

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA. Page 74

Delay Optimised 16 Bit Twin Precision Baugh Wooley

Multiplier
Vivek. V. Babu

 1
, S. Mary Vijaya Lense

 2

1
 II ME-VLSI DESIGN & The Rajaas Engineering College Vadakkangulam, Tirunelveli

2
Assistant Professor & Department of Electronics and Communication Engineering The Rajaas Engineering College

1
vivek.vbabu@gmail.com

2
marylense@yahoo.com

Abstract- Multiplication is indeed the most crucial

operation in digital signal processing (DSP). Its

implementation requires large hardware resources and

significantly affects the size, performance, and power

consumption of a DSP system. Technique for 16 bit integer

multiplication is implemented in this project .Baugh-Wooley

algorithm is an algorithm used for the multiplication ,delay

and power dissipation can’t be reduced further in this type.

Twin precision technique is noteworthy for its low power

dissipation. Multiplier is adapted to bitwidth of the operands

to be computed to obtain the reduced power dissipation. The

technique also results in an increased computational

throughput, by allowing several narrow-width operations to

be computed in parallel. Using Twin-precision technique with

Baugh-Wooley algorithm, we achieve significant optimized

delay and good power reduction.The project describe how to

apply the twin-precision technique also to signed multiplier

schemes, such as Baugh Wooley . It is shown that the twin-

precision delay penalty is small (5% to 10% and that a

significant reduction in power dissipation (40% to 70% can be

achieved,when operating on narrow-width operands.

Index term- Baugh Wooley algorithm,Twin Precision

technique

I. INTRODUCTION

Multiplication is a complex arithmetic operation, which

is reflected in its relatively high signal propagation delay,

high power dissipation, and large area requirement. When

choosing a multiplier for a digital system, the bit width of

the multiplier is required to be at least as wide as the largest

operand of the applications that are to be executed on that

digital system. The bit width of the multiplier is, therefore,

often much larger than the data represented inside the

operands, which leads to unnecessarily high power

dissipation and unnecessary long delay.

This resource waste could partially be remedied by

having several multipliers, each with a specific bit width,

and use the particular multiplier with the smallest bit width

that is large enough to accommodate the current

multiplication. Such a scheme would assure that a

multiplication would be computed on a multiplier that has

been optimized in terms of power and delay for that

specific bit width. However, using several multipliers with

different bit widths would not be an efficient solution,

mainly because of the huge area overhead. It has been

shown in many studies that more than 50% of the

instructions are instructions where both operands are less

than or equal to 16 bits. Such operations are called narrow-

width operations.

This property has been explored to save power, through

operand guarding. In operand guarding the most significant

bits of the operands are not switched, thus power is saved

in the arithmetic unit when multiple narrow-width

operations are computed consecutively. It is shown that the

power reduction of an operand-guarded integer unit was

54% to 58%, which accounts for a total power reduction of

5–6% for an entire data path.

Narrow-width operands have also been used to increase

instruction throughput, by computing several narrow-width

operations in parallel on a full-width data path. It is showed

a 7% speedup for a simple 4-bit ALU, which excluded the

multiplier, in parallel with four simple 16-bit ALUs that

share a 64-bit routing.

II. BAUGH WOOLEY ALGORITHM

The Baugh Wooley algorithm is a relative

straightforward way of performing signed multiplications

.illustrates the algorithm for an 8-bit case, where the

partial-product array has been reorganized according to the

scheme of Hatamian.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA. Page 75

The creation of the reorganized partial-product array

comprises three steps: i) the most significant partial product

of the first N-1 rows and the last row of partial products

except the most significant have to be negated, ii) a

constant one isadded to the th column, iii) the most

significant bit (MSB) of the final result is

negated.Multiplication involves 2 basic operations: the

generation of the partial product and their accumulation

.Therefore, there are Possible ways to speed up the

multiplication: reduces the complexity, and as a result

reduces the time needed to accumulate the partial

products.Both solutions can be applied simultaneously.

Baugh-Wooley Twos Compliment Signed

Multiplier:Twos Compliments is the most popular method

in representing signed integers in Computer sciences.It is

also an operation of negation(Converting positive to

negative numbers or vice versa) in computers which

represent negative numbers using twos compliments. Its

use is so wide today because it does not require the addition

and subtraction circuitry to examine the signs of the

operands to determine whether to add or subtract.Twos

compliment and one’s compliment representations are

commonly used since arithmetic units are simpler to

design. Baugh-Wooley Multiplier is used for both unsigned

and signed number multiplication. Signed Number

operands which are represented in 2s complemented form.

Partial Products are adjusted such that negative sign move

to last step, which in turn maximize the regularity of the

multiplication array. Baugh-Wooley Multiplier operates on

signed operands with 2s complement representation to

make sure that the signs of all partial products are positive.

Power consumption in Baugh-Wooley multipliers is

minimum compared to other conventional multiplier units.

So it clears that the signed binary multiplication through

Baugh- Wooley multiplication is suited for large multiplier

implementation. The improvements in constraint can be

used to make Baugh-Wooley multiplier more efficient .The

fan-out of the multiplier architectures are also given which

directly gives the possibility of the multiplier to form large

circuits. This can be extended tothe pipelined multiplier

architecture also to verify the parameters. Latency and

speed are the important factors with pipelining under

consideration.The synthesis results of 4-bitpipelined

multipliers . The pipeline constraint increases the speedof

the multiplier considerably with an increase in power

consumption.

The twin-precision technique using an illustration of

unsigned binary multiplication is presented. In an unsigned

binary multiplication each bit of one of the operands, called

the multiplier, is multiplied with the second operand, called

multiplicand.

 Pij=yixj

That way one row of partial products is generated. Each

row of partial products is shifted according to the position

of the bit of the multiplier, forming what is commonly

called the partial- product array. Finally, partial products

that are in the same column are summed together, forming

the final result. An illustration of an 8-bit multiplication is

shown in Fig. 2.2

Fig.2.2 8 bit multiplication

Let us look at what happens when the precision of the

operands is smaller than the multiplier we intend to use. In

this case, the most significant bits of the operands will only

contain zeros, thus large parts of the partial-product array

will consist of zeros. Further, the summation of the most

significant part of the partial-product array and the most

significant bits of the final result will only consist of zeros.

An illustration of an 8-bit multiplication, where the

precision of the operands is four bits, is shown in Fig 2. 3

Fig.2.3 8 bit multiplication precision operand 4 bit

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA. Page 76

Fig. 2.2 Illustration of an unsigned 8-bit multiplication

where the precision of the operands is smaller than the

precision of the multiplication. Unused bits of operands and

product, as well as unused partial products, are shown in

gray. Figure 2.2 shows that large parts of the partial

products are only containing zeros and are, thus, not

contributing with any useful information for the final result.

Since partial products of the same column are summed

together, it would not be wise to use any of the partial

products that are in the same column as the multiplication

that is already computed. Looking closer at the 4-bit

multiplication marked in white in Fig. 2,2 one can also

observe that the column at position S7 should not be used

either. This is because that column might have a carry from

the active part of the partial-product array that will

constitute the final S7. Altogether this makes only the

partial products in the most significant part of the partial-

product array available for a second multiplication. In order

to be able to use the partial products in the most significant

part, there has to be a way of setting their values. For this

we can use the most significant bits of the operands, since

these are not carrying any useful information. By setting

the other partial products to zero, it is then possible to

perform two multiplications within the same partial-

product array, without changing the way the summation of

the partial-product array is done.

How the partial products, shown in gray, can be set to

zero will be investigated in the implementation section later

on. Assume, for now, that there is a way of setting

unwanted partial products to zero, then it suddenly

becomes possible to partition the multiplier into two

smaller multipliers that can compute multiplications in

parallel. In the above illustrations the two smaller

multiplications have been chosen such that they are of

equal size.

This is not necessary for the technique to work. Any size

of the two smaller multiplications can be chosen, as long as

the precision of the two smaller multiplications together are

equal or smaller than the full precision (NFULL) of the

multiplication, To be able to distinguish between the two

smaller multiplications, they are referred to as the

multiplication in the least Significant Part (LSP) of the

partial-product array with size NLSP , shown in white, and

the multiplication in the Most Significant part (MSP) with

size MSP , shown in black.

 NFULL = NLSP + NMSP

It is functionally possible to partition the multiplier into

even more multiplications. For example, it would be

possible to partition a 64-bit multiplier into four 16-bit

multiplications. Given a number K of low precision

multiplications their total size need to be smaller or equal

to the full precision multiplication.

 NFULL ≥


K

1i

Ni

For the rest of this investigation, the precision of the

two smaller multiplications will be equal and half the

precision (N=2) of the full precision N of the multiplier.

III. TWIN PRECISION TECHNIQUE

Initially we present the twin-precision technique using

an illustration of unsigned binary multiplication.In an

unsigned binary multiplication each bit of one of the

operands, called the multiplier, is multiplied with the

second operand, called multiplicand. That way one row of

partial products is generated. Each row of partial products

is shifted according to the position of the bit of the

multiplier, forming what is commonly called the partial-

product array. Finally, partial products that are in the same

column are summed together, forming the final result. An

illustration of an 8-bit multiplication is shown in Fig.2.12

Let us look at what happens when the precision of the

operands is smaller than the multiplier we intend to use. In

this case, the most significant bits of the operands will only

contain zeros, thus large parts of the partial-product array

will consist of zeros.

Further, the summation of the most significant part f the

partial-product array and the most significant bits of the

final result will only consist of zeros. An illustration of an

8-bit multiplication, where the precision of the operands is

four bits, is shown in Fig.2.12 Fig.2.13 shows that large

parts of the partial-product array only consist of zeros and

are, thus, not contributing any useful information to the

final result. What if these partial products could be utilized

for a second, concurrent multiplication. Since partial

products of the same column are summed together, it

would not be wise to use any of the partial products that are

in the same column as the multiplication that is already

computed. Looking closer at the 4-bit multiplication

marked in white in Fig.2.11, one can also observe that the

column at position S7 should not be used either.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA. Page 77

This is because that column might have a carry from the

active part of the partial-product array that will constitute

the final S7.

In order to be able to use the partial products in the most

significant part, there has to be away of setting their values.

For this we can use the most significant bits of the

operands, since these are not carrying any useful

information. If we are only looking at the upper half of the

operands, the partial products generated from these bits are

the ones shown in black in Fig.2.12..

Fig 3.2 Illustration of an unsigned 8-bit multiplication,

where the precision of the operands is smaller than the

precision of the multiplication. Unused bits of operands and

product, as well as unused partial products, are shown in

gray.

By setting the other partial products to zero, it is possible

to perform two multiplications within the same partial-

product array, without changing the way the summation of

the partial-product array is done. How the partial products,

shown in gray, can be set to zero will be presented in the

implementation section later on. Assume, for now, that

there is a way of setting unwanted partial products to zero:

Now it suddenly becomes possible to partition the

multiplier into two smaller multipliers that can compute

multiplications in parallel. In the above illustrations the two

smaller multiplications have been chosen such that they are

of equal size. This is not necessary for the technique to

work. Any size of the two smaller multiplications can be

chosen, as long as the precision of the two smaller

multiplications together are equal or smaller than the full

precisionn (N)of the multiplication To be able to

distinguish between the two smaller multiplications, they

are referred to as the multiplication in the Least Significant

Part (LSP) of the partial-product array with size Nlsp,

shown in white, and the multiplication in the Most

Significant Part (MSP) with size , shown in black.

It is functionally possible to partition the multiplier into

even more multiplications. For example, it would be

possible to partition a 64-bit multiplier into four 16-bit

multiplications.

Fig.3.1. Illustration of an unsigned 8-bit multiplication,

where a 4-bit multiplicationIllustration of an unsigned 8-bit

multiplication, where a 4-bit multiplication, shown in

white, is computed in parallel with a second 4-bit

multiplication, shown in black.,

Given a number of low-precision multiplications, their

total size needs to be smaller or equal to the full-precision

multiplicationThe basic operation of generating a partial

product is that of a 1-bit multiplication using a two-input

AND gate, where one of the input signals is one bit of the

multiplier and the second input signal is one bit of the

multiplicand. The summation of the partial products can be

done in many different ways, but for this investigation we

are only interested in parallel multipliers that are based on

3:2 full adders.2 For this first implementation an array of

adders will be used because of its close resemblance to the

previously used illustration of a multiplication; previous

section we assumed that there is a way of setting unwanted

partial products to zero. This is easily accomplished by

changing the two-input AND gate to a three-input AND

gate, where the extra input can be used for a control signal.

Of course, only the AND gates of the partial products that

have to be set to zero need to be changed to a three-input

version. During normal operation when a full-precision

multiplication is executed the control signal is set to high,

thus all partial products are generated as normal and the

array of adders will sum them together and create the final

result.

3.1Twin Precision On Baugh Wooley Multiplication

It is not as easy to deploy the twin-precision technique

onto a BWmultiplication as it is for the unsigned

multiplication, where only parts of the partial products need

to be set to zero.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA. Page 78

To be able to compute two signed multiplications, it is

necessary to make a more sophisticated modification of the

partial-product array. Fig.2.13 illustrates an 8-

bitBWmultiplication, in which two 4-bit multiplications

have been depicted in white and black. When comparing

the illustration of Fig.2.12 with that of Fig.2.13 one can see

that the only modification needed to compute the4-bit

multiplication in the MSP of the array is an extra sign bit 1

in column . For the 4-bit multiplication in the LSP of the

array, there is a need for some more modifications. In the

active partial-product array of the 4-bit LSP multiplication

(shown in white), the most significant partial product of all

rows, except the last, needs to be negated. For the last row

it is the opposite, here all partial products, except the most

significant, are negated. Also for this multiplication a sign

bit 1 is needed, but this time in column .

Finally the MSB of the results needs to be negated to get

the correct result of the two 4-bit multiplications. To allow

for the full-precision multiplication of size to coexist with

two multiplications of size in the same multiplier, it is

necessary to modify the partial-product generation and the

reduction tree. For the -bit multiplication in the MSP of the

array all that is needed is to add a control signal that can be

set to high, when the -bit multiplication is to be computed

and to low, when the full precision multiplication is to be

computed. To compute the -bit multiplication in the LSP of

the array, certain partial products need to be negated. This

can easily be accomplished by changing the two-input

AND gate that generates the partial product to a two-input

NAND gate followed by an XOR gate. The second input of

the XOR gate can then be used to invert the output of the

NAND gate. When computing the -bit LSP multiplication,

the control input to the XOR gate is set to low making it

work as a buffer. When computing a full-precision

multiplication the same signal is set to high making the

XOR work as an inverter.

When comparing the illustration of Fig.3.1.1 with that of

Fig.3.1.2 one can see that the only modification needed to

compute the4-bit multiplication in the MSP of the array is n

extra sign bit 1 in column s1 . For the 4-bit multiplication

in the LSP of the array, there is a need for some more

modifications.

Fig.3.1.1 Illustration of a signed 8-bit multiplication, using the

BaughWooley

In the active partial-product array of the 4-bit LSP

multiplication (shown in white), the most significant partial

product of all rows, except the last, needs to be negated.

For the last row it is the opposite, here all partial products,

except the most significant, are negated. Also for this

multiplication a sign bit 1 is needed, but this time in

column s4. Finally the MSB of the results needs to be

negated to get the correct result of the two 4-bit

multiplications.

To allow for the full-precision multiplication of size n to

coexist with two multiplications of size in the same

multiplier, it is necessary to modify the partial-product

generation and the reduction tree. For the n/2-bit

multiplication in the MSP of he array all that is needed is

to add a control signal that can be set to high, when the n2/-

bit multiplication is to be computed and to low, when the

full precision multiplication is to be computed. To compute

the n/2- 20 bit multiplication in the LSP of the array,

certain partial products need to be negated. This can easily

be accomplished by changing the two-input AND gate that

generates the partial product to a two-input NAND gate

followed by an XOR gate.

Fig:3.1.2 Illustration of a signed 8-bit multiplication, using the

BaughWooley

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)), Volume 2, Special Issue 3, February 2014)

International Conference on Trends in Mechanical, Aeronautical, Computer, Civil, Electrical and Electronics Engineering

(ICMACE14)

Tamizhan College of Engineering and Technology (ISO 9001:2008 Certified Institution), Tamilnadu, INDIA. Page 79

The second input of the XOR gate can then be used to

invert the output of the NAND gate. When computing the

n/2-bit LSP multiplication, the control input to the XOR

gate is set to low making it work as a buffer. When

computing a full-precision multiplication the same signal is

set to high making the XOR work as an inverter. Finally

the MSB of the result needs to be negated and this can

again be achieved by using an XOR gate together with an

inverted version of the control signal for the XOR gates

used in the partial-product generation. Setting unwanted

partial products to zero can be done by three-input AND

gates as for the unsigned case.

IV. RESULT

Delay optimized multiplier can be obtained with this

technique. Higher order multiplication ie 16bit

multiplication is possible in this Twin Precision Baugh

Wooley Multiplier. Since the delay penalty and the power

dissipation can be reduced the multipler can be made faster.
The result of the comparison of the twin-precision

implementations with their conventional counterparts is

that a twin-precision implementation of BaughWooley

performs equal in terms of delay for the 16- and 48-bit case

and is only 160 ps slower for the 32-bit case. When we

consider power, the twin-precision implementation

dissipates 8conventional16-, 32-, and 48-bit BW

implementation.

V. CONCLUSIONS

The presented twin-precision technique allows for

flexible architectural solutions, where the variation in

operand bitwidth that is common in most applications can

be harnessed to decrease power dissipation and to increase

throughput of multiplications. It turns out that the

BaughWooley algorithm implemented on a HPM reduction

tree is particularly suitable for a twin-precision

implementation.

Due to the simplicity of the implementation, only minor

modifications are needed to comply with the twin-precision

technique. This makes for an efficient twin-precision

implementation, capable of both signed and unsigned

multiplications. Currently a lot of research is done on

reconfigurable architectures, where the architecture can be

adapted to the applications that are being executed. Some

of these proposed architectures can adapt their arithmetic

logic units to operate on different bitwidths, depending on

the application .The twin-precision technique, which offers

xibility at a low implementation overhead, makes it

possible to efficiently deploy these flexible architectures.

REFERENCES

[1] Baugh.C.R and Wooley B.A. A Two‟s Complement Par allel Array
Multiplication Algorithm. IEEE Transactions on Computers,

22:1045‟, December 1973.–701, Jul. 2000.

[2] Benini.L, Micheli.G.D, Maci.Ai, E.Macii, Poncino.M, and Scars.Ri,

“Glitching power minimization by selective gate freezes,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 3,
pp.287²97, June 2000.

[3] Eriksson.H. Efficient Implementation and Analysis of CMOS

Arithmetic Circuits. PhD thesis, Chalmers University of Technology,

2003.

[4] Huang.Z and Ercegovac.M.D. Two-Dimensional Signal Gating for
Low-Power Array Multiplier Design. In Proceedings of the IEEE

International Symposium on Circuits and Systems pages II–IJ vol.1,

2002.

[5] LakshmiNarayanan.G and Venkataramani.B ,“Optimization

Techniques for FPGA-Based Wave Pipelined DSP Blocks” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol.13. No 7. pp 783-
792, July 2005.

[6] Oklobdzija.V.G, Villeger.D, and Liu .S.S,A Method for Speed
Optimized Partial Product Reduction and Generation of Fast Parallel

Multipliers Using an Algorithmic approach IEEE Transactions on

Computers, 45C):294˜6 march 1996.

[7] Wallace.C.S, “A suggestion for a fast multiplier,” IEEE Trans.

Electron.Comput., vol. 13, pp. 14–17, Feb. 1964

