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Abstract— Multi Objective Optimal Power Flow including 

FACTS technology is one of the most important issues in power 

system planning and control. In this paper Artificial Intelligence 

techniques are used to solve the Multi Objective Optimum Power 

Flow incorporating FACTS devices with valve point effect. In this 

paper two objectives loss minimization and minimum voltage 

deviation are taken into consideration.  In proposed algorithm 

parameters of FACTS can be adjusted according the voltage of 

generating units and load. This study is implemented on IEEE 5 

bus system, 24 bus system and 118 bus system; results are 

compared with artificial intelligence techniques. Simulation 

results show the capabilities of different artificial intelligence 

techniques to solve the multi objective optimum power flow. 
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I. INTRODUCTION 

Flexible Alternating Current Transmission Systems 

devices (FACTS) [1] are multi functional devices which can 

be used effectively  

 to control the load flow distribution  

 to increase power transfer capability 

 to reduce active power losses 

 to decrease the cost of power production  

 to control the power flow in the network.  

In this paper FACTS devices are used to control voltage 

deviation. In the paper FACTS devices are included in the 

load flow problem [2]-[3] and optimal dispatches are found by 

artificial intelligence techniques. The major advantage of the 

artificial intelligence methods is that they are relatively 

versatile for handling various qualitative constraints. Artificial 

intelligence methods can find multiple optimal solutions in 

single simulation run. So they are quite suitable in solving 

multi-objective optimization problems.  

In many cases, they can find the global optimal solution. 

The advantages of GA methods are: It only uses the values of 

the objective function and have less chance to get trapped at a 

local optimum. Higher computational time is its disadvantage. 

PSO can be used to solve complex optimization problems, 

which are non-linear, non-differentiable and multi-model. The 

main merits of PSO are its fast convergence speed. PSO has 

been mainly used to solve multi-objective generation 

scheduling, optimal reactive power dispatch and to minimize 

total cost of power generation. Simulated annealing can deal 

with arbitrary systems and cost functions. Simulated annealing 

is relatively easy to code even for complex problems, and 

generally gives a good solution. This makes annealing an 

attractive option for optimization problems where heuristic 

(specialized or problem specific) methods are not available. In 

this paper simulation are performed on 5- Bus System, IEEE 

26 bus test system and IEEE 118 bus system. The obtained 

results are very encouraging and reveal the capability of the 

artificial intelligence methods to solve the economic dispatch 

problem. 

II. FACTS IN ECONOMIC DISPATCH 

The Optimum Power Flow [4]-[10] find the generation 

levels in various generating units with minimum cost of 

generation. In the system operation with any load condition, 

the contribution from each plant and each unit in the plant 

must be determined so that the cost of delivered power should 

be minimum. The main constraint in this is the demand of the 

system which must be met. Although the major portion of the 

generation costs are due to Fuel costs, there are other 

contributors such as maintenance costs and transmission loss. 

In general, only those costs that can be controlled by operating 

strategy enter into the economic dispatch. Those parameters 

which can be adjusted to achieve the required optimization are 

called controlled variables. The costs are a function of the 

control variables, power demand, generator setting, and the 

load flow of the system. 
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A simplified formulation of the problem can be made by 

assuming that the cost of generation is just fuel cost. The only 

constraint is the total demand that is to be met. This is equal 

incremental cost rule, states that the optimum dispatch is 

achieved when the incremental cost at each unit is same. In 

other words, the objective is to find a generation level at 

which the cost of producing one watt is the same for all units 

involved in the dispatch.  

The equal incremental cost rule does not consider losses 

in the transmission system. It will be more expensive to supply 

a load from a unit A which is 5 miles away from the load than 

supply the same load from a unit B which is 1 mile away. The 

incremental cost of each unit may be the same, but because 

unit A has to supply the load plus the losses in the 5-mile line, 

the actual cost is higher. Therefore, B-coefficients method 

states that the optimal dispatch of a system is reached when 

the penalized incremental costs of each unit are equal. This 

penalty factor accounts the distance between the unit and the 

load. Larger the distance, more the losses, more the penalty.  

The constraints may be classified depending whether a 

specified value is to be met (equality constraints), or if a 

system quantity is to be bounded by a lower and/or upper limit 

value. Inequality constraints include upper/ lower bus voltages 

at generator and load buses, var limits at generator buses, 

maximum power rating of a unit, and maximum line loading 

limits. An example of an equality constraint is to meet out the 

load demand. The incorporation of constraints in the optimal 

dispatch method is required in order to obtain a realistic and 

reliable solution.  

Economic optimal dispatch is used both in the planning 

and operation of a power system. In system planning studies, 

feasibility and project costs are the main concern. In system 

operation, minimizing the operating cost is the primary 

objective.  

It was mentioned earlier that the economic optimal 

dispatch problem depends on the power flow in the system. If 

the power flows in the system without any control it creates 

control problems such as parallel and loop flows appear. Thus 

economic dispatch is therefore constrained, not just by the fuel 

costs, but by many operational limits imposed. The generation 

is usually limited to values below the established stability 

limits. 

The effectiveness of power stability depends on the ability 

to control the impedance and phase angle. The devices 

discussed in the preceding sections have such ability. 

Furthermore, there is a device that controls both parameters. 

FACTS devices control the power flow [11]-[12] in a system 

without generation rescheduling or topological changes. This 

will improve the performance of the system because the 

economic optimal dispatch problem would be less constrained. 

Without violating the economic optimal dispatch, power 

transfers may be controlled in such a way that thermal limits 

are not exceeded, losses are minimized, and contractual 

requirements are fulfilled. If the capacity of the lines is fully 

utilized, the constraint imposed by the line limits has now a 

broader range, which will result in a less constrained dispatch 

problem For example; a 250 kV line may have a loading limit 

for safe operation if there is no power flow control. But if 

FACTS devices are used, the loading limit of the line may be 

almost the same as its thermal limit.  

The objective of power flow control is to regulate power 

flows through some predefined lines at specified levels. 

FACTS technology achieves this objective. These diminish 

the loops and parallel flows which were caused by the free 

flow of power in the transmission system. .  

Relief of overloaded transmission lines is usually 

performed by rescheduling of the generation when fast power 

flow control is not available. This method has the drawback of 

shifting the generation away from the economical operation 

point. FACTS technology would avoid the overloading of the 

lines by series compensation or phase shifts. Thus to avoid 

line overloading FACTS devices may be used. 

Reactive power may be supplied when needed, not in a 

permanent way as in the case of static compensation. FACTS 

devices may reduce the var generation to zero when there is no 

need of reactive power in the system. The generators may not 

to be used to supply reactive power because FACTS devices 

can supply the reactive power demand.  

III. OPTIMAL POWER FLOW FORMULATION 

 The objective of an Optimal Power Flow (OPF) algorithm 

is to find steady state operation point which minimizes 

generating cost, loss etc. or maximizes social welfare, 

loadability etc. while maintaining an acceptable system 

performance in terms of limits on generators‟ real and reactive 

powers, line flow limits, output of various compensating 

devices etc. Traditionally, classical optimization methods were 

used to effectively solve OPF. But more recently due to 

incorporation of FACTS devices and deregulation of a power 

sector, the traditional concepts and practices of power systems 

are superimposed by an economic market management, so 

OPF have become complex. In recent years, Artificial 

Intelligence (AI) methods have been emerged which can solve 

highly complex OPF problems. 
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OPF is formulated mathematically as a general constrained 

optimization problem. 

Minimize a function  F(c,x)     -------(1) 

Subject to     h(c,x) = 0  -------(2) 

and      g(c,x) ≥ 0   -------(3) 

Where, c is the set of controllable quantities in the system 

and x is the set of dependent variables. F(c,x) is an objective 

function which is scalar. Equality constraints (2) are derived 

from conventional power balance equation. Inequality 

constraints (3) are the limits on control variables and the 

operating limit on the other variables of the system. 

Equality and inequality constraints however, do not 

specify one unique network state. An enormous number of 

power system states can be computed when taking these 

constraints into account only.  

There are mainly two objectives which are considered in this 

paper. 

  Reduction of the total cost of the generated power.  

  Minimize the deviations in voltage magnitudes at load.  

Optimal power flow formulation  

objective: 

   ∑  (  )
 
                                                         (4) 

Where  (  ) is the fuel cost function of the i
th

 unit and Pi is 

the power generated by the i
th

 unit, subject to power balance 

constraints. 

  ∑      
 
                                                       (5) 

Where D is the system load demand and PL is the transmission 

loss, and generating capacity constraints: 

  (   )       (   )   for  i =1,2,  ….n        (6) 

Where   (   ) and   (   ) are the minimum and maximum 

power outputs of the i
th

 unit. 

The fuel cost function of the generating units is given by 

 (  )       
                                              (7) 

Where ai, bi , and ci are the fuel cost coefficients of the i
th 

unit. 

Economic problem with Valve _point Effect: 

     When the valve point effect [13] is considered in the input 

output curve, the possibility of non convex curves must be 

accounted for if extreme accuracy is desired.  

 

If non convex input output curve are to be used, equal 

incremental cost methodology cannot be used , since there are 

multiple outputs for any given value of incremental cost. 

Thereby the effects of valve point loading is modeled as a 

recurring rectified sinusoid contribution and added to the basic 

quadratic cost function 

  (  )  (            
 )|     (  (        ))|       (8) 

      Where     and    are the fuel cost coefficients of unit i with 

valve point effect. Now, the modified objective function for 

the economic dispatch problem is to minimize subject to given 

constraints. 

IV. GENETIC ALGORITHM 

 Genetic Algorithms (GAs) [14]-[17] are search methods 

based on principle of natural selection and genetics. GAs 

encodes the decision variables of a search problem into finite-

length strings of alphabets of certain cardinality. The strings 

which are candidate solutions to the search problem are 

referred to as chromosomes, the alphabets are referred to as 

genes and the values of genes are called alleles. For example, 

in a problem such as the traveling salesman problem, a 

chromosome represents a route, and a gene may represent a 

city. In contrast to traditional optimization techniques, GAs 

work with coding of parameters, rather than the parameters 

themselves. 

 To evolve good solutions and to implement natural 

selection, we need a measure for distinguishing good solutions 

from bad solutions. The measure could be an objective 

function that is a mathematical model or a computer 

simulation, or it can be a subjective function where humans 

choose better solutions over worse ones. In essence, the fitness 

measure must determine a candidate solution‟s relative fitness, 

which will subsequently be used by the GA to guide the 

evolution of good solutions.  

 Another important concept of GAs is the notion of 

population. Unlike traditional search methods, genetic 

algorithms rely on a population of candidate solutions. The 

population size, which is usually a user-specified parameter, is 

one of the important factors affecting the scalability and 

performance of genetic algorithms. For example, small 

population sizes might lead to premature convergence and 

yield substandard solutions. On the other hand, large 

population sizes lead to unnecessary expenditure of valuable 

computational time. 
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 Once the problem is encoded in a chromosomal manner 

and a fitness measure for discriminating good solutions from 

bad ones has been chosen, we can start to evolve solutions to 

the search problem using the following steps: 

a) Initialization.  

The initial population of candidate solutions is usually 

generated randomly across the search space. However, 

domain-specific knowledge or other information can be easily 

incorporated. 

b) Evaluation.  

Once the population is initialized or an offspring 

population is created, the fitness values of the candidate 

solutions are evaluated. 

c) Selection.  

Selection allocates more copies of those solutions with 

higher fitness values and thus imposes the survival-of-the-

fittest mechanism on the candidate solutions. The main idea of 

selection is to prefer better solutions to worse ones, and many 

selection procedures have been proposed to accomplish this 

idea, including roulette-wheel selection, stochastic universal 

selection, ranking selection and tournament selection, some of 

which are described in the next section. 

d) Recombination.  

Recombination combines parts of two or more parental 

solutions to create new, possibly better solutions (i.e. 

offspring). There are many ways of accomplishing this (some 

of which are discussed in the next section), and competent 

performance depends on a properly designed recombination 

mechanism. The offspring under recombination will not be 

identical to any particular parent and will instead combine 

parental traits in a novel manner. 

e) Mutation.  

While recombination operates on two or more parental 

chromosomes, mutation locally but randomly modifies a 

solution. Again, there are many variations of mutation, but it 

usually involves one or more changes being made to an 

individual‟s trait or traits. In other words, mutation performs a 

random walk in the vicinity of a candidate solution. 

f) Replacement.  

The offspring population created by selection, 

recombination, and mutation replaces the original parental 

population. Many replacement techniques such as elitist 

replacement, generation-wise replacement and steady-state 

replacement methods are used in GAs. 

g) Repeat steps a–f until a terminating condition is met. 

V. PARTICLE SWARM OPTIMIZATION 

Kennedy and Eberhart,[18] considering the behavior of 

swarms in the nature, such as birds, fish, etc. developed the 

Particle Swarm Optimization (PSO) algorithm. The PSO has 

particles driven from natural swarms with communications 

based on evolutionary computations. PSO combines self-

experiences with social experiences. In this Algorithm,[19]-

[21] a candidate solution is presented as a particle. It uses a 

collection of flying particles (changing solutions) in a search 

area (current and possible solutions) as well as the movement 

towards a promising area in order to get to a global optimum. 

PSO is initialized with a group of random particles and the 

searches for optima by updating generations. In every iteration 

each particle is updated by following “two best” values. The 

first one is the best solution (fitness value) it has achieved so 

far. This value is called Pbest. Another best value that is 

tracked by the particle swarm optimizer is the best value 

obtained so far by any particle in the population. This best 

value is the global best called Gbest. After finding the best 

values the particles update its velocity and position with the 

following equation: 

Vi
k+1 

 =W*Vi
k
 +C1*(Pbesti - Si

k
 ) + C2* rand2 * (Gbesti –Si

k 
) 

 Si
k+1

 =Si
k+1

 +Vi
k+1

        

W=Wmax   -  
            

        
   

Where 

Vi
k  

= Velocity of agent i at kth iteration k +1 

Vi
k+1

  = Velocity of agent i at (k +1)th iteration 

W = The inertia weight 

C1 = C2 = Weighting Factor (0 to 4) 

Si
k  

= Current position of agent i at kth iteration 

Si
k+1

 = Current Position of agent i at (k+1)th iteration 

iter max = Maximum iteration number 

iter  = Current iteration number 

Pbesti  = P of agent i best 

Gbesti  = G of the group best 

Wmax = Initial value of inertia weight = 0.9 

Wmin = Final value of inertia weight = 0.2 

Implementation of an optimization problem of GA is realized 

within the evolutionary process of a fitness function. The 

fitness function adopted is given as: 
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Where objective function is the generation cost and the 

penalty is the bus voltage angle. Penalty cost has been added 

to discourage solutions which violate the binding constraints. 

Finally, the penalty factor is tended to zero. The PSO 

algorithm to solve the optimal power flow with FACTS 

devices can be summarized as follows: 

Step 1. Initialize the population of individuals is created in 

normalized form so as to satisfy the generation constraints and 

FACTS devices constraints. 

Step 2. for each individual in the population, the fitness 

function is evaluated  in the normalized form. 

Step 3. The velocity is updated and new population is created. 

Step 4. If maximum iteration number is reached,  

then go to next step else go to step 2. 

Step 6. Print the best individual‟s settings. 

VI. SIMULATED ANNEALING 

  The Simulated Annealing Algorithm [22]-[23] is a way of 

finding optimum solutions to problems which have a large set 

of possible solutions. The process of heating the solid body to 

the high temperature and allowed to cool slowly is called 

Annealing. Annealing makes the particles of the solid material 

to reach the minimum energy state. This is due to the fact that 

when the solid body is heated to very high temperature, the 

particles of the solid body are allowed to move freely and 

when it is cooled slowly, the particles are able to arrange itself 

so that the energy of the particles are made minimum.  

 The energy of the particle in thermodynamic annealing 

process can be compared with the cost function to be 

minimized in optimization problem. The particles of the solid 

can be compared with the independent variables used in the 

minimization function.  

Initially the values assigned to the variables are randomly 

selected from the wide range of values. The cost function 

corresponding to the selected values are treated as the energy 

of the current state. Searching the values from the wide range 

of the values can be compared with the particles flowing in the 

solid body when it is kept in high temperature.  

 The next energy state of the particles is obtained when the 

solid body is slowly cooled. This is equivalent to randomly 

selecting next set of the values.  

 When the solid body is slowly cooled, the particles of the 

body try to reach the lower energy state. But as the 

temperature is high, random flow of the particles still 

continuous and hence there may be chance for the particles to 

reach higher energy state during this transition.  

 

Probability of reaching the higher energy state is inversely 

proportional to the temperature of the solid body at that 

instant.  

 In the same fashion the values are randomly selected so 

that cost function of the currently selected random values is 

minimum compared with the previous cost function value. At 

the same time, the values corresponding to the higher cost 

function compared with the previous cost function are also 

selected with some probability. The probability depends upon 

the current simulated temperature „T‟. If the temperature is 

large, probability of selecting the values corresponding to 

higher energy levels are more. This process of selecting the 

values randomly is repeated for the finite number of iteration. 

The values obtained after the finite number of iteration can be 

assumed as the values with lowest energy state (i.e) lowest 

cost function Thus the simulated annealing algorithm is 

summarized as follow.  

An annealing algorithm needs four basic components:  

1. Configurations: a model of what a legal placement 

(configuration) is. These represent the possible problem 

solutions over which we will search for an answer. 

2. Move set: a set of allowable moves that will permit us to 

reach all feasible configurations and one that is easy to 

compute. These moves are the computations we must perform 

to move from configuration to configuration as annealing 

proceeds.  

3. Cost function: to measure how good any given placement 

configuration is.  

4. Cooling schedule: to anneal the problem from a random 

solution to a good, frozen, placement. Specifically, we need a 

starting hot temperature (or a heuristic for determining a 

starting temperature for the current problem) and rules to 

determine when the current temperature should be lowered, by 

how much the temperature should be lowered, and when 

annealing should be terminated.  

 The optimization problem is to estimate the best values for 

Pi (i= 1,…n, where n= number of generators) such that the 

cost function ∑   (  )
 
    is minimized. Pi Varies from Pi(min) 

to Pi(max)   

Step-1. Initialize the value of the temperature „T‟.  

Step-2. Randomly select the current values for the variables Pi 

from the range as defined above. Let it be Pic 

Step-3. Compute the corresponding cost function value,  

∑   (   )
 
   .  

Step-4. Randomly select the next set of values for the 

variables Pi from the range as defined above. Let it be Pin.  

Step-5. Compute the corresponding cost function value 

∑   (   )
 
   . 
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Step-6. If ∑   (   )
 
   <= ∑   (   )

 
   , then the current values 

for the random variables Pic = Pin.  

Step-7. ∑   (   )
 
     ∑   (   )

 
   , then the current values 

for the random variables Pic = Pin, are assigned only when exp 

[(∑   (   )
 
   )- (∑   (   )

 
   )/T] > rand  

Note that when the temperature „T‟ is less, the probability of 

selecting the new values as the current values is less.  

Step-8. Reduce the temperature T=r*T. r‟ is scaling factor 

varies from 0 to 1.  

Step-9. Repeat STEP 3 to STEP8 for n times until „T‟ reduces 

to the particular percentage of initial value assigned to „T‟  

 
VII. RESULTS 

In the Paper, simplified methods are used to implement the 

SVC in Optimal Power Flow. Algorithms are tested on 5 Bus 

System[2], 26-Bus system[2] and 118 Bus System[24].  

The 5-Bus Power System has generators at buses 1, 2 and 3. 

Bus 1 with its voltage set at 1.06 pu is taken as slack bus. 

Voltage magnitude and real power generation at buses 2 and 3 

and 1.045 pu, 40 MW, and 1.030 pu, 30 MW, respectively. 

The 26-bus system consists of 26 lines, 6 generators, 7 

Tap-changing transformers. Bus numbers 1, 2, 3, 4, 5 and 26 

are generator buses and bus one is taken as reference bus, 

others are taken as load buses. The initial angle at respective 

buses is assumed as zero degree. 

The 118 Bus System consists 54 Generators, 186 lines and 

tap changing transformers.  

Power flow solution by Newton-Raphson Method is 

applied. The voltage profile at various buses and the total 

generating cost is obtained. Shunt FACTS devices can be 

directly incorporated in load flow without modification of 

Jacobian. Slight modifications are required in Load flow to 

include Static Voltage Compensator (SVC). The bus at which 

the SVC is connected has to be declared as generator bus with 

minimum and maximum reactive power limits. After the load 

flow converges to a solution the reactive power to be 

generated at SVC bus will be known. This reactive power 

corresponds to the rating of SVC.  

Genetic Algorithm Parameters 

Population Size= 50, 

Generation= 500,  

Time limit = 200,  

Stall time limit= 100 

PSO Parameters 

Iterations  between updating display  = 100. 

Maximum number of iterations to train, default = 2000. 

Population size = 24 

Acceleration const (local best influence), = 2 

Acceleration const (global best influence),  = 2 

Initial inertia weight = 0.9 

Final inertia weight = 0.4 

SA Parameters 

Initial Temperature =5000 

Maximum Consecutive Rejection =10000 

Maximum Success = 50 

Maximum Tries = 10000 

Stop Temperature 1e-10 

A. Results with 5 bus system: 

 Value of SVC (11 Mvar) is calculated by declaring 

fifth bus as generator bus. After calculating the value of SVC , 

SVC is connected at fifth bus. Fig1. Shows Voltage profile of 

5 Bus systems with or without SVC. 

 

Fig1. Voltage profile of 5 Bus systems with or without SVC 

Generating Cost without SVC = 1633.24 Rs/h 

Generating Cost with SVC = 1631.28 Rs/h 

Generating Cost after Optimal Power Flow using GA 

incorporating SVC = 1604.04 Rs/h 

Generating Cost after Optimal Power Flow using PSO 

incorporating SVC = 1603.90Rs/h 

Generating Cost after Optimal Power Flow using SA 

incorporating SVC = 1603.91Rs/h  

B.  Results with 26 bus system 

 To calculate the value of  SVC, we declare the 24
th

 bus as 

a generator bus and apply Newton-Raphson method to get the 

optimal value of SVC at the 24
th

 bus. After load flow solution 

converges we get the reactive power to be generated at the 24
th

 

bus that is the optimal rating of the SVC is to be connected at 

the same bus. After getting the optimal value of SVC at 24
th
 

bus we again declare 24
th

 bus as load bus and connect the SVC 

at 24
th

 bus of the same rating 56.22 Mvar. 
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 After executing OPF, we get the improved voltage profile, 

improved voltage angle profile and reduced total generating 

cost as shown in Figure 2 and Figure.3 

Figure-2. voltage profile of 26 bus system with and without 

SVC. 

 

Figure-3. Bus voltage angle variation with and without SVC. 

Generating Cost without SVC = 16762.44 Rs/h 

Generating Cost with SVC = 16754.41 Rs/h 

Generating Cost after Optimal Power Flow using GA 

incorporating SVC = 15430.38 Rs/h 

Generating Cost after Optimal Power Flow using PSO 

incorporating SVC = 15429.83Rs/h 

Generating Cost after Optimal Power Flow using SA 

incorporating SVC = 15429.83 Rs/h  

 

C. Results with 118 bus system 

Required value of SVC are calculated on 19
th

 ,17
th

 ,23
rd

 

,30
th

 ,37
th

 ,39
th

 ,45
th

 67
th

 , 75
th

 and 118
th

 . values SVC are -200, 

-100, -70,-76, -185, 56, 24, -30, 17 and 41 Mvars. 

After executing OPF, we get the improved voltage profile, 

improved voltage angle profile and reduced total generating 

cost as shown in Figure 4. 

Genetic Algorithm Parameters 

Population Size= 5000, Generation= 50000, Time limit = 200, 

Stall time limit= 100 

 

 

Fig 4 voltage profile of 118 bus system with or without SVC 

 

Generating Cost without SVC = 60502 Rs/h 

Generating Cost with SVC = 60469.63 Rs/h 

Generating Cost after Optimal Power Flow using GA 

incorporating SVC = 58014 Rs/h 

Time taken 165 seconds 

Generating Cost after Optimal Power Flow using PSO 

incorporating SVC = 56358 Rs/h 

Time Taken 07 seconds 

Generating Cost after Optimal Power Flow using SA 

incorporating SVC = 59792 Rs/h  

Time Taken 55 seconds 

 

VIII. CONCLUSION 

In this paper results shows that bus voltages and bus angles 

can be regulated as per requirement by incorporating FACTS 

devices. Optimal Power Flow using Genetic Algorithms, 

Particle Swarm Optimization and Simulated gives the accurate 

and same results when these algorithms are applied to small 

bus systems. But when we apply these algorithms to the larger 

bus systems, results varies. Genetic Algorithms slows when it 

applies to the larger system and also does not give the minimal 

optimal solution. Each time when GA executes results varies 

up to some value. Simulated Annealing is faster and accurate 

than Genetic Algorithms.  Particle Swarm Optimization gives 

very accurate and fast results when it applies to the small bus 

systems or as well as applies to larger bus systems. 
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