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Abstract- Multiplication is indeed the most crucial 

operation in digital signal processing (DSP). Its 

implementation requires large hardware resources and 

significantly affects the size, performance, and power 

consumption of a DSP system. Technique for  16 bit integer 

multiplication is implemented in this project .Baugh-Wooley 

algorithm is an algorithm used for the multiplication ,delay 

and power dissipation can’t be reduced further in this type.  

Twin precision technique  is noteworthy for its low power 

dissipation. Multiplier is adapted to bitwidth of the operands 

to be computed to obtain the reduced power dissipation. The 

technique also results in an increased computational 

throughput, by allowing several narrow-width operations to 

be computed in parallel. Using Twin-precision technique with 

Baugh-Wooley algorithm, we achieve significant optimized 

delay and good power reduction.The project describe how to 

apply the twin-precision technique also to signed multiplier 

schemes, such as Baugh Wooley . It is shown that the twin-

precision delay penalty is small (5% to 10% and that a 

significant reduction in power dissipation (40% to 70% can be 

achieved,when operating on narrow-width operands.  

Index term- Baugh Wooley algorithm,Twin Precision 

technique  

I. INTRODUCTION 

Multiplication is a complex arithmetic operation, which 

is reflected in its relatively high signal propagation delay, 

high power dissipation, and large area requirement. When 

choosing a multiplier for a digital system, the bit width of 

the multiplier is required to be at least as wide as the largest 

operand of the applications that are to be executed on that 

digital system. The bit width of the multiplier is, therefore, 

often much larger than the data represented inside the 

operands, which leads to unnecessarily high power 

dissipation and unnecessary long delay.     
 
        

This resource waste could partially be remedied by 

having several multipliers, each with a specific bit width, 

and use the particular multiplier with the smallest bit width 

that is large enough to accommodate the current 

multiplication. Such a scheme would assure that a 

multiplication would be computed on a multiplier that has 

been optimized in terms of power and delay for that 

specific bit width. However, using several multipliers with 

different bit widths would not be an efficient solution, 

mainly because of the huge area overhead. It has been 

shown in many studies that more than 50% of the 

instructions are instructions where both operands are less 

than or equal to 16 bits. Such operations are called narrow-

width operations.   

This property has been explored to save power, through 

operand guarding. In operand guarding the most significant 

bits of the operands are not switched, thus power is saved 

in the arithmetic unit when multiple narrow-width 

operations are computed consecutively. It is shown that the 

power reduction of an operand-guarded integer unit was 

54% to 58%, which accounts for a total power reduction of 

5–6% for an entire data path. 

Narrow-width operands have also been used to increase 

instruction throughput, by computing several narrow-width 

operations in parallel on a full-width data path. It is showed 

a 7% speedup for a simple 4-bit ALU, which excluded the 

multiplier, in parallel with four simple 16-bit ALUs that 

share a 64-bit routing. 

II. BAUGH WOOLEY ALGORITHM 

The Baugh Wooley algorithm is a relative 

straightforward way of performing signed multiplications 

.illustrates the algorithm for an 8-bit case, where the 

partial-product array has been reorganized according to the 

scheme of Hatamian.  
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The creation of the reorganized partial-product array 

comprises three steps: i) the most significant partial product 

of the first N-1 rows and the last row of partial products 

except the most significant have to be negated, ii) a 

constant one isadded to the th column, iii) the most 

significant bit (MSB) of the final result is 

negated.Multiplication involves 2 basic operations: the 

generation of the partial product and their accumulation 

.Therefore, there are Possible ways to speed up the 

multiplication: reduces the complexity, and as a result 

reduces the time needed to accumulate the partial 

products.Both solutions can be applied simultaneously.                    

Baugh-Wooley Twos Compliment Signed 

Multiplier:Twos Compliments is the most popular method 

in representing signed integers in Computer sciences.It is 

also an operation of negation(Converting positive to 

negative numbers or vice versa) in computers which 

represent negative numbers using twos compliments. Its 

use is so wide today because it does not require the addition 

and subtraction circuitry to examine the signs of the 

operands to determine whether to add or subtract.Twos 

compliment and one’s compliment representations are 

commonly used since arithmetic units are simpler to 

design. Baugh-Wooley Multiplier is used for both unsigned 

and signed number multiplication. Signed Number 

operands which are represented in 2s complemented form. 

Partial Products are adjusted such that negative sign move 

to last step, which in turn maximize the regularity of the 

multiplication array. Baugh-Wooley Multiplier operates on   

signed operands with 2s complement representation to 

make sure that the signs of all partial products are positive. 

Power consumption in Baugh-Wooley multipliers is  

minimum compared to other conventional multiplier units. 

So it clears that the signed binary multiplication through 

Baugh- Wooley multiplication is suited for large multiplier 

implementation. The  improvements in constraint can be 

used to make Baugh-Wooley multiplier more efficient .The 

fan-out of the multiplier architectures are also given which 

directly gives the possibility of the multiplier to form large 

circuits. This can be extended tothe pipelined multiplier 

architecture also to verify the parameters. Latency and 

speed are the important factors with pipelining under 

consideration.The synthesis results of 4-bitpipelined 

multipliers . The pipeline constraint increases the speedof 

the multiplier considerably with an increase in power 

consumption. 

The twin-precision technique using an illustration of 

unsigned binary multiplication is presented. In an unsigned 

binary multiplication each bit of one of the operands, called 

the multiplier, is multiplied with the second operand, called 

multiplicand.                                     

                                    Pij=yixj            

That way one row of partial products is generated. Each 

row of partial products is shifted according to the position 

of the bit of the multiplier, forming what is commonly 

called the partial- product array. Finally, partial products 

that are in the same column are summed together, forming 

the final result. An illustration of an 8-bit multiplication is 

shown in Fig. 2.2 

   

Fig.2.2  8 bit multiplication 

Let us look at what happens when the precision of the 

operands is smaller than the multiplier we intend to use. In 

this case, the most significant bits of the operands will only 

contain zeros, thus large parts of the partial-product array 

will consist of zeros. Further, the summation of the most 

significant part of the partial-product array and the most 

significant bits of the final result will only consist of zeros. 

An illustration of an 8-bit multiplication, where the 

precision of the operands is four bits, is shown in Fig 2. 3 

 

Fig.2.3    8 bit multiplication precision operand 4 bit 
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Fig. 2.2 Illustration of an unsigned 8-bit multiplication 

where the precision of the operands is smaller than the 

precision of the multiplication. Unused bits of operands and 

product, as well as unused partial products, are shown in 

gray. Figure 2.2 shows that large parts of the partial 

products are only containing zeros and are, thus, not 

contributing with any useful information for the final result. 

Since partial products of the same column are summed 

together, it would not be wise to use any of the partial 

products that are in the same column as the multiplication 

that is already computed. Looking closer at the 4-bit 

multiplication marked in white in Fig. 2,2 one can also 

observe that the column at position S7 should not be used 

either. This is because that column might have a carry from 

the active part of the partial-product array that will 

constitute the final S7. Altogether this makes only the 

partial products in the most significant part of the partial-

product array available for a second multiplication. In order 

to be able to use the partial products in the most significant 

part, there has to be a way of setting their values. For this 

we can use the most significant bits of the operands, since 

these are not carrying any useful information. By setting 

the other partial products to zero, it is then possible to 

perform two multiplications within the same partial-

product array, without changing the way the summation of 

the partial-product array is done. 

How the partial products, shown in gray, can be set to 

zero will be investigated in the implementation section later 

on. Assume, for now, that there is a way of setting 

unwanted partial products to zero, then it suddenly 

becomes possible to partition the multiplier into two 

smaller multipliers that can compute multiplications in 

parallel. In the above illustrations the two smaller 

multiplications have been chosen such that they are of 

equal size.  

This is not necessary for the technique to work. Any size 

of the two smaller multiplications can be chosen, as long as 

the precision of the two smaller multiplications together are 

equal or smaller than the full precision (NFULL) of the 

multiplication, To be able to distinguish between the two 

smaller multiplications, they are referred to as the 

multiplication in the least Significant Part (LSP) of the 

partial-product array with size NLSP , shown in white, and 

the multiplication in the Most Significant part (MSP) with 

size MSP , shown in black. 

                NFULL = NLSP + NMSP                                                           

It is functionally possible to partition the multiplier into 

even more multiplications. For example, it would be 

possible to partition a 64-bit multiplier into four 16-bit 

multiplications. Given a number K of low precision 

multiplications their total size need to be smaller or equal 

to the full precision multiplication.  

                             NFULL ≥


K

1i

Ni                                                                                                                                   

For the rest of this investigation, the precision of the      

two smaller multiplications will be equal and half the 

precision (N=2) of the full precision N of the multiplier. 

III. TWIN PRECISION TECHNIQUE 

Initially we present the twin-precision technique using 

an illustration of unsigned binary multiplication.In an 

unsigned binary multiplication each bit of one of the 

operands, called the multiplier, is multiplied with the 

second operand, called multiplicand. That way one row of 

partial products is generated. Each row of partial products 

is shifted according to the position  of the bit of the 

multiplier, forming what is commonly called the partial- 

product array. Finally, partial products that are in the same 

column are summed together, forming the final result. An 

illustration of an 8-bit multiplication is shown in Fig.2.12 

Let us look at what happens when the precision of the 

operands is smaller than the multiplier we intend to use. In 

this case, the most significant bits of the operands will only 

contain zeros, thus large parts of the partial-product array 

will consist of zeros. 

Further, the summation of the most significant part  f the 

partial-product array and the most significant bits of the 

final result will only consist of zeros. An illustration of an 

8-bit multiplication, where the precision of the operands is 

four bits, is shown in Fig.2.12 Fig.2.13  shows that large 

parts of the partial-product array only consist of zeros and 

are, thus, not contributing any useful information to the 

final result. What if these partial products could be utilized 

for a second, concurrent multiplication. Since partial 

products of the same column are summed together, it 

would not be wise to use any of the partial products that are 

in the same column as the multiplication that is already 

computed. Looking closer at the 4-bit multiplication 

marked in white in Fig.2.11, one can also observe that the 

column at position S7 should not be used either.  
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This is because that column might have a carry from the 

active part of the partial-product array that will constitute 

the final S7.  

In order to be able to use the partial products in the most 

significant part, there has to be away of setting their values. 

For this we can use the most significant bits of the 

operands, since these are not carrying any useful 

information. If we are only looking at the upper half of the 

operands, the partial products generated from these bits are 

the ones shown in black in Fig.2.12..  

 

Fig 3.2 Illustration of an unsigned 8-bit multiplication, 

where the precision of the    operands is smaller than the 

precision of the multiplication. Unused bits of operands and 

product, as well as unused partial products, are shown in 

gray.   

By setting the other partial products to zero, it is possible 

to perform two multiplications within the same partial-

product array, without changing the way the summation of 

the partial-product array is done. How the partial products, 

shown in gray, can be set to zero will be presented in the 

implementation section later on. Assume, for now, that 

there is a way of setting unwanted partial products to zero: 

Now it suddenly becomes possible to partition the 

multiplier into two smaller multipliers that can compute 

multiplications in parallel. In the above illustrations the two 

smaller multiplications have been chosen such that they are 

of equal size. This is not necessary for the technique to 

work. Any size of the two smaller multiplications can be 

chosen, as long as the precision of the two smaller 

multiplications together are equal or smaller than the full 

precisionn (N )of the multiplication To be able to 

distinguish between the two smaller multiplications, they 

are referred to as the multiplication in the Least Significant 

Part (LSP) of the partial-product array with size Nlsp, 

shown in white, and the multiplication in the Most 

Significant Part (MSP) with size , shown in black.  

It is functionally possible to partition the multiplier into 

even more multiplications. For example, it would be 

possible to partition a 64-bit multiplier into four 16-bit 

multiplications.  

 

Fig.3.1. Illustration of an unsigned 8-bit multiplication, 

where a 4-bit multiplicationIllustration of an unsigned 8-bit 

multiplication, where a 4-bit multiplication, shown in 

white, is computed in parallel with a second 4-bit 

multiplication, shown in black.,  

Given a number of low-precision multiplications, their 

total size needs to be smaller or equal to the full-precision 

multiplicationThe basic operation of generating a partial 

product is that of a 1-bit multiplication using a two-input 

AND gate, where one of the input signals is one bit of the 

multiplier and the second input signal is one bit of the 

multiplicand. The summation of the partial products can be 

done in many different ways, but for this investigation we 

are only interested in parallel multipliers that are based on 

3:2 full adders.2 For this first implementation an array of 

adders will be used because of its close resemblance to the 

previously used illustration of a multiplication; previous 

section we assumed that there is a way of setting unwanted 

partial products to zero. This is easily accomplished by 

changing the two-input AND gate to a three-input AND 

gate, where the extra input can be used for a control signal. 

Of course, only the AND gates of the partial products that 

have to be set to zero need to be changed to a three-input 

version. During normal operation when a full-precision 

multiplication is executed the control signal is set to high, 

thus all partial products are generated as normal and the 

array of adders will sum them together and create the final 

result. 

3.1Twin Precision On Baugh Wooley Multiplication 

It is not as easy to deploy the twin-precision technique 

onto a BWmultiplication as it is for the unsigned 

multiplication, where only parts of the partial products need 

to be set to zero.  
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To be able to compute two signed multiplications, it is 

necessary to make a more sophisticated modification of the 

partial-product array. Fig.2.13 illustrates an 8-

bitBWmultiplication, in which two 4-bit multiplications 

have been depicted in white and black. When comparing 

the illustration of Fig.2.12 with that of Fig.2.13 one can see 

that the only modification needed to compute the4-bit 

multiplication in the MSP of the array is an extra sign bit 1 

in column . For the 4-bit multiplication in the LSP of the 

array, there is a need for some more modifications. In the 

active partial-product array of the 4-bit LSP multiplication 

(shown in white), the most significant partial product of all 

rows, except the last, needs to be negated. For the last row 

it is the opposite, here all partial products, except the most 

significant, are negated. Also for this multiplication a sign 

bit 1 is needed, but this time in column . 

Finally the MSB of the results needs to be negated to get 

the correct result of the two 4-bit multiplications. To allow 

for the full-precision multiplication of size to coexist with 

two multiplications of size in the same multiplier, it is 

necessary to modify the partial-product generation and the 

reduction tree. For the -bit multiplication in the MSP of the 

array all that is needed is to add a control signal that can be 

set to high, when the -bit multiplication is to be computed 

and to low, when the full precision multiplication is to be 

computed. To compute the -bit multiplication in the LSP of 

the array, certain partial products need to be negated. This 

can easily be accomplished by changing the two-input 

AND gate that generates the partial product to a two-input 

NAND gate followed by an XOR gate. The second input of 

the XOR gate can then be used to invert the output of the 

NAND gate. When computing the -bit LSP multiplication, 

the control input to the XOR gate is set to low making it 

work as a buffer. When computing a full-precision 

multiplication the same signal is set to high making the 

XOR work as an inverter.  

When comparing the illustration of Fig.3.1.1 with that of 

Fig.3.1.2 one can see that the only modification needed to 

compute the4-bit multiplication in the MSP of the array is n 

extra sign bit 1 in column s1 . For the 4-bit multiplication 

in the LSP of the array, there is a need for some more 

modifications. 

 

Fig.3.1.1 Illustration of a signed 8-bit multiplication, using the 

BaughWooley 

In the active partial-product array of the 4-bit LSP 

multiplication (shown in white), the most significant partial 

product of all rows, except the last, needs to be negated. 

For the last row it is the opposite, here all partial products, 

except the most significant, are negated. Also for this 

multiplication a sign   bit 1 is needed, but this time in 

column s4. Finally the MSB of the results needs to be 

negated to get the correct result of the two 4-bit 

multiplications. 

To allow for the full-precision multiplication of size n to 

coexist with two multiplications of size in the same 

multiplier, it is necessary to modify the partial-product 

generation and the reduction tree. For the n/2-bit 

multiplication in the MSP of  he array all that is needed is 

to add a control signal that can be set to high, when the n2/-

bit multiplication is to be computed and to low, when the 

full precision multiplication is to be computed. To compute 

the n/2- 20 bit multiplication in the LSP of the array, 

certain partial products need to be negated. This can easily 

be accomplished by changing the two-input AND gate that 

generates the partial product to a two-input NAND gate 

followed by an XOR gate. 

 

Fig:3.1.2 Illustration of a signed 8-bit multiplication, using the 

BaughWooley 
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The second input of the XOR gate can then be used to 

invert the output of the NAND gate. When computing the 

n/2-bit LSP multiplication, the control input to the XOR 

gate is set to low making it work as a buffer. When 

computing a full-precision multiplication the same signal is 

set to high making the XOR work as an inverter. Finally 

the MSB of the result needs to be negated and this can 

again be achieved by using an XOR gate together with an 

inverted version of the control signal for the XOR gates 

used in the partial-product generation. Setting unwanted 

partial products to zero can be done by three-input AND 

gates as for the unsigned case. 

IV. RESULT 

Delay optimized multiplier can be obtained with this 

technique. Higher order multiplication ie 16bit 

multiplication is possible in this Twin Precision Baugh 

Wooley Multiplier. Since the delay penalty and the power 

dissipation can be reduced the multipler can be made faster. 
The result of the comparison of the twin-precision 

implementations with their conventional counterparts is 

that a twin-precision implementation of BaughWooley 

performs equal in terms of delay for the 16- and 48-bit case 

and is only 160 ps slower for the 32-bit case. When we 

consider power, the twin-precision implementation 

dissipates 8conventional16-, 32-, and 48-bit BW 

implementation. 

V. CONCLUSIONS  

The presented twin-precision technique allows for 

flexible architectural solutions, where the variation in 

operand bitwidth that is common in most applications can 

be harnessed to decrease power dissipation and to increase 

throughput of multiplications. It turns out that the 

BaughWooley algorithm implemented on a HPM reduction 

tree is particularly suitable for a twin-precision 

implementation.  

 

 

 

 

 

 

 

 

Due to the simplicity of the implementation, only minor 

modifications are needed to comply with the twin-precision 

technique. This makes for an efficient twin-precision 

implementation, capable of both signed and unsigned 

multiplications. Currently a lot of research is done on 

reconfigurable architectures, where the architecture can be 

adapted to the applications that are being executed. Some 

of these proposed architectures can adapt their arithmetic 

logic units to operate on different bitwidths, depending on 

the application .The twin-precision technique, which offers      

xibility at a low implementation overhead, makes it 

possible to efficiently deploy these flexible architectures. 
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