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Abstract: Within this article, supervised evaluation is a 

dynamic power reduction technique by identifying 

subcircuits inputs and kept constant at specific times 

during circuit operation. In certain conditions, some 

signals within the digital design are not observable at the 

output. So make such signals as guarded (constant). 

Thereby reducing the dynamic power. Here we apply this 

technique for all digital circuits. The problem here is to 

find conditions under which a subcircuit input can be held 

constant with disturbing the main circuit functionally 

(correctness). Here we propose a solution for discovering 

the gating inputs based on inverting and non-inverting 

methods. By including “clock gating” we still reduce the 

dynamic power and leakage power, particularly for 

sequential circuits. 

Keywords: guarded evaluation, clock gating, dynamic 

power, FPGA. 

I. INTRODUCTION 

Modern FPGAs are widely used in diverse 

applications, ranging from communications 

infrastructure, automotive, to industrial electronics. They 

enable innovation across a broad spectrum of digital 

hardware applications, as they reduce product cost, time-

to-market, and mitigate risk. However, their use in the 

mainstream market  is often elusive due to their high 

power consumption. Programmability in FPGAs is 

achieved through higher transistor counts and larger  

capacitances, leading  to  considerably  more  leakage  

and  dynamic  power  dissipation compared to ASICs for 

implementing a given function. Guarded evaluation 

seeks to  reduce  net  switching activities by modifying 

the circuit network. In particular, the approach taken is 

to eliminate toggles on certain internal signals of a 

circuit when such toggles are guaranteed to not 

propagate to overall circuit outputs. Unlike guarded 

evaluation in ASICs, this involves adding additional 

circuitry (increasing area and cost), our approach uses 

unused circuitry that is already available in the FPGA 

fabric, making it less expensive from the area 

perspective.  

 

 

Specifically, input pins on LUTs are frequently not 

fully utilized in modern designs, and we use the 

available free inputs on LUTs for guarded evaluation. 

This implies that we do not add in any additional LUTs 

when implementing guarding, but rather only add a 

minimal amount of extra connections into the network. 

In our approach, identifying the conditions under which 

a given signal can be guarded is accomplished by 

analyzing properties of the logic synthesis network, 

which is an And-Inverter Graph (AIG). 

In particular, we show that the presence of “non-

inverting” and “partial non-inverting” paths in the AIG 

can be used to drive the discovery of guarding 

opportunities. This structural-based approach to 

determining guarding opportunities proves to be very 

efficient. Finally, we consider the introduction of 

different types of guarding logic (as opposed to 

transparent latches which are used for ASICs) to reduce 

unnecessary transient switching. 

In this paper we have taken an asic design as an 

example. It contains group of d-flip-flops. A flip-flop is 

a bitable multivibrator. The circuit can be made to 

change state by signals applied to one or more control 

inputs and will have one or two outputs. It is the basic 

storage element in sequential logic. Flip-flops and 

latches are a fundamental building block of digital 

electronics systems used in computers, communications, 

and many other  types of systems. Flip-flops and latches 

are used as data storage elements. Such data storage can 

be used for storage of state, and such a circuit is 

described as sequential logic. When used in a finite-state 

machine, the output and next state depend not only on its 

current input, but also on its current state (and hence, 

previous inputs). It can also be used for counting of 

pulses, and for synchronizing variably-timed input 

signals  to  some  reference  timing  signal.  Flip-flops  

can  be  either  simple (transparent or opaque) or clocked 

(synchronous or edge-triggered), the simple ones are 

commonly called latches. 
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Logic synthesis is the process of converting a high-

level description of design into an optimized gate-level 

representation [1]. Logic synthesis uses a standard cell 

library which have simple cells, such as basic logic gates 

like and, or, and nor, or macro cells, such as adder, 

muxes, memory, and flip-flops. Standard cells put 

together are called technology library. Normally the 

technology library is known by the transistor size. A 

circuit description is written in Hardware Description 

Language (HDL) such as Verilog. 

II. BACKGROUND 

A. Guarded Evaluation 

Guarded evaluation comprises first identifying an 

internal Signal whose value does not  propagate  to  

circuit  outputs under certain conditions. A straight 

forward example is an AND gate with two input signals, 

A and B. Values on signal A do not Propagate to circuit 

outputs when B is logic-0 (the condition). Thus, toggles 

on A are an unnecessary waste of power when B is 

logic-0. Having found a signal and condition, guarded 

evaluation then modifies the circuit to eliminate the 

toggles on the signal when the condition is true the 

inputs to the circuitry that produce A can be held at a 

constant value (guarded) when the condition is true, 

reducing dynamic power. The computationally difficult 

aspect of the process is in finding signals (such as A) 

and computing the conditions under which they are not 

observable, as these steps depend on an analysis of the 

circuit’s logic functionality. 

 

Fig1(a). Before guarded evaluation 

The key idea is shown in  Fig.  1.  In  Fig.  1(a),  a 

multiplexer  is shown  receiving  its inputs from  a  

shifter  and a subtraction unit, depending on the value of 

select signal Sel[2]. Fig. 1(a) shows the circuit after  

guarded evaluation. Guard logic, comprised of 

transparent latches, is inserted before the functional 

units.  

 

 

The latches are transparent only when the output of 

the corresponding functional unit is selected by the 

multiplexer, i.e., depending on signal Sel. When the 

output of a functional unit is not needed, the latches hold 

its input constant, eliminating toggles within the unit. 

Here, one can view Sel as the “guarding signal.” We 

applied this concept to gate-level networks, where the 

difficulty was in determining which signals could be 

used as guarding signals for particular sub circuits. We 

used binary decision diagrams to discover logical 

implications that permit certain sub circuits to be 

disabled at certain times. 

We proposed using guarded evaluation in ASICs to 

attack both leakage  and  dynamic  power  [2].  The  

guarding signals were used to drive the gate terminals of 

NMOS sleep transistors incorporated into CMOS gate 

pull- down networks, putting sub circuits into low-

leakage states when their outputs were not needed. Their 

approach produced encouraging power reduction results  

by exploiting  select  signals  on  steering  elements  

(multiplexers) to serve as guarding signals and is 

therefore limited to specific types of circuits. 

III. METHODS 

1). Gating Inputs and Non-Inverting AIG Paths: 

Fig. 3(a) gives an example of a LUT and Portion of a 

covered AIG. Examine the AIG path from the input I to 

the root gate of the AIG, Z. The path comprises a 

sequence of AND gates with none of the path edges 

being  complemented.  Recall  that the output  of an  

AND gate is logic- 0 when either of its inputs is logic-0. 

For the path from I to Z, when I is logic-0, the output of 

each AND the corresponding gate along the path will be 

logic-0, ultimately producing logic-0 on the LUT output. 

We therefore conclude that I is a gating input to the 

LUT. The LUT in Fig 3(a), in fact, has three gating 

inputs, I, J, and K. Input J is the same form as input I in 

that there exists a path of AND gates from J to root gate 

Z and none of the edges along the path are inverted. 

For input K, the “frontier”  edge  crossing  into  the  

LUT  is  inverted,  however,  aside  from  this  frontier  

edge, the remaining edges along the path  from K to the 

root  node Z are “true”  edges. This means that when K 

is logic- 1, the output of the AND gate it drives will be 

logic-0, eventually making the LUT’s output signal Z 

logic-0. K is indeed a gating input, though it is K’s 

logic-1 state (rather than its logic-0 state) that causes the 

LUT output to be logic-0.  
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In contrast with inputs I, J and K, LUT inputs Q and 

M are not gating inputs to the LUT as neither  logic state 

of these inputs causes the LUT output to be logic-0. 

2).Trimming Inputs and Partial Non-Inverting AIG 

Paths 

More opportunities for guarding can be found by 

considering trimming inputs in addition to gating inputs 

in Fig. 3(a). There is no non-inverting path from any 

LUT input to the LUT output. However, we can observe 

that a logic-0 on input A will still force the output on 

some AND gates to be logic-0 as its value propagates 

towards Z. We can identify the AND gate that drives the 

first inverted edge on the path from A to Z and, 

subsequently, find the fan-out-free cone rooted at the 

identified AND gate; the set of LUT inputs to this fan-

out-free cone (excluding A) can be trimmed by A when 

A is a logic-0. In this example, this means inputs B and 

C can be trimmed when input A is a logic-0. Note that 

input D cannot be trimmed since it is not in the fan-out 

free fan-in cone of the affected AND gates. Input F can 

be used to trim input E (but not input D) when F is a 

logic- 0. 

 

Fig 2.(a). Identifying gating inputs on LUTs using noninverting 

paths; Fig 2.(b). Identifying trimming inputs on LUTs using 

Partial non-inverting paths 

 

 

Fig 3. Guarded evaluation for FPGAs 

 

 

 

 

Fig. 4(a) illustrates how gating and trimming inputs to 

LUTs can be applied for guarded evaluation. Without 

loss of generality, assume that logic-0 is the state of the 

gating input, G, that causes LUT Z’s output to be logic-

0.When G is logic- 0, Z is also logic-0, and any toggles 

on  the  other inputs of Z are guaranteed not to propagate 

through Z to circuit outputs. Similarly,  if  G  is a 

trimming  input of, say, input L (i.e., a logic-0 on G 

blocks toggles on signal L from propagating to signal Z), 

then L can also be guarded by signal G. Since L’s single 

fan-out is to Z, L’s output value will not affect overall 

circuit outputs when G is logic-0. Toggles that occur in 

computing L’s output when G is logic-0 are an 

unnecessary waste of dynamic power. 

In Fig. 4(a), L is a candidate for guarded evaluation 

by Signal G. If LUT L has a free input, we modify the 

mapped network by attaching G to L, and then 

modifying L’s logic functionality as shown in Fig. 4(b). 

The question is how to modify L’s logic functionality. In 

[6], logic functions were modified to force the LUT 

output to a logic-0 when guarded. Consider the case 

where the output of LUT L in Fig. 4(b) was logic-1 the 

instant prior to guarding. If it was guarded using a 

logical AND of its previous function and signal G, then 

the gate would induce one additional toggle from logic-

1 to logic-0. Hence, the static probability of the 

guarded signal is examined prior to inserting the 

guarding logic to avoid such additional (and unnecessary 

toggles). Fig. 5 provides an illustration of the type of 

guarding used based on the static probability and the 

guarding value1. No additional LUTs are required to 

perform guarding since we are modifying the function of 

the guarded LUT, which is logic entirely internal to the 

LUT. After guarding, switching activity on L’s output 

signal may be reduced, lowering the power consumed by 

the signal. Note, however, that guarding must be done 

judiciously, as guarding increases the fan- out (and 

likely the capacitance) of signal G. The benefit of 

guarding from the perspective of activity reduction on 

L’s output signal must be weighed against such cost. 

The guarded evaluation procedure can be applied 

recursively by walking the mapped network in reverse 

topological order. For example, after considering 

guarding LUT L with signal G, we  examine  L’s fan-in  

LUTs and consider them for guarding by G. Since LUT 

N in Fig. 4(a) only drives LUT L, N is also a candidate 

for guarding by signal G.  
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We traverse the network to build up a list of guarding 

options. There may exist multiple guarding candidates 

for a given LUT. For example, if signal H in the Fig. 

4(a) were a gating or trimming input to LUT L, then H is 

also a candidate for guarding LUT N (in addition to the 

option of using G to guard N). Furthermore, if a LUT 

has multiple free inputs, we can guard it multiple times. 

We discuss the ranking and selection of guarding 

options in the next section. The ease with which we can 

use AIGs to identify gating  and  trimming  inputs (via  

finding non-inverting and partial non-inverting paths) 

circumvents one of the key difficulties encounted by 

Tiwari et al. [26], specifically, the problem of 

determining which signals can be used to guard which 

gates. While we can guard L with G in Fig. 4, we cannot 

necessarily guard LUT M with G. The reason is that M 
is multi-fan-out, and it fans out to LUTs aside from Z. 

IV. CLOCK GATING 

In today’s semiconductor designs, lower power 

consumption is mandatory for mobile and  handheld 

applications for longer battery life and even networking 

or storage devices for low carbon footprint requirements. 

Clock power consumes 60-70 percent of total chip power 

and is expected to significantly increase in the next 

generation of designs at 45nm and below. This is due to 

the fact that power is directly proportional to voltage and 

the frequency of the clock as shown in the following 

equation. 

Power=Capacitance * (Voltage) 
2
 * (Frequency) 

Clock gating is a popular technique used  in  many 

synchronous  circuits  for  reducing  dynamic power  

dissipation [4]. Clock gating saves power by adding 

more logic to a circuit to prune the clock tree. Pruning 

the clock disables portions of the circuitry so that the 

flip-flops in them do not have to switch states. Switching 

states consumes power. When not being switched, the 

switching power consumption goes to zero, and only 

leakage currents are incurred load to node X causes 

speed and power performance degradation [7]. Clock 

gating works by taking the enable conditions attached to 

registers, and uses them to gate the clocks. Therefore it 

is imperative that a design must contain these enable 

conditions in order to use and benefit from clock gating 

[5]. This clock gating process can also save significant 

die area as well as power, since it removes large 

numbers of muxes and replaces them with clock gating 

logic. 

 

 

A. How To Implement Clock Gating 

When there is no activity at a register “data” input, 

there is no need to clock the register and hence the 

“clock” can be gated to switch it off. If the clock feeds a 

bank of registers, an “enable” signal can be used to gate 

the clock, which is called the “clock gating enable”. 

 

Fig 4.(a). Feedback mux Fig 4.(b). Integrated clock gating 

This clock gating logic is generally in the form of 

"Integrated clock gating" (ICG) cells. However, note 

that the clock gating logic will change the clock tree 

structure, since the clock gating logic will sit in the 

clock tree [6]. As shown in Figure 4.(a), when an 

“explicit” clock enable exists in the RTL code, synthesis 

tools may choose between two  possible 

implementations. The implementation as shown in 

Figure 1a is a “re-circulating register” implementation, 

where the enable is used to either select a new data value 

or re-circulate the previous data value. 

The implementation as shown in Figure 4.(b) is a 

“gated clock” implementation[8]. When the enable is 

off, the clock is disabled. The output of the two 

implementations will always be identical, but the timing 

and power behavior  will be different. 

B. Clock Gating Using Asic Design 

 

Fig 4. Clock gating in Asic Design 
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Fig. 4 Any RTL modifications to improve clock gating 

will result in functional changes to the design (since the 

registers will now hold different values) which need to 

be verified. Sequential clock gating is the process of 

extracting/propagating the enable conditions to the  

upstream/downstream  sequential  elements,  so  that  

additional registers can be clock gated. Although 

asynchronous circuits by definition do not have a 

"clock", the term perfect clock gating is used to illustrate 

how various clock gating techniques are simply 

approximations of the data-dependent behavior 

exhibited by asynchronous circuitry [8].  As the 

granularity on which you gate the clock of a synchronous 

circuit approaches zero, the power consumption of that 

circuit approaches that of an asynchronous circuit: the 

circuit only generates logic transitions when it is actively 

computing. 

V. RTL POWER ESTIMATION FLOW 

Early power estimation at RTL can help the designer 

to quickly explore different architectures like replacing 

large memories with smaller memories or register files 

and find power  bugs early in the design before it is 

found too late at the gate-level where synthesis and 

place and route steps will have to be iterated to meet the 

required power budget for the design. 

 

Fig 5. RTL Power Estimation Flow 

Fig. 5 illustrates the details of the required and 

optional inputs to the RTL power estimation flow with 

Atrenta’s SpyGlass-Power solution: Synthesizable RTL 

Design – In order to understand the gate count and 

power characteristics of a design, it must be 

synthesizable [8]. Portions of the design which are not 

synthesizable or not finished yet can be represented as 

black boxes and power data can be provided for these as 

part of the power library data.  

Power Library Data for the Process – The liberty 

format has a representation for power data which most 

library providers use [9]. v Activity Data – In order to 

estimate power  accurately,  waveforms for  an  RTL 

simulation  of  the design should be provided in  VCD,  

FSDB,  or  SAIF  format.  Power Intent –  UPF/CPF  can 

be  used  to  define the power intent for estimating the 

power at RTL[10]. Timing Constraints (optional)– There 

are several Synopsys Design Constraints (SDC) timing 

constraints which may be useful for power estimation, 

such as set_case_analysis or set_output_load. An SDC 

file may be optionally supplied. 

VI. SIMULATION RESULTS 

The simulation results are for the asic designs before 

applying the guarded evaluation and after applying  both  

guarded as well as clock gating. We have observed the 

dynamic power and the leakage power is reduced after 

applying the techniques.. The  simulation  results  are  

schematic  circuits  designed  in  Questasim  (10.2a)  

Tool   and the power calculations are carried out in the 

CADENCE  RTL COMPLIER Tool.  The results are as  

shown  in Fig 6(a). Before Asic Design Schematic in 

Questasim Tool, Fig 6(b). Before Asic Design  Wave  

Form  in  Questasim Tool, Fig 6(c). Before Asic Design 

Schematic in Precision Tool, Fig 6(d). Before Asic 

Design RTL Power in, Fig 7(a). Clock gating Asic 

Design Schematic in Questasim Tool, Fig 7(b). Clock 

gating Asic Design  Wave  Form in Questasim Tool, Fig 

7(c). Clock gating Asic Design Schematic in Precision 

Tool, Fig 7(d). Clock gating Asic Design RTL Power in 

Cadence Tool. 

 

Fig 6(a). Before Asic Design Schematic in Questasim Tool 
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Fig 6(b). Before Asic Design Wave Form in Questasim Tool 

 

Fig 6(c). Before Asic Design Schematic in Precision Tool 

 

Fig 6(d). Before Asic Design RTL Power in Cadence Tool 

 

 

Fig 7(a). Clock gating Asic Design Schematic in Questasim Tool 

VII. CONCLUSION 

In this paper, the various digital designs and 

especially sequential circuits are used .Main aim is 

reducing the dynamic power and leakage power. 

Guarded evaluation  reduces  dynamic  power  by  

identifying  sub-circuits  whose inputs can be held 

constant at certain times during circuit operation, 

eliminating toggles within the sub circuits. Numerical 

results demonstrate the efficacy of our proposed 

techniques and show that guarded evaluation is effective 

for FPGA designs. We have proposed a structural 

technique to Identify guarding candidates based on the 

ideas of non inverting and partial non-inverting paths; 

the use of partial non-inverting paths was demonstrated 

to significantly improve the availability of guarding 

options and, in turn, improve the  reduction  in  both  

total reduction in total switching activity and reduction 

in total dynamic power  dissipation. Finally we got a 

better result by applying clock gating to sequential 

circuits. It reduces both dynamic and leakage power. 
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