

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 8, August 2018)

1

Handling Vulnerable Script Code in Web Environment
Amit Verma

1
, Bhupendra Malviya

2
, Dr. Anshuman Sharma

3

1
M.Tech (CSE),Research Scholar,

2
Asst.Professor (CSE),

3
Head (CSE) & Asso.Professor

Abstract: Nowadays, network security is becoming more

and more important in our daily life. Owing to that the fact

that we cannot live without the Internet, providing a good and

security networking environment is significantly necessary.

However, cross site scripting (XSS) attacks risk millions of

websites. XSS can be used to inject malicious scripting code

into applications, and then return the code back to the

customer side. When users use the web browser to visit the

place where the malicious scripting code has been injected, the

code will execute directly to the customers computer. A

common solution is detecting the key words of XSS in the

browser javascript engine or on the server part to filter the

malicious code. Nonetheless, the attacker can construct

different new types of malicious scripting to avoid detecting so

that it is difficult to collect all keywords in the detecting-list to

avoid XSS attacking. Therefore, it is worth letting more

people pay attention to XSS and finding more solutions to

avoid XSS attacks

Keywords: Javascript, XSS Attacking,

I. INTRODUCTION

The most exceptional revolution in the history of

mankind in the field of communication is the Internet.

There are various services and resources, defined as

Internet. As the Internet is growing, the web sites become

more professional and dynamic. The term WWW (World

Wide Web), which refers to as the web platform, has

evolved into a large-scale system composed by millions of

applications and services. In the beginning, there were only

static web pages aiming at providing information expressed

in text and graphics. As the Internet is growing, the web

sites become more professional and dynamic. In order to be

able to change the design of the web page to meet today’s

taste and to provide personalized and current information to

the users, the web sites no longer use static web pages.

Now web applications are used to generate dynamic web

pages and become the dominant method for implementing

and providing access to on-line services and becoming

truly pervasive in all kinds of business models.

Apart from advantages of Internet like, faster

communication, information sharing, entertainment, social

networking, online-services (education, banking,

government enterprises etc.) and e-commerce, there are

some disadvantages with it e.g. theft of personal

information, spamming, virus threat, pornography, social

disconnect etc.

The benefits have to communicate, to share data from

one to many and many more having some drawbacks, by

which any third person can steal your data without your

knowledge and permission, is termed as attack.

Web has also become complex, without boundaries and

immediate in its nature. A single Web page today can be

comprised of information from many simultaneous sources

from around the world. It only takes one of these sources to

be compromised in order for a new Web attack to be

quickly propagated and delivered to many unsuspecting

Web users.

Web-based systems are a composition of infrastructure

components, such as web servers and databases, and of

application-specific code, such as HTML-embedded scripts

and server-side applications.

II. RELATED WORK

By Shaukat Ali, Shah Khusro, AzharRauf[6] et.al,

provide security framework that will use well-known

cryptographic techniques to address the issues of data

confidentiality, data integrity, and authentication as well as

protection against the most common XSS and CSRF

attacks in web mashups. This new approach to software

development can pose many security challenges that bypass

the domain of cross site referencing and issues in data

integrity, user authentication, and data confidentiality

emerge. presents a security framework using well-known

cryptographic techniques that can be used in Server-Side

mashup model and will provide solutions to most common

mashup security attacks suchas CSRF, XSS and other

relevant security issues.

Ms. R.Priyadarshini, Ms. Jagadiswaree.D, Ms.

Fareedha.A, Mr. Janarthanan.M/

B.S.AbdurRahman[7] et.al, Proposed solution to detect

and prevent against the malicious attacks over the

developer’s Web Application written in programming

languages like PHP, ASP.NET and JSP also created an API

(Application Programming Interface) inactive language

through which transactions and interactions are sent to IDS

Server through Inter Server Communication Mechanism.

System is not restricted to detect and prevent vulnerabilities

in PHP based applications but also can be used for the web

applications developed in .NET and JSP by which the

intrusions are detected and prevented via IDS Server with

the API developed in native language.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 8, August 2018)

2

Jan-Min Chen/ Yu Da University Miaoli, Taiwan,

Chia-Lun Wu/ Tatung University Taipei, Taiwan[8]
et.al, Implemented an automated vulnerability scanner that

for the injection attacks. It is asystem that automated

scanned the injection attack vulnerabilities. Model scans

Web application security were detecting vulnerability

based on injection point, exactly obtain the information of

injection point, and using black box testing to analysis what

potential vulnerability,tackled vulnerable injection point.

HossainShahriar and Mohammad Zulkernine[9], et
al. developed a server side JavaScript code injection

detection approach, in which pre and post pend each

legitimate JavaScript code block with comment statements

that include identical random token. They identify the

expected features of a JavaScript code block, save the

features in policies, and embed the policy information into

comments. The injection attack includes, (i) code without

comment, (ii) code with correct and duplicate comment,

and (iii) code with correct and non-duplicate comment;

however, the actual code features are not matching with the

intended features specified in a policy. They developed a

prototype tool in Java to inject JavaScript comments and

generate policies based on legitimate code features.

Blake Anderson and Daniel Quist[10]et al.
demonstrate the application of a Gaussian process change-

point model to the problem of identifying a code injection

attack against the Internet Explorer browser. Using system

call traces to condition the transition probabilities of

Markov chains, and able to locate the change-points caused

by these exploits.

Ryan Riley, Purdue University, Xuxian Jiang,

George Mason University, DongyanXu, Purdue

University[11], et al. present an architectural approach to

prevent code injection attacks. Instead of maintaining the

traditional single memory space containing both code and

data, which is often exploited by code injection attacks, the

approach creates a split memory that separates code and

data into different memory spaces. Consequently, in a

system protected by code injection attacks may result in the

injection of attack code into the data space.

Hallaraker et al. [12] proposed a strictly client-side

mechanism for detecting malicious JavaScript's. The

system uses an auditing system in the Mozilla Firefox web

browser that can perform both anomaly or misuse

detection. This system monitors the execution of JavaScript

and compares it to high level policies to detect malicious

behavior. For each scenario specific, rules have to be

implemented to enable detection. These rules allow

specifying sequences of JavaScript methods, together with

their corresponding, that are considered malicious,

parameters.

With this information, state driven rules can be

implemented. The system performs most of the auditing in

XPConnect, which is the layer that connects the JavaScript

engine with the other components of Mozilla Firefox. Some

additional auditing features are implemented in

DOMClassInfo (interface flattening and behavior

implementing), LiveConnect (communication between

JavaScript, Java applets and other plugins) and the Security

Manager. Internal processing performed by the JavaScript

program is not accessible to the rules.

III. METHODOLOGY

3.1 Approach

To move the analysis of systems security from an art to a

science, a framework for a methodical security analysis and

recommendation of solutions will develop. This framework

includes a methodical process of creating attack and

protection trees, development of metrics and rule sets to

propagate the metrics throughout the trees, and tools for the

analyst to interface with a decision-maker to select the

appropriate protections for the system. In this approach,

implement protections into a system which is repeatable

and unambiguous.

3.2 Data Needs

To properly analyze the security of web application

system, certain system dependent on user inputs are

required. These inputs may include such things as

probabilities of success and costs for attacks and

protections. The focus in this research is not on how the

inputs are derived but rather on what to measure and how

the user inputs can be used in the security analysis.

3.3 Analytic Techniques

Testing software for XSS vulnerabilities can be done in

two ways: static and dynamic testing.

Static testing is typically done by performing source

code analysis. A method that creates a control flow graph

of information that is processed by a server page. The

graph consists of input and output nodes. An input node

can be a statement that processes input data from a form,

reads the value of a query string, a database field, a cookie,

or data from a file. Output nodes are associated with

statements that write to database fields, a file, a cookie, or

output in the page. The server page is potentially

vulnerable if a path in the control flow graph exists that

connects an input to an output node. However, it is possible

that data from one server page is sent to another page, the

web application might not be vulnerable to a certain type of

attack if only one of the individual server pages has

potential security problems.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 8, August 2018)

3

For example, a page may read input and store it in a

database field. The result of the static analysis says that this

page has a potential vulnerability. But another page that

reads data from this field may encode everything in the

output of the page and therefore, the web application as a

whole is not vulnerable.

In dynamic testing, known attacks are executed against

web applications [2,3]. Either database with generated

attacks for a specific web application is used or a database

that contains generic attacks. In [3], the authors implement

dynamic testing as a second stage of their web application

assessment. More precisely, server pages that are

potentially vulnerable according to a previous static

analysis step are tested again in a dynamic test with

specific attacks forthe potential vulnerability. The crawler

described in [2] does black box testing with a generic

database. It analyses the generated pages of the web

application and then chooses attacks toperform. This

method tests web applications without requiring user

interaction and interprets the response of the web

application to the chosen attack.

Traffic Analysis proxy system is proposed in [4], which

can be installed on the user side to prevent XSS attacks.

This proxy monitors the HTTP-requests and responses [5]

of the user who is surfing the web. It has two modes called

„response change mode” and „request change mode”. In

the „response change mode” the proxy stores information

about requests which contain special tags (e.g., "<script>").

3.4 Proposed Research

During the research following domain are explored to

make secure web application.

 Input validation vulnerable detection

 With the use of Input validation vulnerable attack,

attacker may direct and complete access to the databases

as well as the system to steal personal information.

Hacker can also damage the system and the control of

the system.

 Taint analysis of JavaScript code

 To “Taint” user data is to insert some kind of tag or label

for each object of user data, which allows to track the

influence of tainted object along with the execution of

program.

 Auditing JavaScript code execution.

For auditing the JavaScript code, requires the

completeness and correctness where the execution

environment must be initialized and callbacks to the

compiler. These hooks are used when scripts try to access a

specific property or method that are not native in the

engine.

Other than this it is used to represent the logging

information, which would be used to detect vulnerable

code.

• Policy enforcement for JavaScript code.With the policy

enforcement with JavaScript, enforce security and

reliability policies, analyze web gadgets, and also to

enhance the performance utilization.

IV. CONCLUSION

The JavaScript language is used to enhance the client

side display of web pages. JavaScript code is downloaded

into browsers and executed on-the-fly by an embedded

interpreter. Browsers provide sand-boxing mechanisms to

prevent JavaScript code from compromising the security of

the client’s environment, but, unfortunately, a number of

attacks exist that can be used to steal users’ credentials

(e.g., crosssite scripting attacks) and lure users into

providing sensitive information to unauthorized parties

(e.g., phishing attacks). We propose an approach to solve

this problem that is based on monitoring JavaScript code

execution in the browser.

REFERENCES

[1] Yao-Wen Huang, Shih-Kun Huang, and Tsung-Po Lin. Web

Application Security Assessmentby Fault Injection and Behavior

Monitoring. WWW 2003 Budapest Hungary, May 2003.

[2] G.A. Di Lucca, A.R. Fasolino, M. Mastroianni, and P. Tramontana.

Identifying Cross Site Scripting Vulnerabilities in Web Applications.

In Sixth IEEE International Workshop on WebSite Evolution
(WSE’04), pages 71 – 80, September 2004.

[3] Omar Ismail, Masashi Etoh, YoukiKadobayashi, and Suguru
Yamaguchi. A Proposal and Implementation of Automatic

Detection/Collection System for Cross-Site Scripting Vulnerability.
In Proceedings of the 18th International Conference on Advanced

Information Networking and Application (AINA04), March 2004.

[4] T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.0.

http://www.rfc-editor.org/rfc/rfc1945.txt, 1996.

[5] Shaukat Ali, Shah Khusro, AzharRauf / University of Peshawar,

Peshawar, Pakistan/ IEEE, A Cryptography-Based Approach to Web

Mashup Security,2011

[6] Ms. R.Priyadarshini, Ms. Jagadiswaree.D, Ms. Fareedha.A, Mr.

Janarthanan.M / B.S.AbdurRahmanUniversityChennai/IEEE, A
Cross Platform Intrusion Detection System using Inter Server

Communication Technique, 2011.

[7] Jan-Min Chen/ Yu Da University Miaoli, Taiwan, Chia-Lun Wu/

Tatung University Taipei, Taiwan /IEEE, An Automated
Vulnerability Scanner for Injection Attack Based on Injection Point,

2010.

[8] HossainShahriar and Mohammad Zulkernine, Queen’s University,
Kingston, Canada, “Injecting Comments to Detect JavaScript Code

Injection Attacks”, IEEE 978-0-7695-4459-5/11, DOI
10.1109/COMPSACW.2011.27,104-109, 2011.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 8, August 2018)

4

[9] Blake Anderson and Daniel Quist, Los Alamos National Lab, Terran
Lane, University of New Mexico, “Detecting Code Injection Attacks

in Internet Explorer”, IEEE 978-0-7695-4459-5/11, DOI
10.1109/COMPSACW.2011.25, 90-95, 2011.

[10] Ryan Riley, Purdue University, Xuxian Jiang, George Mason
University, DongyanXu, Purdue University, “An Architectural

Approach to Preventing Code Injection Attacks”, IEEE 37th Annual

IEEE/IFIP International Conference on Dependable Systems and
Networks 0-7695-2855-4/07, 2007.

[11] O. Hallaraker and G. Vigna. “ Detecting Malicious JavaScript Code
in Mozilla “,In proceedings of the IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS), 2005.

[12] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “ Noxes: A client-

side solution for mitigating cross-site scripting attacks”, In 21st
ACM Symposium on Applied Computing (SAC), 2006.

[13] K. Selvamani, A.Duraisamy, A.Kannan “Protection of Web
Applications from Cross-Site Scripting Attacks in Browser Side”

(IJCSIS) International Journal of Computer Science and Information

Security, Vol. 7, No. 3, March 2010.

[14] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G.
Vigna. “ Cross site scripting prevention with dynamic data tainting

and static analysis”. In Proceedingof the Network and Distributed
System Security Symposium (NDSS07), 2007.

[15] E. Gal´an, A. Alcaide, A. Orfila, J. Blasco “A Multi–agent Scanner
to Detect Stored–XSS Vulnerabilities” in ICITST, Technical Co-

Sponsored by IEEE UK/RI Communications, 2010

[16] Zhang Xin-hua, Wang Zhi-jian /Hohai University, China/ IEEE, A

Static Analysis Tool for Detecting Web Application Injection

Vulnerabilities for ASP Program, 2010.

[17] Masaru Takesue, Dept. Applied Informatics, Hosei University,

Tokyo/IEEE, An HTTP Extension for Secure Transfer of
Confidential Data, 2009.

[18] Abdul Razzaq, Ali Hur, NasirHaider, Farooq Ahmad/NUST School
of Electrical Engineering and Computer Sciences, Pakistan/ IEEE,

Multi-Layered Defense against Web Application Attacks, 2009.

