

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 6, December 2014)

33

Load Balancing in Distributed System Using FCFS Algorithm with

RBAC Concept and Priority Scheduling
Geeta

1
, Charanjit Singh

2

1
M.Tech Scholar, CSE, MMU, Sadopur, Ambala, India

2
CSE, MMU, Sadopur, Ambala, India

Abstract-- Now a days CPU workload, hardware technology

and multiprocessor services are developing rapidly. For

availability, scalability and higher performance more and

more server are required Load balancing is key issue in these

type of situation. To avoid overload and for maximum

throughput load balancing is required. In distributed system

computers are not same type means not same configuration so

that some computer finish their work earlier and sit ideal

which degrade the performance of multicomputer system. For

proper load balancing a new algorithm is developed which

use first come first serve and priority scheduling with RBAC

An efficient system has three element – collection of device,

network connect to these computer and software that enable

to share data between these computer. This paper contains a

scheduling algorithm for proper load balancing in distributed

environment.

Keywords-- distributed system, load balancing, priority,

FCFS.

I. INTRODUCTION OF DISTRIBUTED SYSTEM

A distributed system is a collection of independent

computers that appears to its users as a coherent

system. It consists of a collection of autonomous

computers linked by a computer network and equipped

with distributed system software. They do not share

memory or clock; computer communicates with each other

by exchanging message each other over communication

network. In distributed system each computer has its own

memory and run its own operating system [1]. Two types

of resources are used in distributed system.

• Local resources

• Global resources

Local resources are owned and controlled by same

system. While the resources owned and controlled by other

system are said to be remote resources.

Figure 1: Distributed system network

The processer in a distributed system may vary in size

and function. Distributed system includes small

microcomputer, work stations, minicomputer and large

general purpose computer system. They appears to its user

as a centralized system but distributed system are differ

because in centralized system data resides in one single

location while in distributed system data resides in several

location.

II. LOAD BALANCING

Load Balancing is the approach of distributing the load

of the server when the execution of jobs has to be done.

Load balancing is a computer networking method to

distribute workload across multiple computers or a

computer cluster, network links, central processing units,

disk drives, or other resources, to achieve optimal resource

utilization, maximize throughput, minimize response time,

and avoid overload [2]. Using multiple components with

load balancing, instead of a single component, may

increase reliability through redundancy. The load balancing

service is usually provided by dedicated software or

hardware, such as a multilayer switch or a Domain Name

System server shown in figure 2.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 6, December 2014)

34

Load Balancing is a method to distribute workload

across one or more servers, network interfaces, hard drives,

or other computing resources. Typical data Centre

implementations rely on large, powerful (and expensive)

computing hardware and network infrastructure, which are

subject to the usual risks associated with any physical

device, including hardware failure, power and/or network

interruptions, and resource limitations in times of high

demand.

Figure 2: Load balancing in distributed system

Load balancing in the cloud differs from classical

thinking on load-balancing architecture and implementation

by using commodity servers to perform the load balancing.

This provides for new opportunities and economies-of-

scale, as well as presenting its own unique set of challenges

[3]. Load balancing is used to make sure that none of your

existing resources are idle while others are being utilized.

To balance load distribution, you can migrate the load from

the source nodes (which have surplus workload) to the

comparatively lightly loaded destination nodes. When you

apply load balancing during runtime, it is called dynamic

load balancing — this can be realized both in a direct or

iterative manner according to the execution node selection:

 In the iterative methods, the final destination node

is determined through several iteration steps.

 In the direct methods, the final destination node is

selected in one step.

An n another kind of Load Balancing method can be

used i.e. the equally spread current execution load

balancing method, max-min load balancing, load balance

min-min algorithm, load balance max-min-max algorithm,

a hybrid method etc. All algorithm are based on basic

scheduling algorithm like FCFS (first come first serve),

Round robin scheduling, Priority scheduling. Explanations

of these algorithms are given below.

III. LOAD BALANCING ALGORITHMS

3.1 FCFS (FIRST COME FIRST SERVE)

FCFS stands for “First Come First Serve “.In this

algorithm the first data which reaches to the queue first gets

executed first. This algorithm is time consuming and does

not perform quite efficiently when there is a case of priority

in the segmentation. Other names of this algorithm are

• First-In-First-Out (FIFO)

• Run-to-Completion

• Run-Until-Done

First-Come-First-Served algorithm is the simplest

scheduling algorithm. Processes are dispatched according

to their arrival time on the ready queue. Being a no

preemptive discipline, once a process has a CPU, it runs to

completion [4]. The FCFS scheduling is fair in the formal

sense or human sense of fairness but it is unfair in the sense

that long jobs execute short jobs wait and unimportant jobs

execute important jobs wait.

FCFS is more predictable than most of other schemes

since it offers time. FCFS scheme is not useful in

scheduling interactive users because it cannot guarantee

good response time. The code for FCFS scheduling is

simple to write and understand. One of the major

drawbacks of this scheme is that the average time is often

quite long.

The First-Come-First-Served algorithm is rarely used as

a master scheme in modern operating systems but it is often

embedded within other schemes.

3.2 Priority Scheduling Algorithm

This algorithm discards the disadvantages of FCFS and

round robin algorithm. In this algorithm a priority of each

job is decided on the basis of the properties of the tasks.

The priority of the task may be judged on the basis of the

time consumption of the tasks or CPU burst time of the

tasks

 The SJF algorithm is a special case of the general

priority scheduling algorithm. A priority is associated

with each process, and the CPU is allocated to the

process with the highest priority. Equal-priority

processes are scheduled in FCFS order.

 An SJF algorithm is simply a priority algorithm where

the priority (p) is the inverse of the (predicted) next CPU

burst. The larger the CPU burst, the lower the priority,

and vice versa.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 6, December 2014)

35

 Priorities are generally indicated by some fixed range of

numbers, such as 0 to 7 or 0 to 4095. However, there is

no general agreement on whether 0 is the highest or

lowest priority. Some systems use low numbers to

represent low priority; others use low numbers for high

priority. We use as low numbers represent high priority.

 As an example, consider the following set of processes,

assumed to have arrived at time 0, in the order P1, P2,

P3----P5 with the length of the CPU burst given in

milliseconds:
Table 1:

Table shows no. of process with priority

Process

Burst

Time

Priority

Waiting

Time

Turnaround

Time

10 3 6 16

1 1 0 1

2 4 16 18

1 5 18 19

5 2 1 6

Average - - 8.2 12

Using priority scheduling, we would schedule these

processes according to the following chart.

Figure 3: Schedule of process according to priority scheduling

Priorities can be defined either internally or externally.

I. Internally defined priorities use some measurable

quantity or quantities to compute the priority of a

process. For example, time limits, memory

requirements, the number of open files, and the ratio

of average I/O burst to average CPU burst have been

used in computing priorities.

II. External priorities are set by criteria outside the OS,

such as the importance of the process, the type and

amount of funds being paid for computer use, the

department sponsoring the work, and other, often

political, factors [5].

Priority scheduling can be either pre-emptive or non-pre-

emptive. When a process arrives at the ready queue, its

priority is compared with the priority of the currently

running process.

I. A pre-emptive priority scheduling algorithm will pre-

empt the CPU if the priority of the newly arrived

process is higher than the priority of the currently

running process.

II. A non-pre-emptive priority scheduling algorithm will

simply put the new process at the head of the ready

queue.

A major problem with priority scheduling algorithms is

indefinite blocking, or starvation. A process that is ready to

run but waiting for the CPU can be considered blocked.

I. A priority scheduling algorithm can leave some low

priority processes waiting indefinitely.

II. In a heavily loaded computer system, a steady stream

of higher-priority processes can prevent a low-priority

process from ever getting the CPU.

3.3 Round Robin

Round robin uses the time slicing mechanism. The name

of the algorithm suggests that it works in the round manner

where each node is allotted with a time slice and has to

wait for their turn. The time is divided and interval is

allotted to each node. Each node is allotted with a time

slice in which they have to perform their task. The

complicity of this algorithm is less compared to the other

two algorithms. An open source simulation performed the

algorithm software know as cloud analyst, this algorithm is

the default algorithm used in the simulation [6]. This

algorithm simply allots the job in round robin fashion

which doesn't consider the load on different machines.

 The round-robin (RR) scheduling algorithm is

designed especially for time-sharing systems. It is

similar to FCFS scheduling, but pre-emption is

added to switch between processes.

 A small unit of time, called a time quantum or

time slice, is defined. A time quantum is generally

from 10 to 100 milliseconds. The ready queue is

treated as a circular queue.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 6, December 2014)

36

To implement RR scheduling,

I. We keep the ready queue as a FIFO queue of

processes.

II. New processes are added to the tail of the ready

queue.

III. The CPU scheduler picks the first process from

the ready queue, sets a timer to interrupt after 1

time quantum, and dispatches the process.

IV. The process may have a CPU burst of less than

1 time quantum.

i. In this case, the process itself will

release the CPU voluntarily.

ii. The scheduler will then proceed to

the next process in the ready queue.

V. Otherwise, if the CPU burst of the currently

running process is longer than 1 time quantum,

i. The timer will go off and will cause

an interrupt to the OS.

ii. A context switch will be executed,

and the process will be put at the tail

of the ready queue.

iii. The CPU scheduler will then select

the next process in the ready queue.

IV. RBAC (ROLE BASED ACCESS CONTROL)

A RBAC system has two phases in assigning a privilege

to a user: in the first phase, the user is assigned one or more

roles; and in the second phase, the roles are checked against

the requested operations. In RBAC, permissions are

associated with roles rather than users, thus separating the

assignment of users to roles from the assignment of

permissions to roles. Users acquire access rights by their

roles, and they can be dynamically re-assigned or removed

from roles without changing the permissions associated

with roles. The number of roles is typically much smaller

than the number of users. Roles may have a hierarchical

structure, and it reflects the organization’s lines of authority

and responsibility. For example, is a sample fragment of

role hierarchy from Microsoft? Different roles, such as

CEO, CTO, and VIP are arranged in the diagram, where

junior roles appear at the bottom and senior roles at the top.

However, it is not clear how to define roles for a specific

application domain. For example, if a tenant from a start-up

company tries to build up its own access control model for

its application, it is difficult to start from scratch and define

role hierarchy and related policies.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 6, December 2014)

37

V. RESULTS

Table 3:

Comparison on basis of 5 tasks

No.

of

task

Task

name

 Existing algorithm Proposed algorithm

Task execution

pattern

Task

executio

n time

Avera

ge

Execu

tion

time

Ta

sk

O

n

ea

ch

sy

ste

m

M

ax

tas

k

Task execution

pattern

Task

executi

on

time

Avera

ge

execu

tion

time

Task

on

each

syste

m

M

a

x

t

a

s

k

5 taska0,

taska1,

taska2

taska3,

taska4

System1task2,

system2-task1,

system3-task1,

system4-task1,

system5-task0

11,20,19

21,23

18.8 2

1

1

1

0

2 system5-task1,

system4-task1,

system3-task1,

system1-task1,

system2-task1

9,14,2

0,

16,5

12.8 1

1

1

1

1

1

5 taska0,

taska2,

taska4

taska6,

taska8

System1task3,

system2-task2,

system3-task0,

system4-task0,

system5-task0

26,28,20,

15,22

22.2 3

2

0

0

0

3 system5-task1,

system4-task1,

system3-task1,

system1-task1,

system2-task1

8,6,3,1

112

8 1

1

1

1

1

1

5 taskb0,

taskb2,

taskb4

taskb6,

taskb8

System1task2,

system2-task1,

system3-task1,

system4-task1,

system5-task0

13,18,25,

24,22,

20.4 2

1

1

1

0

2 system5-task1,

system4-task1,

system3-task1,

system1-task1,

system2-task1

5,12,9,

15,17

11.6 1

1

1

1

1

1

5 taska1,

taska3,

taskb0

taskb4,

taskb8

System1task3,

system2-task1,

system3-task1,

system4-task0,

system5-task0

28,20,14,

26,23

22.2 3

1

1

0

0

3 system5-task1,

system4-task1,

system3-task1,

system1-task1,

system2-task1

2,7,6,4

,

9

5.6 1

1

1

1

1

1

5 taska5,

taska7,

taskb1

taskb5,

taskb9

System1task3,

system2-task1,

system3-task1,

system4-task0,

system5-task0

13,15,23,

22,12

17 3

1

1

0

0

3 system5-task1,

system4-task1,

system3-task1,

system1-task1,

system2-task1

9,6,11,

3,5

6.8 1

1

1

1

1

1

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 6, December 2014)

38

Table 4

Comparison on basis of 10 tasks

No.

 of

tas

k

Task

name

 Existing algorithm Proposed algorithm

Task execution

pattern

Task

execution

time

Average

execution

time

Task

on

each

system

Max

task

Task

execution

pattern

Task

executi

on time

Average

Executio

n time

Task

on

eachsy

stem

Max

task

10 taska0,t

aska1,ta

ska2

taska3,t

aska4,ta

ska5

taska6,t

aska7,ta

ska8

taska9

System1task4

system2task3

system3task1

system4task1

system5task1

47,35,37,

32,46

19.7 4

3

1

1

1

4 system5-

task2,

system4-

task2,

system3-

task2,

system1-

task2,

system2-

task2

23,18,

11,12,

21

8.5 2

2

2

2

2

2

10 taskb0,t

askb1,ta

skb2

taskb3,t

askb4,ta

skb5

taskb6,t

askb7,ta

skb8,

taskb9

System1task3

system2task2

system3task2

system4task2

system5task1

40,41,38,

36,31

18.6 3

2

2

2

1

3 system5-

task2,

system4-

task2,

system3-

task2,

system1-

task2,

system2-

task2

8,12,

10,17,

13

6 2

2

2

2

2

2

10 taska0,t

aska2,ta

ska4

taska6,t

aska9,ta

skb1,

taskb3,t

askb5tas

kb8,

taskb9

System1task4

system2task2

system3task2

system4task1

system5task1

44,31,43,

39,34

19.1 4

2

2

1

1

4 system5-

task2,

system4-

task2,

system3-

task2,

system1-

task2,

system2-

task2

14,13,

27,10,

20

8.4 2

2

2

2

2

2

10 taska1,t

aska5,ta

ska6

taska8,t

askb8,ta

skb0,

taskb2,t

askb3tas

kb8,

taskb9

System1task4

system2task2

system3task2

system4task1

system5task1

42,40,33,

39,33

18.7 4

2

2

1

1

4 system5-

task2,

system4-

task2,

system3-

task2,

system1-

task2,

system2-

task2

12,19,

20,25

13,

8.9 2

2

2

2

2

2

10 taska3,t

aska4,ta

ska7

taska8,t

askb0,ta

skb1

,taskb3,t

askb4tas

kb8,

taskb9

System1task4

system2task3

system3task1

system4task1

system5task1

45,33,32,

34,38

18.2 4

3

1

1

1

4 system5-

task2,

system4-

task2,

system3-

task2,

system1-

task2,

system2-

task2

10,15,

13,26,

16

8 2

2

2

2

2

2

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 6, December 2014)

39

VI. CONCLUSION

It is expected that the load will be reduced if we will be

implementing the FCFS along with the RBAC and the

priority queue concept because the RBAC will restrict the

system from unauthorized access to the server whereas the

priority queue will speed up the concept of execution.

Performance of a system is improved with the combination

of FCFS and priority queue. In general configuration of

system is fixed but in this project we create system

according our requirement and applied task on these for

execution. FCFS and priority concept is failure to achieve

best performance if implemented separately. But a

combined approach will make the execution fast and

improve performance.

REFERENCES

[1] Mudassar Ahmad” Prognostic Load Balancing Strategy For Latency

Reduction In Mobile Cloud Computing”. Middle-East Journal Of
Scientific Research 16 (6): 805-813, 2013 Issn 1990-9233 © Idosi

Publications, 2013 Doi: 10.5829/Idosi.Mejsr.2013.16.06.11314.

[2] Amandeep Kaur Sidhu ”Analysis Of Load Balancing Techniques In

Cloud Computing”. International Journal Of Computers &
Technology Volume 4 No. 2, March-April, 2013, Issn 2277-3061,

Www.Cirworld.Com.

[3] Soebhaash Dihal “Mobile Cloud Computing: State Of The Art And

Outlook”. Soebhaash Dihal, Harry Bouwman, Mark De Reuver,

Martijn Warnier, Christer Carlsson, (2013),"Mobile Cloud
Computing: State Of The Art And Outlook", Info, Vol. 15 Iss: 1 Pp.

4 - 16.

[4] B. Subramani "A New Approach For Load Balancing In Cloud
Computing”. Ieee Volume 2 Issue 5 May, 2013 Page No. 1636-1640

[5] Ram Prasad Padhy "Load Balancing In Computing System”.
Department Of Computer Science And Engineering National

Institute Of Technology, Rourkela Rourkela-769 008, Orissa, India

May, 2011.

[6] Fan Yang,”Sonora: A Platform For Continuous Mobile-Load

Balancing”. Microsoft Research Asia University of Washington In
Pods (2012).

15 taska2,

taska3,

taska4

taska5,

taska6,

taska7

,taska8

,taska9

,taskb0

taskb2,

taskb3,

taskb4

,taskb5

Taskb6

,taskb7

System1task4,

system2-task3

system3-task3

system4-task3

system5-task2

56,53,

63,52,

57

18.7 4

3

3

3

2

4 system5-task3,

system4-task3,

system3-task3,

system1-task3,

system2-task3

11,25,

20,25,

31

7.4 3

3

3

3

3

3

