

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 3, Issue 2, August 2014)

131

Software Birthmark Based Theft/Similarity Comparisons of

JavaScript Programs
Swati J. Patel

1
, Tareek M. Pattewar

2

1
PG Student, Department of Computer Engineering, SES’s R. C. Patel Institute of Technology, Shirpur, Maharashtra, India

2
Assistant Professor, Department of Information Technology, SES’s R. C. Patel Institute of Technology, Shirpur, Maharashtra,

India

Abstract—Almost every browser provides an easy way to

obtain the source code of JavaScript Programs. Hence it is

very important to prevent the copy of the websites so as to

protect intellectual property rights of JavaScript developers.

Software Birthmark is used to detect the theft/similarity of

JavaScript programs. A birthmark is a set of characteristic

possessed by a program that uniquely recognizes a program.

Birthmark of the software is based on Heap Graph. It is

generated by using Google Chrome Developer Tools when the

program is in execution. Software’s behavioural structure is

demonstrated in the heap graph. It describes how the objects

are related to each other to deliver the desired functionality of

the website. Our aim is to develop and evaluate a system that

can find theft/similarity between websites by using

Agglomerative Clustering and Improved Frequent Subgraph

Mining. To identify if a website is using the original

program’s code or its module, birthmark of the original

program is explored in the suspected program’s heap graph.

The software is 100 % accurate and finds the theft/similarity

between websites. Moreover, it is possible to detect

theft/similarity even if the website is obfuscated.

Keywords—Heap graphs, theft identification, dynamic

birthmark, agglomerative clustering, improved frequent

subgraph mining.

I. INTRODUCTION

Software industry is severely suffering from piracy. It is

our foremost responsibility to stop or at least reduce the

rate of piracy. Software theft, also referred as software

piracy is an unlicensed copy as well as use of computer

programs [1, 2]. Mostly piracy is done by private

individuals who copy programs from the workplace to their

computers at home. Since data is not so difficult to copy,

and the practice of unlawful software is very tough to

discover, it is challenging to end software piracy [3].

JavaScript is becoming very popular and hence

JavaScript programs are valuable belongings to several

companies. JavaScript is an interpreted computer

programming language also called as interpreted language

because the code of JavaScript program is compiled into

machine readable code when it is run by the interpreter.

In order to make the client-side scripts interaction with

users, JavaScript was implemented as a part of web

browser. This led the user control the browser,

communicate and alter the website content that was

displayed.

Due to occurrence of Web 2.0 and the fact that excellent

platform for developing windows 8 apps are HTML 5 and

JavaScript. So it is obvious that JavaScript is the best

popular programming language for developing websites. In

a survey conducted by Evans Data it was observed that

60% web developers use JavaScript. Use of JavaScript has

surpassed all the scripting languages and 3GL [4]. However

the source code of JavaScript programs can be easily

obtained since it is an interpreted language and most

browsers provide very easy method to obtain the source

code of web pages and hence it is a threat to the industry to

protect the intellectual property rights of the JavaScript

designers. Software protection is a significant area for

computer experts. Several techniques have been introduced

for avoiding software stealing, out of them utmost

generally used are watermarking and code obfuscation.

Code Obfuscation makes the source code of a program

difficult to understand by the humans and watermarking

proves the ownership of the program.

Software watermark is the earliest and well-known

approach to detect software piracy, in which an extra code

known as watermark is included as a part of a program to

prove the ownership of the program [5, 6].Watermarking

embeds the secret message into the cover image. But

watermark can easily be defaced by the strong-minded

invader. The owner of the program has to take some extra

actions earlier to release the program. Therefore JavaScript

developers obfuscate their code before releasing their

software.

Code obfuscation is the practice of making code

unintelligible and difficult to understand. In code

obfuscation the code is converted, that fluctuates the

physical look of the program, without changing the black-

box provisions of the code of a program.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 3, Issue 2, August 2014)

132

Hence code obfuscation is also recognized as the

semantic-preserving technique to convert the code to

change the constructions of the program alters while it’s

meaning and the functionality doesn’t change [7]. Code

obfuscation only prevents others to understand the logic of

the source code but does not protect them from being

copied.

As both code obfuscation and watermarking are good

but not enough techniques to prevent theft of programs a

relatively new and less popular technique is introduced and

that is software birthmark. Software birthmark does not

require any code being added to the software. It depends

only on the internal behaviour of a program to determine

the similarity between programs. A software birthmark

could be used to recognize software theft even after

finishing the watermark by code transformation.

According to Wang et al. [8], a birthmark is a unique

feature a program can have. It can be used to identify the

program. To detect software theft,

1) The birthmark of the genuine program (the plaintiff

program) is extracted first.

2) The birthmark extracted from genuine program is

explored in the heap graph of suspected program.

3) If the birthmark of the program is found in the

suspected program, then it can be demanded that

theft/similarity is detected.

II. RELATED WORK

Myles et al. established the first dynamic birthmark

system. To identify the program, they explored the

complete control flow trace of a program implementation.

It was proved in their experiments that their technique can

struggle to any kind of attacks by code obfuscation. There

is a drawback that their work is sensitive to various loop

transformations. Besides, the whole program path traces are

large and hence it is not feasible to scale this technique

further [9, 10].

Tamada et al. proposed two kinds of dynamic software

birthmarks based on API calls. Their approach was based

on the capacity to understand the hidden truths that it was

difficult for opponent to alter the API calls with other

equivalent ones and that the compiler did not make the

effective use of the APIs themselves. Runtime information

of API calls was used as a strong signature of the program.

The dynamic birthmark was mined by observing the

execution order and the frequency distribution of API calls.

These mined dynamic birthmarks can distinguish

individually established identical purpose applications and

could resist to different compilers.

This promising result motivated the researches to work

on dynamic birthmarks based on API calls [11].

Schuler et al. proposed a dynamic birthmark for Java

that perceives how a program uses objects provided by the

Java Standard API. The small orders of method calls

received by distinct objects from Java Platform Standard

API were detected. The call traces then were divided into a

group of short call sequences received by API objects. The

proposed dynamic birthmark system could accurately

identify programs that were similar to each other and

distinguish separate programs. Moreover, they presented

that all the birthmarks of obfuscated programs were

identical to that of the original program [12]. API

birthmark was more scalable and more resilient than the

Whole Program Path Birthmark by Myles and Collberg

[13].

Wang et al. put forward SCGG birthmark which is a

software birthmark based on dependence graph. An SCDG

is a graph representation of the dynamic behavior of a

program. Every vertex of the graph is a system call and

edges of the graph represent the data and control

dependences between system calls. Their software theft

detection system was on the basis of SCDG birthmark.

Evaluation of their system showed that it was vigorous

against attacks based on obfuscation techniques and

dissimilar compilers. They developed the first system that

is capable of finding software component theft where only

some part of code is stolen [8].

Chan et al. proposed the first dynamic birthmark based

on the run-time heap for JavaScript programs. It is in the

form of an object reference tree. They used tree comparison

algorithm so as to compare two birthmarks and gave a

similarity score between the birthmarks. Due to problem of

efficiency for tree comparison algorithm, the depth of the

tree was limited to 3 in order to make the running time of

the algorithm practical. On the other hand, new birthmark

is an object graph and graph monomorphism was used to

search for the birthmark in the heap graph of the suspected

program. Even though they limited the size of the heap

graphs in the system, the limitation is less restrictive. It is

because the root node of the heap graph is actually at level

2 of the whole object reference graph with reference to the

virtual node. However, the size of the heap graph was

limited; the current birthmark captured far more

information than the earlier system. Furthermore, the

assessment of the birthmark system was of much larger

scale where 200 websites compared with 20 JavaScript

programs in their work and the results were promising [14,

15].

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 3, Issue 2, August 2014)

133

Later, they proposed another heap based birthmark

system. The birthmark system was for detecting theft in

Java programs. For birthmark detection, graph

isomorphism algorithm was used. As graph isomorphism is

too restrictive and makes the birthmark system vulnerable

to reference injection attack. On the contrary, the current

birthmark system uses graph monomorphism for birthmark

detection which makes this system robust against such

attack [16].

Figure I System Overview [17]

III. METHODOLOGY

Figure I show the overview of birthmark system. It

summaries the procedures followed by the plaintiff

program and the suspected program [17].

JavaScript Heap Snapshot Creator - Runs a JavaScript

program and takes multiple heap snapshots in the course of

its execution.

Filter - Traverses the objects in the heap snapshots and

filters out objects.

Graph Merger - Merges the filtered heap graphs together

to form one single graph.

Subgraph Selector - Selects a subgraph from the heap

graph to form the birthmark of the plaintiff program. This

step is not needed for the suspected program.

Detector - Searches for the birthmark of the plaintiff

program in the heap graph of the suspected program.

A. JavaScript Heap Snapshot Creator

Being an interpreted language, JavaScript allows for the

creation of objects at any time. On the other hand, one of

the design elements of the V8 JavaScript engine is efficient

garbage collection. As a result, the JavaScript heap keeps

changing due to object creations and garbage collections.

To make full use of the behavior exhibited by the objects

in the heap, each object is seized which appears in the heap.

In order to achieve this, the objects that disappear from the

heap due to garbage collection must be ignored. Therefore,

the JavaScript heap profiler takes multiple dumps of the

heap and merges them together later on.

After kicking off the JavaScript program, in every 2

seconds, the browser keeps discarding the JavaScript heap.

B. Filter

Google Chromium browser generates the heap dumps in

the form of object reference trees. It is similar to the object

reference graph where nodes represent the objects and

edges represent the references between them. The only

difference is that objects are duplicated to remove cycles in

the graph. For each snapshot taken using the Chromium

browser, a death first search traversal is performed and the

heap graph is printed out with nodes and edges that pass a

filter.

Objects in the V8 JavaScript heap are divided into

twelve categories, HIDDEN, ARRAY, STRING, OBJECT,

CODE, CLOSURE, REGEXP, NUMBER, NATIVE,

SYNTHETIC, CONCATENATED STRING, and SLICED

STRING. Objects that belong to INTERNAL, ARRAY,

STRING, and CODE categories are not included in heap

graphs. Hence all the objects other than these four are

included in the heap graph. References between objects in

the V8 JavaScript heap are divided into six categories

CONTEXT VARIABLE, ELEMENT, PROPERTY,

INTERNAL, HIDDEN, SHORTCUT and WEAK.

References that belong to CONTEXT VARIABLE and

INTERNAL categories are not included in the heap graph.

Therefore, only ELEMENT, PROPERTY, INTERNAL,

HIDDEN, SHORTCUT and WEAK objects are included in

the heap graph.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 3, Issue 2, August 2014)

134

C. Graph Merger

JavaScript engine assign a unique ID to every object in

the JavaScript heap. Moreover, the ID of an object remains

the same across multiple dumps and so it can be used to

identify the object. The Filter also annotates each node in

the heap graph with its object ID. Thus, it is easy to detect

if two nodes in two heap graphs denote the same object. In

this system, the graph merger takes two heap graphs as

input and outputs a merged single graph that includes all

the nodes and edges appearing in the input heap graphs. To

accomplish this we have used Agglomerative Clustering to

merge the graphs. Agglomerative Clustering is a

Hierarchical Clustering approach for merging graphs.

Agglomerative Clustering begins with two different heap

graphs as an input and outputs the final single merged heap

graph. Agglomerative Clustering is applied on both the

heap snapshots of genuine as well as suspected website.

It takes the filtered heap graph in the form of heap

snapshot from the second module Filter.

D. Subgraph Selector

After going through the above steps, the subsequent

heap graph contains objects that are related to the

functionality of that program only and can be used to

identify the JavaScript program. However, it is difficult to

use the whole graph as the birthmark of the program since

the graph is too large for the detection step. The graph,

which can comprise hundreds of nodes, is too large for the

algorithm and may lead to very long execution time.

Improved Frequent Subgraph Mining is used to select the

subgraph of program. Improved Frequent Subgraph M is

essential in order to get the frequently occurring nodes.

Frequent nodes are those that occur several times in the

snapshot. To be precise, if a node is frequent then it is said

that the node is called many-a-times while the website was

being executed. Using FSM, we get all those nodes which

contribute only to the functionality of the program.

Summarizing all, subgraph selector selects the small graph

from the whole graph of plaintiff program in such a way

that it can be formed a birthmark of the plaintiff program.

Figure II Computational Steps [18]

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 3, Issue 2, August 2014)

135

E. Detector

The detector takes the subgraph from the plaintiff

program and the entire heap graph of the suspected

program as inputs and determines whether the selected

subgraph of the plaintiff program can be found in the heap

graph of the suspected program. It takes subgraphs of the

objects found from heap graph of genuine program and

checks whether the subgraph of the plaintiff program can

be found in heap graph of suspected program. Once there is

a match found, the detector raises an alert and reports

where the match is found.

Figure II shows the computational steps undergone by

the system. Computation starts with taking heap snapshots

of first and second websites. Snapshots are passed to filter

where extra objects are removed out.

Now filtered nodes and edges are given to Graph

Merger. Since now only nodes and edges are remained we

call it as heap graph. Graph Merger merges these filtered

nodes from two different snapshots of same website.

Agglomerative Clustering is used to merge graphs. Now

merged graph of second website is given as input to

Subgraph Selector. It selects the birthmark using Improved

FSM. At last, Detector takes merged heap graph of second

website and birthmark extracted by Subgraph Selector and

searches the birthmark against the heap graph of second

website. It produces the output in percentage. The output is

categorized into 2 types on the basis of percentage of

theft/similarity detected.

IV. EXPERIMENTAL ANALYSIS

As Chan et al. [14] worked on 200 websites; we also

used the same set of websites to check the accuracy of our

system. We conducted same experiments on the

implemented system. We observed that like previous

system, our system also detects same number of websites

developed by using both the JavaScript frameworks viz.

Prototype and Mootools. Hence we can say that the system

gives accurate results. The results are as shown in Table I.

Fig. 3 depicts the bar chart representation of experimental

results carried out in Table I.

TABLE I

EXPERIMENTAL RESULTS

JavaScript

Framework

System

Detection

Results

Manual

Checking

Results

Accuracy

Prototype 21 hits 21 hits 100 %

Mootools 25 hits 25 hits 100 %

The system is developed in three stages:

1. System without using Agglomerative Clustering.

2. Using Agglomerative Clustering and FSM.

3. Using Agglomerative Clustering and Improved FSM.

The systems were checked for resistance against

obfuscation and we obtained results shown in Table II.

TABLE III

OBFUSCATION RESULTS

System Detection Rate

System without using Agglomerative

Clustering

80%

Using Agglomerative Clustering and FSM 50%

Using Agglomerative Clustering and

Improved FSM

80%

Figure III Experimental Analysis [18]

Acknowledgment

We are thankful to colleagues and reviewers for their

suggestions which helped us to proceed further for this

research.

REFERENCES

[1] S. Patel and T. Pattewar, Software Birthmark for Theft Detection of

JavaScript Programs: A Survey, in Proc. Of International Conference

on Recent Trends and Innovations in Engineering and Technology,
International Journal of Advance Foundation and Research in

Computer (IJAFRC), Volume 1, Issue 2, pp. 29-38, Feb 2014.

[2] Software theft, [accessed on April 14, 2013]. [Online]. Available:
http://www.javvin.com/softwareglossary/SoftwareTheft.html

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 3, Issue 2, August 2014)

136

[3] Software piracy, [accessed on April 14, 2013]. [Online]. Available:

http://www.fastiis.org/our services/enforcement/software theft/

[4] E. Data, JavaScript dominates EMEA development, Jan 2008,

[accessed on April 14, 2013]. [Online]. Available:

http://www.evansdata.com/press/viewRelease.php?pressID=127

[5] C. Collberg and C. Thomborson, Software watermarking: models

and dynamic embeddings, Department of Computer Science,

University of Auckland, Private Bag 92091, Auckland, New
Zealand, Technical Report, 2003.

[6] A. Monden, H. Iida, K. I. Matsumoto, K. Inoue, and K. Torii,
Watermarking java programs, in International Symposium of Future

Software Technology, Nanjing, China, 1999.

[7] C. Collberg, C. Thomborson, and D. Low, A taxonomy of
obfuscating transformations, University of Auckland, Auckland,

New Zealand, Tech. Rep. 148, 2003.

[8] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C.

Linn, and M. Stepp, Dynamic path-based software watermarking, in

Programming Language Design and Implementation (PLDI 04),
ACM, Ed., New York, pp. 107-118, 2004.

[9] G. Myles and C. Collberg, Detecting software theft via whole

program path birthmarks, in Inf. Security 7th Int. Conf. (ISC 2004),
Palo Alto, CA, pp. 404-414, September 2004.

[10] G. Myles and C. Collberg, K-gram based software birthmarks, in
Symposium on Application Computing (SAC 05), ACM, Ed., pp.

314-318, 2005.

[11] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. I.

Matsumoto, Design and evaluation of dynamic software birthmarks

based on API calls, Graduate School of Information Science, Nara

Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-

shi, Nara, 6300101 Japan, Technical Report, 2007.

[12] D. Schuler, V. Dallmeier, and C. Lindig, A dynamic birthmark for

java, in IEEE/ACM International Conference of Automated

Software Engineering (ASE 07), no. 22, New York, pp. 274-283,
2007.

[13] H. Tamada, M. Nakamura, and A. Monden, Design and evaluation
of birthmarks for detecting theft of java programs, in IASTED

International Conference of Software Engineering, 2004, pp. 569-

575

[14] P. F. Chan, C. K. Hui and S.M. Yiu, Heap graph based software theft

detection, IEEE Transaction on Information Forensics and Security,

vol. 8, pp. 101-110, January 2013.

[15] P. F. Chan, C. K. Hui and S.M. Yiu, Jsbirth: Dynamic JavaScript

birthmark based on the run-time heap, in 2011 IEEE 35th Annual
Computer Software and Application Conference (COMPSAC), pp.

407-412, July 2011.

[16] P. F. Chan, C. K. Hui and S.M. Yiu, Dynamic software birthmark
for java based on heap memory analysis, in IFIP TC 6/TC 11 Int.

Conf. Communication and Multimedia Security (CMS11), Springer-

Verlag, Ed., no. 12, Berlin, Heidelberg, pp. 94-106, 2011.

[17] S. J. Patel and T. M. Pattewar, Software Birthmark Based Theft

Detection of JavaScript Programs Using Agglomerative Clustering
and Frequest Subgraph Mining, in Proc. Of IEEE International

Conference on Embedded Systems (ICES), Coimbatore, Tamil

Nadu, 2014.

[18] Swati Patel, Software Birthmark Based Theft/Similarity

Comparisons of JavaScript Programs, SES’s R. C. Patel institute of
Technology, Shirpur, MS, India, Technical Report, 2014.

