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Abstract—In this paper, we investigate tool setting as a 

policy to regulate the congestion of roads .According to 

example, the failure of congestion charging is illustrated. 

Instead, the strongly control is introduced to overcome this 

problem. By the advantages of augmented Lagrangian, a 

simple proof of the existence of optimal control for multiclass 

equilibrium problems where the value of time parameter 

varies continuously throughout the population is given. 
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I. INTRODUCTION 

In a transportation network subject to congestion, 

Congestion toll pricing addresses the classic traffic 

assignment problem for which Wardrop [1, 2] enunciated 

two principles of traffic flow: user-optimal behavioral 

hypothesis and the notion of system-optimality. The 

traditional objective of congestion pricing has been to 

determine link tolls which cause the solution of the tolled 

user-optimal problem to the optimal for the untolled system 

problem [3]. The system optimal refers to minimizing the 

total cost or the total time of network systems. Generally 

speaking, the system optimal network flows do not 

coincide with the equilibrium state. Therefore, from the 

perspective of network designers, they need to find a 

control that can make the user equilibrium meet the system 

optimal. The problem has attracted many researchers. In 

most of the literature, the one choice given has been the 

vector of marginal social cost pricing tolls. Although this 

approach is no longer valid when the valuation of travel 

varies across the population, it is yet true that the set of 

tolls that induces a system optimal use of the network is 

nonempty. In the case of finitely and infinitely many 

classes of customers, each characterized by its own value 

of time(VOT) parameter, [4] and [5] have shown that such 

tolls could be set to the optimal dual vector of network 

structure linear program, respectively.  

 

 

 

But there no available literatures considering the strong 

effectiveness of congestion pricing, that is, after adding 

tolls to the network, whether all the equilibrium solutions 

achieve the system optimal.  

This paper is structured as follows: in Section 2, we will 

give the traffic equilibrium model, and use an example to 

illustrate that only the congestion pricing alone can not 

make the all equilibrium states reach system optimum; in 

Section 3, we introduce the concept of strong valid control, 

and provide a simple proof of its existence. 

II. THE MULTICLASS NETWORK EQUILIBRIUM MODEL 

We begin this section with two problems: 

System optimum problem 

}|0{..

),()(min)(

bAXXXts

XXFXGSO
X



  

And the multiclass network equilibrium problem with 

control parameter 

VI(T) 
  yxyTXF ,0,)(                    (1) 

Where, the arc delay function nn RRF : is positive, 

],0[ max   is the valuation of one unit of delay by the 

users, by which customer's time and cost can be integrated 

into the total cost. For example, the total cost of customer 

whose VOT is   on the arc i is  ,)( ii TXF  ,,,2,1 ni  X  is 

the total flow, i.e. 
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For simplicity, we denote  ,  by the two kinds of inner 

product. 
  is the set of feasible arc flows: 

]},,0[,0)(),()(:);,0({ maxmax

2   xbhAxRLx n

 

 

 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 3, Issue 3, September 2014) 

21 

 

The set of corresponding total feasible arc flows   is 

defined: 
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                              (2) 

A  is a nm  matrix, )(h  is measurable, and  
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In view of Wardrop's equilibrium principle, a feasible 

arc flow vector )(x  with T is the solution of the variational 

inequality VI(T). 

Denote the solution sets of system optimum and 

multiclass network equilibrium problems by soS  and 
TS , 

respectively. The purpose of the system designer [4, 5] is to 

find the valid arc tolls that can support an equilibrium flow 

as a system optimal flow. And they introduced the 

definition of valid tolls. 

Definition 2.1 A tolls nRT   is called a valid tolls if there 

exists a equilibrium flow uex ,such that the according total 

flow soue SX  . 

By the strong duality of linear programming, [4] and [5] 

obtained the existence of the valid tolls. However, there is 

one issue needed to be addressed : most of these results 

appear to be not concerned with the inverse problem,i.e., 

for the given valid tolls, the user equilibrium may not be all 

the system optimal total flow. If the user equilibrium is not 

unique, the designer can not predict the effects of its tolls. 

Then the tolls may result in a highly total cost if an 

unexpected user equilibrium is realized. 

For illustrative purpose, we present a simple example to 

show the problem. 

Example 2.1 Consider a simple network consisting two 

nodes and two links. The links delay functions are given by 
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With the demand 2b . Then the system optimum 

problem: 

Obviously, the unique solution of system optimum is 
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Obviously, the unique solution of system optimum         

is 

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Now, let us check the user equilibrium problem with 

tolls 
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If   21 ,TTT  is a valid toll, then in view of Wardrop's 

equilibrium condition,  

2221 )(2 TXFT s  .           (3) 

Therefore, 112 TT . However, for any 
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, if 

],1,0[2 X and ,221  XX  then (3) holds, which implies that 

for any valid toll T, there exists a solution of equilibrium 

VI(T), such that its corresponding total flow does not 

belong to soS . 

In order to overcome this problem, we introduce a new 

definition 

Definition 2.2 T  is called a strongly control, if all the 

solutions uex  of the equilibrium problem VI(T), we have 
soue SX  . 

In next section, we will prove the existence of strongly 

control by the augmented Lagrangian method. 

III. THE EXISTENCE OF STRONGLY VALID CONTROL 

As the technique used in [5], we consider the following 

auxiliary linear programming with a given optimum sX : 
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Lemma 3.1 [5] Assume that the function )(h  is measurable 

over the interval ],0[ max . Then the set   is a polyhedron. 

Based on above definitions, we can convert the above 

auxiliary infinite linear programming AP to the finite linear 

programming: 
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By the conservation of total flow, we have that following 

proposition. 
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Proposition 3.1 The total flow *X  of the solution of 

problem AP is equal to sX . 

The augmented Lagrangian ),,,( pcXXLc
 of the 

optimization problem LP is defined as ([6]): 
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Let *Pc
 be the set of solutions of the dual problem: 
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0
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Where the augmented Lagrangian dual function  is 

defined as 

).,,,(min)(
),(

pcXXLp c
XX

c

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It is well known that the augmented Lagrangian methods 

have many advantages over the general Lagrange mehtods 

[7]. Since the proof technique of the following theorem are 

similar to [7], we omit it. 

Theorem 3.1 Consider the augmented Lagrangian function 

),,,(c pXXL defined by (4). Then 

(i) 
cL is difierentiable in ),( XX  and p ; 

(ii) 
cL  is stable, i.e., arg 

.)},,{(),,(min ***

c PpXXpXXL ss   

Based on the above theory, we give our main result. 

Theorem 3.2 For any ,** Pp   there exists a ,T , such that all 

the solutions of VI(T) belong 

to soS : 

.,0,)(              VI(T)   yxyTXF            (5) 

Proof: For any ,** Pp  consider the following 

programming problem: 
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Recalling Theorem 3.1, the unique solution of LPc is 

(Xs;X¹s). Since ),,,(L *

c pc  is convex and differentiable, 

then (LPc) is equivalent to the variational inequality: 

(VIc): 
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Let  ),,,( *pcXXLT ss

cX
. Then, VI(T) has a unique 

solution  ),( ss XX : Therefore, we complete our proof. 

IV. CONCLUSION 

In this paper, we have introduced and analyzed the 

notion of strongly valid control for the standard traffic 

assignment problem with fixed demand. By the stability of 

augmented Lagrangian, we investigate the existence of 

strongly valid controls for multiclass equilibrium problems. 
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