

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 10, October 2018)

34

Power Minimization of Functional Units Partially Guarded

Computation
Gajanand Sariyam

1
, Anupendra Singh

2

1,2
Lecturer Electronics and Telecommunication Engineering, Govt Women's Polytechnic College Jabalpur, India

gajanandsariyam@gmail.com, anupendra1@yahoo.com

Abstract: Within this article, supervised evaluation is a

dynamic power reduction technique by identifying

subcircuits inputs and kept constant at specific times

during circuit operation. In certain conditions, some

signals within the digital design are not observable at the

output. So make such signals as guarded (constant).

Thereby reducing the dynamic power. Here we apply this

technique for all digital circuits. The problem here is to

find conditions under which a subcircuit input can be held

constant with disturbing the main circuit functionally

(correctness). Here we propose a solution for discovering

the gating inputs based on inverting and non-inverting

methods. By including “clock gating” we still reduce the

dynamic power and leakage power, particularly for

sequential circuits.

Keywords: guarded evaluation, clock gating, dynamic

power, FPGA.

I. INTRODUCTION

Modern FPGAs are widely used in diverse

applications, ranging from communications

infrastructure, automotive, to industrial electronics. They

enable innovation across a broad spectrum of digital

hardware applications, as they reduce product cost, time-

to-market, and mitigate risk. However, their use in the

mainstream market is often elusive due to their high

power consumption. Programmability in FPGAs is

achieved through higher transistor counts and larger

capacitances, leading to considerably more leakage

and dynamic power dissipation compared to ASICs for

implementing a given function. Guarded evaluation

seeks to reduce net switching activities by modifying

the circuit network. In particular, the approach taken is

to eliminate toggles on certain internal signals of a

circuit when such toggles are guaranteed to not

propagate to overall circuit outputs. Unlike guarded

evaluation in ASICs, this involves adding additional

circuitry (increasing area and cost), our approach uses

unused circuitry that is already available in the FPGA

fabric, making it less expensive from the area

perspective.

Specifically, input pins on LUTs are frequently not

fully utilized in modern designs, and we use the

available free inputs on LUTs for guarded evaluation.

This implies that we do not add in any additional LUTs

when implementing guarding, but rather only add a

minimal amount of extra connections into the network.

In our approach, identifying the conditions under which

a given signal can be guarded is accomplished by

analyzing properties of the logic synthesis network,

which is an And-Inverter Graph (AIG).

In particular, we show that the presence of “non-

inverting” and “partial non-inverting” paths in the AIG

can be used to drive the discovery of guarding

opportunities. This structural-based approach to

determining guarding opportunities proves to be very

efficient. Finally, we consider the introduction of

different types of guarding logic (as opposed to

transparent latches which are used for ASICs) to reduce

unnecessary transient switching.

In this paper we have taken an asic design as an

example. It contains group of d-flip-flops. A flip-flop is

a bitable multivibrator. The circuit can be made to

change state by signals applied to one or more control

inputs and will have one or two outputs. It is the basic

storage element in sequential logic. Flip-flops and

latches are a fundamental building block of digital

electronics systems used in computers, communications,

and many other types of systems. Flip-flops and latches

are used as data storage elements. Such data storage can

be used for storage of state, and such a circuit is

described as sequential logic. When used in a finite-state

machine, the output and next state depend not only on its

current input, but also on its current state (and hence,

previous inputs). It can also be used for counting of

pulses, and for synchronizing variably-timed input

signals to some reference timing signal. Flip-flops

can be either simple (transparent or opaque) or clocked

(synchronous or edge-triggered), the simple ones are

commonly called latches.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 10, October 2018)

35

Logic synthesis is the process of converting a high-

level description of design into an optimized gate-level

representation [1]. Logic synthesis uses a standard cell

library which have simple cells, such as basic logic gates

like and, or, and nor, or macro cells, such as adder,

muxes, memory, and flip-flops. Standard cells put

together are called technology library. Normally the

technology library is known by the transistor size. A

circuit description is written in Hardware Description

Language (HDL) such as Verilog.

II. BACKGROUND

A. Guarded Evaluation

Guarded evaluation comprises first identifying an

internal Signal whose value does not propagate to

circuit outputs under certain conditions. A straight

forward example is an AND gate with two input signals,

A and B. Values on signal A do not Propagate to circuit

outputs when B is logic-0 (the condition). Thus, toggles

on A are an unnecessary waste of power when B is

logic-0. Having found a signal and condition, guarded

evaluation then modifies the circuit to eliminate the

toggles on the signal when the condition is true the

inputs to the circuitry that produce A can be held at a

constant value (guarded) when the condition is true,

reducing dynamic power. The computationally difficult

aspect of the process is in finding signals (such as A)

and computing the conditions under which they are not

observable, as these steps depend on an analysis of the

circuit’s logic functionality.

Fig1(a). Before guarded evaluation

The key idea is shown in Fig. 1. In Fig. 1(a), a

multiplexer is shown receiving its inputs from a

shifter and a subtraction unit, depending on the value of

select signal Sel[2]. Fig. 1(a) shows the circuit after

guarded evaluation. Guard logic, comprised of

transparent latches, is inserted before the functional

units.

The latches are transparent only when the output of

the corresponding functional unit is selected by the

multiplexer, i.e., depending on signal Sel. When the

output of a functional unit is not needed, the latches hold

its input constant, eliminating toggles within the unit.

Here, one can view Sel as the “guarding signal.” We

applied this concept to gate-level networks, where the

difficulty was in determining which signals could be

used as guarding signals for particular sub circuits. We

used binary decision diagrams to discover logical

implications that permit certain sub circuits to be

disabled at certain times.

We proposed using guarded evaluation in ASICs to

attack both leakage and dynamic power [2]. The

guarding signals were used to drive the gate terminals of

NMOS sleep transistors incorporated into CMOS gate

pull- down networks, putting sub circuits into low-

leakage states when their outputs were not needed. Their

approach produced encouraging power reduction results

by exploiting select signals on steering elements

(multiplexers) to serve as guarding signals and is

therefore limited to specific types of circuits.

III. METHODS

1). Gating Inputs and Non-Inverting AIG Paths:

Fig. 3(a) gives an example of a LUT and Portion of a

covered AIG. Examine the AIG path from the input I to

the root gate of the AIG, Z. The path comprises a

sequence of AND gates with none of the path edges

being complemented. Recall that the output of an

AND gate is logic- 0 when either of its inputs is logic-0.

For the path from I to Z, when I is logic-0, the output of

each AND the corresponding gate along the path will be

logic-0, ultimately producing logic-0 on the LUT output.

We therefore conclude that I is a gating input to the

LUT. The LUT in Fig 3(a), in fact, has three gating

inputs, I, J, and K. Input J is the same form as input I in

that there exists a path of AND gates from J to root gate

Z and none of the edges along the path are inverted.

For input K, the “frontier” edge crossing into the

LUT is inverted, however, aside from this frontier

edge, the remaining edges along the path from K to the

root node Z are “true” edges. This means that when K

is logic- 1, the output of the AND gate it drives will be

logic-0, eventually making the LUT’s output signal Z

logic-0. K is indeed a gating input, though it is K’s

logic-1 state (rather than its logic-0 state) that causes the

LUT output to be logic-0.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 10, October 2018)

36

In contrast with inputs I, J and K, LUT inputs Q and

M are not gating inputs to the LUT as neither logic state

of these inputs causes the LUT output to be logic-0.

2).Trimming Inputs and Partial Non-Inverting AIG

Paths

More opportunities for guarding can be found by

considering trimming inputs in addition to gating inputs

in Fig. 3(a). There is no non-inverting path from any

LUT input to the LUT output. However, we can observe

that a logic-0 on input A will still force the output on

some AND gates to be logic-0 as its value propagates

towards Z. We can identify the AND gate that drives the

first inverted edge on the path from A to Z and,

subsequently, find the fan-out-free cone rooted at the

identified AND gate; the set of LUT inputs to this fan-

out-free cone (excluding A) can be trimmed by A when

A is a logic-0. In this example, this means inputs B and

C can be trimmed when input A is a logic-0. Note that

input D cannot be trimmed since it is not in the fan-out

free fan-in cone of the affected AND gates. Input F can

be used to trim input E (but not input D) when F is a

logic- 0.

Fig 2.(a). Identifying gating inputs on LUTs using noninverting

paths; Fig 2.(b). Identifying trimming inputs on LUTs using

Partial non-inverting paths

Fig 3. Guarded evaluation for FPGAs

Fig. 4(a) illustrates how gating and trimming inputs to

LUTs can be applied for guarded evaluation. Without

loss of generality, assume that logic-0 is the state of the

gating input, G, that causes LUT Z’s output to be logic-

0.When G is logic- 0, Z is also logic-0, and any toggles

on the other inputs of Z are guaranteed not to propagate

through Z to circuit outputs. Similarly, if G is a

trimming input of, say, input L (i.e., a logic-0 on G

blocks toggles on signal L from propagating to signal Z),

then L can also be guarded by signal G. Since L’s single

fan-out is to Z, L’s output value will not affect overall

circuit outputs when G is logic-0. Toggles that occur in

computing L’s output when G is logic-0 are an

unnecessary waste of dynamic power.

In Fig. 4(a), L is a candidate for guarded evaluation

by Signal G. If LUT L has a free input, we modify the

mapped network by attaching G to L, and then

modifying L’s logic functionality as shown in Fig. 4(b).

The question is how to modify L’s logic functionality. In

[6], logic functions were modified to force the LUT

output to a logic-0 when guarded. Consider the case

where the output of LUT L in Fig. 4(b) was logic-1 the

instant prior to guarding. If it was guarded using a

logical AND of its previous function and signal G, then

the gate would induce one additional toggle from logic-

1 to logic-0. Hence, the static probability of the

guarded signal is examined prior to inserting the

guarding logic to avoid such additional (and unnecessary

toggles). Fig. 5 provides an illustration of the type of

guarding used based on the static probability and the

guarding value1. No additional LUTs are required to

perform guarding since we are modifying the function of

the guarded LUT, which is logic entirely internal to the

LUT. After guarding, switching activity on L’s output

signal may be reduced, lowering the power consumed by

the signal. Note, however, that guarding must be done

judiciously, as guarding increases the fan- out (and

likely the capacitance) of signal G. The benefit of

guarding from the perspective of activity reduction on

L’s output signal must be weighed against such cost.

The guarded evaluation procedure can be applied

recursively by walking the mapped network in reverse

topological order. For example, after considering

guarding LUT L with signal G, we examine L’s fan-in

LUTs and consider them for guarding by G. Since LUT

N in Fig. 4(a) only drives LUT L, N is also a candidate

for guarding by signal G.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 10, October 2018)

37

We traverse the network to build up a list of guarding

options. There may exist multiple guarding candidates

for a given LUT. For example, if signal H in the Fig.

4(a) were a gating or trimming input to LUT L, then H is

also a candidate for guarding LUT N (in addition to the

option of using G to guard N). Furthermore, if a LUT

has multiple free inputs, we can guard it multiple times.

We discuss the ranking and selection of guarding

options in the next section. The ease with which we can

use AIGs to identify gating and trimming inputs (via

finding non-inverting and partial non-inverting paths)

circumvents one of the key difficulties encounted by

Tiwari et al. [26], specifically, the problem of

determining which signals can be used to guard which

gates. While we can guard L with G in Fig. 4, we cannot

necessarily guard LUT M with G. The reason is that M
is multi-fan-out, and it fans out to LUTs aside from Z.

IV. CLOCK GATING

In today’s semiconductor designs, lower power

consumption is mandatory for mobile and handheld

applications for longer battery life and even networking

or storage devices for low carbon footprint requirements.

Clock power consumes 60-70 percent of total chip power

and is expected to significantly increase in the next

generation of designs at 45nm and below. This is due to

the fact that power is directly proportional to voltage and

the frequency of the clock as shown in the following

equation.

Power=Capacitance * (Voltage)
2
 * (Frequency)

Clock gating is a popular technique used in many

synchronous circuits for reducing dynamic power

dissipation [4]. Clock gating saves power by adding

more logic to a circuit to prune the clock tree. Pruning

the clock disables portions of the circuitry so that the

flip-flops in them do not have to switch states. Switching

states consumes power. When not being switched, the

switching power consumption goes to zero, and only

leakage currents are incurred load to node X causes

speed and power performance degradation [7]. Clock

gating works by taking the enable conditions attached to

registers, and uses them to gate the clocks. Therefore it

is imperative that a design must contain these enable

conditions in order to use and benefit from clock gating

[5]. This clock gating process can also save significant

die area as well as power, since it removes large

numbers of muxes and replaces them with clock gating

logic.

A. How To Implement Clock Gating

When there is no activity at a register “data” input,

there is no need to clock the register and hence the

“clock” can be gated to switch it off. If the clock feeds a

bank of registers, an “enable” signal can be used to gate

the clock, which is called the “clock gating enable”.

Fig 4.(a). Feedback mux Fig 4.(b). Integrated clock gating

This clock gating logic is generally in the form of

"Integrated clock gating" (ICG) cells. However, note

that the clock gating logic will change the clock tree

structure, since the clock gating logic will sit in the

clock tree [6]. As shown in Figure 4.(a), when an

“explicit” clock enable exists in the RTL code, synthesis

tools may choose between two possible

implementations. The implementation as shown in

Figure 1a is a “re-circulating register” implementation,

where the enable is used to either select a new data value

or re-circulate the previous data value.

The implementation as shown in Figure 4.(b) is a

“gated clock” implementation[8]. When the enable is

off, the clock is disabled. The output of the two

implementations will always be identical, but the timing

and power behavior will be different.

B. Clock Gating Using Asic Design

Fig 4. Clock gating in Asic Design

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 10, October 2018)

38

Fig. 4 Any RTL modifications to improve clock gating

will result in functional changes to the design (since the

registers will now hold different values) which need to

be verified. Sequential clock gating is the process of

extracting/propagating the enable conditions to the

upstream/downstream sequential elements, so that

additional registers can be clock gated. Although

asynchronous circuits by definition do not have a

"clock", the term perfect clock gating is used to illustrate

how various clock gating techniques are simply

approximations of the data-dependent behavior

exhibited by asynchronous circuitry [8]. As the

granularity on which you gate the clock of a synchronous

circuit approaches zero, the power consumption of that

circuit approaches that of an asynchronous circuit: the

circuit only generates logic transitions when it is actively

computing.

V. RTL POWER ESTIMATION FLOW

Early power estimation at RTL can help the designer

to quickly explore different architectures like replacing

large memories with smaller memories or register files

and find power bugs early in the design before it is

found too late at the gate-level where synthesis and

place and route steps will have to be iterated to meet the

required power budget for the design.

Fig 5. RTL Power Estimation Flow

Fig. 5 illustrates the details of the required and

optional inputs to the RTL power estimation flow with

Atrenta’s SpyGlass-Power solution: Synthesizable RTL

Design – In order to understand the gate count and

power characteristics of a design, it must be

synthesizable [8]. Portions of the design which are not

synthesizable or not finished yet can be represented as

black boxes and power data can be provided for these as

part of the power library data.

Power Library Data for the Process – The liberty

format has a representation for power data which most

library providers use [9]. v Activity Data – In order to

estimate power accurately, waveforms for an RTL

simulation of the design should be provided in VCD,

FSDB, or SAIF format. Power Intent – UPF/CPF can

be used to define the power intent for estimating the

power at RTL[10]. Timing Constraints (optional)– There

are several Synopsys Design Constraints (SDC) timing

constraints which may be useful for power estimation,

such as set_case_analysis or set_output_load. An SDC

file may be optionally supplied.

VI. SIMULATION RESULTS

The simulation results are for the asic designs before

applying the guarded evaluation and after applying both

guarded as well as clock gating. We have observed the

dynamic power and the leakage power is reduced after

applying the techniques.. The simulation results are

schematic circuits designed in Questasim (10.2a)

Tool and the power calculations are carried out in the

CADENCE RTL COMPLIER Tool. The results are as

shown in Fig 6(a). Before Asic Design Schematic in

Questasim Tool, Fig 6(b). Before Asic Design Wave

Form in Questasim Tool, Fig 6(c). Before Asic Design

Schematic in Precision Tool, Fig 6(d). Before Asic

Design RTL Power in, Fig 7(a). Clock gating Asic

Design Schematic in Questasim Tool, Fig 7(b). Clock

gating Asic Design Wave Form in Questasim Tool, Fig

7(c). Clock gating Asic Design Schematic in Precision

Tool, Fig 7(d). Clock gating Asic Design RTL Power in

Cadence Tool.

Fig 6(a). Before Asic Design Schematic in Questasim Tool

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 10, October 2018)

39

Fig 6(b). Before Asic Design Wave Form in Questasim Tool

Fig 6(c). Before Asic Design Schematic in Precision Tool

Fig 6(d). Before Asic Design RTL Power in Cadence Tool

Fig 7(a). Clock gating Asic Design Schematic in Questasim Tool

VII. CONCLUSION

In this paper, the various digital designs and

especially sequential circuits are used .Main aim is

reducing the dynamic power and leakage power.

Guarded evaluation reduces dynamic power by

identifying sub-circuits whose inputs can be held

constant at certain times during circuit operation,

eliminating toggles within the sub circuits. Numerical

results demonstrate the efficacy of our proposed

techniques and show that guarded evaluation is effective

for FPGA designs. We have proposed a structural

technique to Identify guarding candidates based on the

ideas of non inverting and partial non-inverting paths;

the use of partial non-inverting paths was demonstrated

to significantly improve the availability of guarding

options and, in turn, improve the reduction in both

total reduction in total switching activity and reduction

in total dynamic power dissipation. Finally we got a

better result by applying clock gating to sequential

circuits. It reduces both dynamic and leakage power.

REFERENCES

[1] S. Jang, K. Chung, A. Mishchenko, and R. Brayton, “A power
optimization toolbox for logic synthesis and mapping,” in Proc.

IEEE Int. Workshop Logic

[2] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: Pushing

power management to logic synthesis/design,” IEEE Trans.
Computer.-Aided Des., vol. 17, no. 10, pp. 1051–1060, Oct. 1998.

[3] J. Anderson and Q.Wang, “Improving logic density through

synthesis-inspired architecture,” in Proc. IEEE Int. Conf. Field-
Programmable Logic Applicant. Aug.–Sep. 2009, pp. 105–111.

[4] A. Mishchenko. (2009). ABC: A System for Sequential Synthesis and

Verification [Online].

[5] Clock-Gating and Its Application to Low Power Design of

Sequential Circuits Qing WU Department of Electrical Engineering-

Systems, University of Southern California Los Angeles, CA 90089,
USA.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 7, Issue 10, October 2018)

40

[6] Altera Corporation. (2009). Quartus-II University Interface Program

[Online].

[7] A. Abdollahi, M. Pedram, F. Fallah, and I. Ghosh.

Precomputationbas Guarding for dynamic and leakage power
reduction. Conf. on Computer Design, pages 90–97, 2003.

[8] J. Anderson and C. Ravishankar. FPGA power reduction by guarded

evaluation. In ACM/SIGDA Int’l Symp. on Field Programmable
Gate Arrays, pages 157–166, 2010.

[9] D. Howland and R. Tessier. RTL dynamic power optimization for

FPGAs. In IEEE Midwest Symp. On Circuits and Systems, pages

714– 717, 2008.

[10] K. Poon, A. Yan, and S. Wilton. A flexible power model for FPGAs.
In Int’l Conf. on Field-Programmable Logic and Applications, pages

312– 321, 2002.

[11] L. Shang, A. Kaviani, and K. Bathala. Dynamic power consumption of

the Virtex-II FPGA family. In ACM Int’l Symp. on Field Programmable

Gate Arrays, 2002.

