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Abstract— We use a recently proposed model (de Souza 
Mendes et al. 2011) for elasto-viscoplastic materials to analyze 
inertia flows inside a lid-driven cavity. The constitutive 
equation is a modified version of the viscoelastic Oldroyd-B 
model in which the viscosity, relaxation and retardation times 
depend on the material struc-turing level. The solution is 
obtained numerically using a three-field Galerkin least-
squares-like formulation proposed by Behr et al. 1993, in 
terms of extra-stress, pressure and velocity . The performance 
of the constitutive equation and the combined effects of, 
elasticity and viscoplasticity are analyzed. Results focus on the
determination of the yielded and unyielded regions revealing 
striking effects of these parameters on the flow field.
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I. INTRODUCTION

Elasto-viscoplastic fluids are structured materials that 
exhibit a complex non-Newtonian behavior that is related 
to its structure state, which in turn depends on the level of 
stress applied to it. Below a certain stress threshold, called 
the yield stress, the material is highly structured, with high 
levels of elasticity and viscosity. This region can be called 
the apparent unyielded region. When submitted to stress 
levels above the yield value, the material experiences a 
structure break-up leading to a fluid-like behavior where 
vis- cosity decays orders of magnitude and elasticity tends 
to disappear. Recent experiments present some data that 
show some elastic effects in flows of viscoplastic liquids 
(de Souza Mendes et al. 2007), Sikorski et al. 2009). This 
class of materials is present in several important industrial      
sectors, such as oil, food, pharmaceutical, and cosmetics. 
The constitutive equation used there was developed as a 
modified Oldroyd-B equation, which takes into account 
elasticity below yield stress, and a shear-thinning behavior 
above yield stress. More recently, a novel and more reliable 
Oldroyd-B type constitutive equation was proposed de 
Souza Mendes et al. 2011. One important feature of this 
equation is that it is also capable to predict the thixotropic 
behavior of fluids – a characteristic that may be present in 
many viscoplastic materials.

In this work, we obtain numerical solutions of the 
governing conservation equations using a three-field 
Galerkin least-squares–like (GLS) formulation Behr et al. 
1933, which takes into account velocity, pressure and 
extra-stress fields as primal variables. Adding mesh-
dependent terms to the governing equations, the 
formulation is able to successfully capture the elastic and 
viscous effects present in the used model, even making use 
of an equal-order combination of linear Lagrangian finite 
element interpolations. The results focus on the 
determination of the yielded and unyielded regions 
revealing striking effects of these parameters on the flow 
field.

II.   MECHANICAL MODELING

The mechanical model for the problem under analysis is 
made up by the usual mass and momentum governing 
equations for incompressible fluids, coupled with the 
constitutive equation for elasto-viscoplastic fluids recently 
proposed in de Souza Mendes et al. 2011. the conservation 
equations of mass and momentum, given by:

                    div u= 0 inΩ                          (1)

               ρ (∇ u)u+∇ p−div τ −f= 0 inΩ     (2)

1

where u is velocity vector , P= p+ρϕ is the modified 

pressure, p is the pressure, ρ is the fluid density, and is the 
g= −∇ϕ is the gravitational force per unit mass.

The constitutive equation of the model adopted in this 

work for the extra-stress tensor τ= T +p1 is given by: 

                         τ+θ1τ
∇

= η(̇γ+θ2

˙
γ
∇)inΩ                          (3)

where γ̇= ∇u+∇ uT
is the rate of deformation 

tensor field, and the upper-convected time derivatives of 
τ and γ̇ are given by:
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                          τ
∇

=
dτ
dt
−τ .∇ u−∇ uT . τ                   (4)

                         
˙
γ
∇

=
d γ̇
dt
− γ̇ .∇u−∇ uT . γ̇                   (5)

In this model, its rheological parameters, viscosity 

function (η) , relaxation time θ1= (1− η∞ηeq
)ηeq

Geq

and 

retardation time θ2= (1− η∞ηeq
)η∞Geq

are written in terms 

of a parameter structure λ , which evolves with the time 
that the fluid is being submitted to the certain stress. This 
structure parameter is time dependent, we can just assign it 
to a thixotropic behavior. In the model used in the present 

work, the evolution equation for λ is given by:

dλ
dt

=
∂ λ
∂ t

+u .∇ (λ)= 1
teq [(1− λ)−(1−λeq)(λλeq)] (6)

where the RHS is composed of a (positive) buildup term 
and a (negative) breakdown term de Souza Mendes et al. 
2009. 

The parameter t eq is the equilibrium time, which 
physically means a time scale for the microstructure 
buildup process. It can be easily observed that when 
t eq→0 the fluid structure instantaneoulsy develops to its 

equilibrium state and no thixotropic behavior is observed.                   
This situation result in a purely elasto-viscous behavior, 
and is the situation analyzed in he present work. The 
relation between the structure parameter and the equlibrium 
viscosity is given by:

                   λeq (̇γ )=
ln ηeq (γ̇ )− ln η∞

ln η0− ln η∞
                   (7)

where η0 is the zero-shear-rate viscosity and 

γ̇=√1/2tr γ̇ 2 is 

the intensity of γ̇ . The equilibrium structure parameter 
λeq is a scalar quantity that varies within the range [0,1]. 

It gives a measure of the structuring level of the 

microstructure, i.e., λeq= 0 when the structuring level is 

minimum, and λeq= 1 when the material is fully 
structured. 

Therefore, the λeq can thus be seen as a normalized 
equilibrium viscosity function, since there is a one-to-one 
relationship between structure and viscosity levels.

As seen, the relaxation time and retardation time are 

written in terms of the infinite-shear-rate viscosity η∞ , the 

equilibrium viscosity ηeq and the equilibrium elastic 
modulus (de Souza Mendes and Thompson, 2012b), given 
by:

                                 Geq= G0 e
m(1

λ eq

− 1)                    (8)

Where G0 is the structural elastic modulus of the fully 
structured material, and m is a positive scalar parameter 

that dictates the sensitivity of Geq with λeq . In this 
equation, it can be observed that its lowest value (i.e., 
highest relaxation and retardations times) occurs at the 

highest value of λ , and it increases as λ decays. This 
function is chosen to simulate the elastic behavior of 
viscoplastic fluids at the regions of low stress values, i.e., 
where the stress is below the yield stress.

In this work, we employed the following expression for 
the equilibrium viscosity (de Souza Mendes and Dutra et 
al.  2004):

2

           ηeq (γ̇ )= [1− exp(−ηo γ̇
τ y

)]{τ y

γ̇
+K γ̇ n− 1}+η∞       (9)

where η0 is the low shear rate viscosity plateau, τ y is 
the yield stress, K is the consistency index, n the power-law 

index and η∞ is the high shear rate viscosity plateau.

2.1 Numerical Approximations 

To approximate the mechanical model described above 
it was employed a multi-field stabilized Galerkin least-
squares formulation in therms of velocity, pressure and 
extra-stress. The classical Galerkin method does not 
guarantee stable approximations, may generate solutions 
without physical meaning and numerical pathologies for 
mixed incompressible fluid flows. 
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The inherent difficulties associated to the Galerkin 
method are due to the compatibility of velocity and 
pressure finite element subspaces, e.g., the need to satisfy 
the Babuška-Brezzi condition involving these subspaces, a 
condition which was established by Babuška and Brezzi in 
the early 70's. The velocity and pressure subspaces may not 
be spanned by any arbitrary combination of finite element 
interpolations and, in the case of this work, which employs 
a multi-field formulation, another compatibility condition 
must be imposed on the choice of the stress and velocity 
subspaces. The alternative to remedy Galerkin deficiencies 
adopted here for incompressible fluid flows was to change 
the classical Galerkin formulation – adding mesh-
dependent terms, which are functions of the residuals of 
flow governing equations, evaluated element-wise – and 
use simple Lagrangean elements.

III. NUMERICAL RESULTS

The Fig. 1 schematically shows the Lc x Lc geometry 
with the employed boundary conditions: uniform unitary 
velocity in the x2 direction on the top wall and non-slip 
condition (u=0) at the remaining walls. For all 
computations, it is used a mesh with 10000 elements, with 
10201 nodal points.

A mesh independence procedure evaluating the relative 
error of the extra-stress magnitude is performed. The Fig. 2 

shows a detailed view of the stress profile at x1
*= 0.5 . 

Despite results are almost coincident for the meshes 
investigated (errors below 3%), the more refined mesh 
tested – with 100 Q1 finite elements and 10,201 nodal 
points, which produces a smallest value of its non-

dimension element size hKmin

* = hK / L= 1.41 .10− 2
is 

selected in order to guarantee more accurate 
approximations close the cavity corners. 

Figure 1 – The geometry

Figure 2 – Mesh independence test

All the simulations are obtained for steady flows, 

neglecting inertia and thixotropy t eq
* →0 , i.e., the material 

structure changes imediately after being submitted to a 
certain stress level. Also, all the results are obtained for 
negligible retardation times. The results show the effects of 
the rheological parameters and of the lid cavity velocity on 
the yield surfaces. The yield surfaces are defined as the 
locus of points in which the magnitude of the strain rate is 
below the lowest shear rate value for which the viscosity 

equals the higher viscosity plateau where η= η0 , i.e., 

when, γ̇<γ̇ 0 (dos Santos et al., 2011). All the results are 

obtained for η∞
* = 0.01 .

3

            
                        (a)                                                           (b)

            
                          (c)                                                           (d)

Figure 3 - Yield surfaces: flow intensity influence for                       

ρ*= 0 , θ0
*= 100 , η0

*= 1000 ,   η∞
* = 0,01 e  m= 20 : 

a) U*=0,01; b) U*=0,1;  c) U*=0,2; d) U*=0,25
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The Fig.(3) show the influence of flow intensity U* on 
yield surface topology. As it is noticed, two apparently 
unyielded regions appear: one close and attached to the 
bottom wall and another close to the top wall. Both regions 
decrease as U* increases throughout the cavity, as 
expected. The apparently unyielded region close the top 
wall is associated with the vortex flow, and undergoes a 
fast decrease as   U* increases, since this region is strongly 
affected by the increasingly kinematic amounts imposed on 
cavity lid. The apparently unyielded region at the bottom 
only experiments a slight decrease, since they are less 
sensitive to kinematics increase on the cavity lid. In 
addition, for the highest values of U* , it is verified that the 
bottom unyielded region becomes disjointed.
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