance of the proposed system lots of 

simulation experiments are conducted. The proposed system is 

implemented in Network Simulator (NS2).  The proposed 

system is compared with the Droptail and RED. In the 

simulation experiments several parameters are used. They are 

listed in the below table. 

TABLE I.  LIMITATION OF SYSTEM 

Number of Nodes 50 

Area Size 1000 x 1000 

Target Size [500,500] x [500,500] 

Simulation Duration 50  

Queue Limit 20 

Queue Size 100 

Packet Size 552 

Packet Interval 2 
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To analysis the performance the proposed method several 

performance metrics are used. They are Enqued Packet Ratio, 

Sended Packet Ratio, Dropped Packet Ratio, Received Packet 

Ratio, Average packet delay and  Average throughput. 

A. Enqued Packet Ratio 

Enqued Packets defines the total number of enqued packets 

from the available packets. This is one of the performance 

metrics. This metric is used to analyse the performance of this 

proposed method. It is calculated by using the below formula 

EP=Total number of enqued packet/Total number of packets 

The enqued packet ratio of the EFQ, Drop Tail and RED is 

shown in the below table 

TABLE II.  ENQUED PACKET RATIO 

Network Size Drop Tail RED EFQ 

10 950 1000 1350 

20 1200 1600 2000 

30 1800 2300 2680 

40 2400 2900 3200 

50 3500 4000 4500 

 

 

Fig. 2. Performance Analysis of Enqued Packet Ratio 

         The above figure shows that  the  EFQ method performs 

well than the other two methods such as RED and Drop Tail. 

Because the enqued packet ratio is higher for EFQ only.  

 

So its performance overcome the performance the Drop Tail 

and RED.  

B. Sended Packet Ratio (SP) 

Sended Packet Ratio defines the total no of sended packets 

from the available packets. This is one of the performance 

metrics. This metric is used to analyse the performance of this 

proposed method. It is calculated by using the below formula 

SP= Total number of sended packet/Total number of packet 

        The sended packet ratio of the EFQ, Drop Tail and RED 

is shown in the below table 

TABLE III.  SENDED PACKET RATIO 

Network Size Drop Tail RED EFQ 

10 840 900 1150 

20 920 1100 1640 

30 1600 2090 2420 

40 2100 2390 2980 

50 2300 2860 3200 

 

 

 
Fig. 3. Performance Analysis of Sended Packet Ratio 

        The above figure shows that  the EFQ method performs 

well than the other two methods such as RED and Drop Tail. 

Because the sended packet ratio is higher for EFQ only. So its 

performance overcome the performance the Drop Tail and 

RED.  



     
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014) 

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering 

(ICMACE14) 

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA Page 91 

 

 

C. Dropped Packet Ratio (DP) 

          Dropped Packet Ratio defines the total no of dropped 

packets from the available packets. This is one of the 

performance metrics. This metric is used to analyse the 

performance of this proposed method. It is calculated by using 

the below formula 

  DP=Total number of dropped Packet/Total number of packet 

 The dropped packet ratio of the EFQ, Drop Tail and RED is 

shown in the below table 

TABLE IV.  DROPPED  PACKET RATIO 

Network Size Drop Tail RED EFQ 

10 640 587 200 

20 932 863 400 

30 1300 1023 650 

40 2000 1090 890 

50 2200 2380 1200 

 

 
Fig. 4. Performance Analysis of Dropped Packet Ratio 

        The above figure shows that  the EFQ method performs 

well than the other two methods such as RED and Drop Tail. 

Because the dropped packet ratio is lower for EFQ only. So its 

performance overcome the performance the Drop Tail and 

RED.  

 

 

D. Received Packet Ratio (RP) 

         Received Packet Ratio defines the total no of received 

packets from the available packets. This is one of the 

performance metrics. This metric is used to analyse the 

performance of this proposed method. It is calculated by using 

the below formula 

 RP=Total number of Received Packet/Total number of packet 

         The received packet ratio of the EFQ, Drop Tail and RED 

is shown in the below table 

TABLE V.  RECEIVED  PACKET RATIO 

Network Size Drop Tail RED EFQ 

10 610 640 1148 

20 820 876 1345 

30 934 1013 1832 

40 1213 1320 2400 

50 1421 1632 2800 

 

 
Fig. 5. Performance Analysis of Received Packet Ratio 

         The above figure shows that  the EFQ method performs 

well than the other two methods such as RED and Drop Tail. 

Because the received packet ratio is higher for EFQ only. So its 

performance overcome the performance the Drop Tail and 

RED.  
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E. Average Packet Delay (APD) 

      Average Packet Delay defines the total no of time to 

receive the packets to destination. This is one of the 

performance metrics. This metric is used to analyse the 

performance of this proposed method. It is calculated by using 

the below formula 

APD= Ending Time - Starting Time 

       The average packet delay of the EFQ, Drop Tail and RED 

is shown in the below table 

TABLE VI.  AVERAGE PACKET DELAY 

Network Size Drop Tail RED EFQ 

10 0.6428 0.3008 0.297 

20 0.8325 0.4128 0.321 

30 0.9267 0.6285 0.451 

40 1.3727 0.7283 0.532 

50 1.6283 0.8921 0.621 

 

 
 

Fig. 6. Performance Analysis of Average Packet Delay 

 

         The above figure shows that  the EFQ method performs 

well than the other two methods such as RED and Drop Tail. 

Because the average packet delay ratio value is lower for EFQ 

only. So its performance overcome the performance the 

DropTail and RED.  

 

 

IV. CONCLUSION 

                In this paper EFQ, an approximate implementation of 

WF2Q+ is presented which can run in true constant time, with 

very low constants and using extremely simple data structures. 

The algorithm is based on very simple instructions, and uses 

very small and localized data structures, which make it 

amenable to a hardware implementation. Together with a 

detailed description of the algorithm, we provide a theoretical 

analysis of its service properties, and present an accurate 

performance analysis, comparing EFQ with a variety of other 

schedulers. The experimental results show that EFQ lives up to 

its promises: it is faster than other schedulers with optimal 

service guarantees, only two times slower than DRR, and 

operates, even in software, at a rate compatible with 10Gbit/s 

interfaces. 

           

In this project the packet scheduling algorithm is worked out 

on the wired and wireless sensor network. In future this packet 

scheduling algorithm will apply on several networks and then 

the performance will analyzed. Not only that, In this project the 

performance of EFQ is compared with the Drop Tail and RED. 

In future several other queuing techniques will be considered 

for performance. 
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