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Abstract -Wavelet transform is a type of signal 

representation that can give the frequency content of the 

signal at a particular instant of time. The Objective of 

Compression is to reduce the memory and efficient use of 

bandwidth. JPEG-2000 is an emerging standard for still 

image compression. Image compression must not only reduce 

the necessary storage and bandwidth requirements, but also 

allow extraction for editing, processing, and targeting 

particular devices and applications. Entropy coding is carried 

out as context-dependent, binary, arithmetic coding of 

bitplanes. Wavelet filters with more analyzing vanishing 

moments generally perform well with natural and smooth 

images and not so with images with a lot of edges and high 

frequency components. 

The analysis filter bank has decomposed the image into 

four parts. LL is the analog of the low pass image.  

HL, LH and HH each contain high frequency information 

and are analogs of the wavelet components. In analogy with 

the wavelet transform, we can now leave the _ wavelet sub 

images HL, LH and HH unchanged,  and apply our filter 

bank to the LL sub image. Then this block in the upper left-

hand  corner of  the analysis image will be replaced by four 

blocks L’L’, H’L’, L’H’ and H’H’,  in the usual order. We use 

the approach of Embedded Zero Tree Algorithm in both 

MATLAB® and VHDL and it is efficient for hardware 

implementation. 

Embedded Zero Tree Algorithm, Set Partitioning in 

Hierarchical trees algorithm and EZW with Context modeling 

algorithm were compared using the results of Peah to signal 

noise Ratio. 

IMAGE 

 

I. INTRODUCTION 

Wavelet transform is a type of signal representation that 

can give the frequency content of the signal at a particular 

instant of time. The Objective of Compression is to reduce 

the memory and efficient use of bandwidth. Two Types of 

Compression are Lossy compression and Lossless 

compression 

A typical image consists of a rectangular array of pixels, 

each pixel coded by bits. In contrast to an audio signal, this 

signal has a fixed length.  

The pixels are transmitted one at a time, starting in the 

upper left-hand corner of the image and ending with the 

lower right. However for image processing purposes it is 

more convenient to take advantage of the 2D geometry of 

the situation and consider the image not as a linear time 

sequence of pixel values but as a geometrical array in 

which each pixel is assigned its proper location in the 

image.  

At this point [7] the analysis filter bank has decomposed 

the image into four parts. LL is the analog of the low pass 

image.  
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HL, LH and HH each contain high frequency (or 

difference) information and are analogs of the wavelet 

components. In analogy with the wavelet transform, we can 

now leave the _ wavelet sub images HL, LH and HH 

unchanged, and apply our filter bank to the LL sub image. 

Then this block in the upper left-hand corner of the analysis 

image will be replaced by four blocks L‘L‘, H‘L‘, L‘H‘ and 

H‘H‘, in the usual order. We could stop here, or we could 

apply the filter bank to L‘L‘ and divide it into four pixel 

blocks L‖L‖, H‖L‖, L‖H‖ and H‖H‖. Each iteration adds a 

net three additional subbands to the analyzed image. Thus 

one pass through the filter bank gives 4 subbands, two 

passes give 7, and three passes yield 10 and four yield 13. 

Four or five levels are common. For a typical analyzed 

image, most of the signal energy is in the low pass image in 

the small square in the upper left-hand corner. It appears as 

a bright but blurry miniature facsimile of the original 

image. The various wavelet subbands have little energy and 

are relatively dark. 

If we run the analyzed image through the synthesis filter 

bank, iterating an appropriate number of times, we will 

reconstruct the original signal. However, the usual reason 

for going through this procedure is to process the image 

before reconstruction. The storage of images consumes a 

huge number of bits in storage devices; compression of the 

number of bits defining the image, say by a factor of 50, 

has a great impact on the amount of storage needed. 

Transmission of images over data networks is greatly 

speeded by image compression. The human visual system 

is very relevant here. One wants to compress the image in 

ways that are not apparent to the human eye. If we increase 

the size of the units in a given subband then fewer bits will 

be needed per pixel in that subband and fewer bits will 

need to be stored. This will result in a loss of detail but may 

not be apparent to the eye, particularly in subbands with 

low energy. This is called quantization. The compression 

level, say 20 to 1, is mandated in advance. Then a bit 

allocation algorithm decides how many bits to allocate to 

each subband to achieve that over-all compression while 

giving relatively more bits to high energy parts of the 

image, minimizing distortion, etc. Then the newly 

quantized system is entropy coded.  

A hardware architecture to implement the significance 

map coding for the embedded zero tree wavelet (EZW) 

algorithm. The architecture is regular and modular and is 

suitable for VLSI implementation. The approach is based 

on developing an efficient scheme to determine ancestor 

descendant relationships in the wavelet coefficient data 

stream by rearrangement of the data stream for simpler 

VLSI implementation.  

For edge detection one is looking for regions of rapid 

change in the image and the wavelet subbands are excellent 

for this. Noise will also appear in the wavelet subbands and 

a noisy signal could lead to false positives by edge 

detection algorithms.  

1.1 Literature Survey 

To build integer-to-integer[7,8] wavelet transforms 

based upon the idea of factoring wavelet transforms into 

lifting steps. Huge data size prohibits fast distribution of 

data. Thus there is need to seek encoding methods that can 

support storage and transmission of images at a spectrum of 

resolutions and encoding fidelities from lossy to lossless 

compression. The embedded zero tree wavelet algorithm 

(EZW) is a simple, yet remarkably effective, image 

compression algorithm, having the property that the bits in 

the bit stream are generated in order of importance, 

yielding a fully embedded code. One difficulty in designing 

the EZW architecture is in locating the corresponding 

parent coefficient for a given child coefficient. The VLSI 

architecture uses address pointers to specify the addresses 

of a child coefficient and its corresponding parent 

coefficient stored in memory. We present VLSI 

architecture to implement the significance map coding for 

the EZW algorithm which is regular and modular and 

which does not require addressing hardware to locate the 

parent and children coefficients in memory. The approach 

is based on developing an efficient scheme to determine 

ancestor descendant relationships in the coefficient data 

stream by rearrangement of the data stream. The problem 

of determining the significance map is formulated in view 

of the ancestor-descendant relationships in the coefficient 

data stream and the corresponding VLSI architecture to 

implement the formulated requirements is reported. 

Other than EZW algorithm we use Set Partitioning in 

Hierarchical trees and EZW with context modeling for 

comparative purposes. The model is based on stochastic 

complexity considerations and is implemented with a tree 

structure. It is efficiently estimated by a modification of the 

universal Algorithm Context.  

1.2 Objective Of The Thesis 

Invertible wavelet transforms that map integers to 

integers[8] have important applications in lossless coding. 

The idea of factoring wavelet transforms into so-called 

lifting steps. This allows the construction of an integer 

version of every wavelet transform.  

JPEG-2000[6] is an emerging standard for still image 

compression. An overview of the standard, and some 

description of the capabilities provided by the standard.  
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JPEG-2000 standard specifies the minimum compliant 

decoder and optional, value-added extensions. Although 

the standard specifies only the decoder and bit stream 

syntax, we describe JPEG-2000 from the point of view of 

encoding. We take this approach, as we believe it is more 

amenable to a compact description more easily understood 

by most readers. 

Digital imagery becomes more common place and of 

higher quality, there is the need to manipulate more and 

more data. Thus, image compression must not only reduce 

the necessary storage and bandwidth requirements, but also 

allow extraction for editing, processing, and targeting 

particular devices and applications. The JPEG-2000 image 

compression system has a rate-distortion advantage over 

the original JPEG. More importantly, it also allows 

extraction of different resolutions, pixel fidelities, regions 

of interest, components, and more, all from a single 

compressed bitstream. This allows an application to 

manipulate or transmit only the essential information for 

any target device from any JPEG 2000 compressed source 

image. JPEG-2000 has a long list of features, a subset of 

which are: 

 State-of-the-art low bit-rate compression performance 

 Progressive transmission by quality, resolution, 

component, or spatial locality 

 Lossy and lossless compression (with lossless 

decompression available naturally through all types of 

progression) 

 Random (spatial) access to the bit stream 

 Pan and zoom (with decompression of only a subset 

of the compressed data) 

 Compressed domain processing (e.g., rotation and 

cropping) 

 Region of interest coding by progression 

 Limited memory implementations 

 1.3 Block Coding 

Entropy coding [22] is performed independently on each 

code-block. This coding is carried out as context-

dependent, binary, arithmetic coding of bitplanes. Consider 

a quantized code-block to be an array of integers in sign-

magnitude representation, and then consider a sequence of 

binary arrays with one bit from each coefficient. The first 

such array contains the most significant bit (MSB) of all 

the magnitudes. The second array contains the next MSB of 

all the magnitudes, continuing in this fashion until the final 

array which consists of the least significant bits of all the 

magnitudes. These binary arrays are referred to as 

bitplanes.  

The number of bitplanes in a given code-block (starting 

from the MSB) which are identically zero is signaled as 

side information, as described later. So, starting from the 

first bitplane having at least a single 1, each bitplane is 

encoded in three passes (referred to as sub-bitplanes). The 

scan pattern followed for the coding of bitplanes, within 

each code-block (in all subbands). This scan pattern is 

basically a column-wise raster within stripes of height four. 

At the end of each stripe, scanning continues at the 

beginning (top-left) of the next stripe, until an entire 

bitplane (of a code-block) has been scanned. 

The prescribed scan is followed in each of the three 

coding passes. The decision as to which pass a given bit is 

coded in is made based on the ―significance‖ of that bit‘s 

location and the significance of neighboring locations. A 

location is considered significant if a 1 has been coded for 

that location (quantized coefficient) in the current or 

previous bitplanes. 

The first pass in a new bitplane is called the significance 

propagation pass. A bit is coded in this pass if its location is 

not significant, but at least one of its eight-connected 

neighbors is significant. If a bit is coded in this pass, and 

the value of that bit is 1, its location is marked as 

significant for the purpose of coding subsequent bits in the 

current and subsequent bitplanes. Also, the sign bit is 

coded immediately after the 1 bit just coded. The second 

pass is the magnitude refinement pass. In this pass, all bits 

from locations that became significant in a previous 

bitplane are coded. The third and final pass is the clean-up 

pass, which takes care of any bits not coded in the first two 

passes.  

All coding is done using context dependent binary 

arithmetic coding. The arithmetic coder employed is the 

MQ-coder as specified in the JBIG-2 standard. The coding 

for the first and third passes is identical with the exception 

that run coding is sometimes employed in the third pass. 

Run coding occurs when all four locations in a column of 

the scan are insignificant and each has only insignificant 

neighbors. A single bit is then coded to indicate whether 

the column is identically zero or not. If not, the length of 

the zero run (0 to 3) is coded, reverting to the ―normal‖ bit-

by-bit coding for the location immediately following the 1 

that terminated the zero run. The sign and magnitude 

refinement bits are also coded using contexts designed 

specifically for that purpose. 

The context models are always reinitialized at the 

beginning of each code-block. Similarly, The best 

performance is obtained when these are the only 

reinitializations /terminations.  
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It is allowable however, to reset/terminate at the 

beginning/end of every sub-bitplane within a code-block. 

This frequent reset/termination, plus optionally restricting 

context formation to include data from only the current and 

previous ―scan-stripes‖ is sufficient to enable parallel 

encoding of all sub-bitplanes within a code-block (of 

course, parallel encoding of the code-blocks themselves is 

always possible). Reset/termination strategies can also 

impact the error resilience of the decoder. Finally, 

―selective arithmetic coder bypass‖ can be used to 

significantly reduce the number of symbols arithmetically 

coded. In this mode, the third coding pass of every bitplane 

employs arithmetic coding, as before. However, after the 

fourth bitplane is coded, the first and second passes are 

included as raw (uncompressed) data. For natural imagery, 

all of these modifications produce a surprisingly small loss 

in compression efficiency. For other imagery types 

(graphics, compound documents, etc.) significant losses 

can be observed.  

1.4 Packets And Layers 

The packet header contains: block inclusion 

information for each block in the packet (some blocks will 

have no coded data in any given packet); the number of 

completely zero bitplanes for each block; the number of 

sub-bitplanes included for each code-block; and the number 

of bytes used to store the coded sub-bitplanes of each 

block. It should be noted that the header information is 

coded in an efficient and embedded manner itself. The data 

contained in a packet header supplements data obtained 

from previous packet headers (within the same packet 

partition location) in a way to just enable decoding of the 

current packet.  

1.5 Parsing 

Even though a JPEG-2000 bit stream can be stored in 

any reasonable desired order, it can of course, only exist in 

one order at a time. However, because the coded data 

within packets are identical regardless of the progression 

type chosen, it is trivial to change the order, or to extract 

any required data from the bit stream. The JPEG-2000 bit 

stream contains markers which identify the progression 

type of the bitstream. Other markers may be written which 

store the length of every packet in the bitstream. To change 

a bitstream from progressive by resolution to progressive 

by SNR, a parser can read all the markers, change the type 

of progression in the markers, write the lengths of the 

packets out in the new order, and write the packets 

themselves out in the new order.  

 

There is no need to run the MQ-coder, the context 

model, or even decode the block inclusion information. The 

complexity is only slightly higher than a pure copy 

operation. A parser can read the markers from a 3 

component file, and write markers for a one component 

file, and discard all packets containing color components. 

Similarly, while editing, a compressed image might be 

stored at 2 bpp or even losslessly. If 2000 images are to be 

distributed on a CD-ROM, the layers contributing the least 

to quality can be discarded across the image set, until the 

required size is reached. Fifty layers provide enough 

information to extract almost any desired bit rate at any 

desired resolution. 

1.6 Image Editing And Compression 

All uncompressed tiled image formats allow regions of 

an image to be edited, and only those tiles affected need to 

be rewritten to disk. With compression the compressed size 

of an edited tile can change. Because of the flexibility in 

quantization in JPEG-2000 it is possible to truncate an 

edited tile to fit in the previous size. 

1.7 Ezw Architecture 

The processors are implemented using delay elements, 

comparators (C), logic gates and multiplexers. For simpler 

VLSI implementation, if the threshold value is constrained 

to be an exact power of two, then each comparator can be 

replaced with a bitwise-and operation between the 

coefficient magnitude and the power-of-two threshold. The 

control input level selector selects the level of the 

coefficient in the tree hierarchy. 

The other control inputs[5] level0-child-selector and 

level1-childselector selects from one of the four children of 

the parent coefficient. Initially, registers RO-R7 are set to 

zeros and flip-flops FO-F3 are set to 1. The initial values of 

flip-flops F4-F11 do not affect the processing. Data inputs, 

control inputs and outputs for processors P1 and P2 

respectively for the tree hierarchy for a threshold value T, 

of 32. 

 
Figure 1.3 VLSI Architecture for processor 1 
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Figure 1.4 VLSI architecture for processor 2 

Each of the four symbols POS, NEG, ISZ and ZTR can 

be coded using two binary digits. To formulate the coding 

process, four additional binary symbols DZF, AZF, SIG 

and SGN are defined. The symbol DZF (Descendant-ZTR-

Flag) is set to ‗1‘ for a given coefficient if all its descendant 

coefficients are ZTR symbols. Similarly, the symbol AZF 

(Ancestor-ZTR Flag) is set to ‗1‘ for a given coefficient if 

it descends from an ancestor coefficient which is a ZTR 

symbol. The symbol SIC (Significant-Coefficient) is set to 

‗0‘ if the current coefficient is significant and the symbol 

SGN(Sign-Coefficient) is set to the sign bit of the current 

coefficient which in sign-magnitude representation is '0' for 

positive coefficients and ' 1 ' for negative coefficients. 

Using these four symbols and letting the binary digits 

(C0,Cl) represent the symbols POS (CO=O,Cl=O), NEG 

(CO=O,Cl=l), ISZ (CO=l,Cl=O) and ZTR (CO=l,Cl=l), the 

coding of the coefficients can be represented by: 

SIG   = 0 if coefficient magnitude ≥ threshold 

 = 1 if coefficient magnitude < threshold    

SGN  = 0 if coefficient value  ≥ 0  

 = 1 if coefficient value < 0 

DZF   = 1 if all descendants are ZTR symbols  

 = 0 otherwise 

CO = SIG (4) 

C1 = SGN ifCO=O 

= DZF ifCO=l 

AZF = 1 if ancestor is ZTR symbol 

= 0 otherwise 

 

 

 

II. CHAPTER 

2.1 Integer To Integer 

We denote[9] by (s0,j)j the original signal of interest, 

(s1,j)j and (d1,j)j the low pass and high pass coefficients 

respectively after a wavelet transform. In construction of 

integers to (s0,j)j represented in integers to (s1,j)j and (d1,j)j 

also represented in integers. The transform is reversible. i.e. 

We can also recover (s0,j)j from (s1,j)j and (d1,j)j. 

One example wavelet transform that maps integers to 

integers is the haar transform, when written in its 

normalized form  

D1,l = S0,2l+1 – S0,2l 

S1,l = S1,l – [d1,l/2] 

This form is known as the S transform. 

S+P transform in which linear prediction is performed 

on the low pass coefficients S1,t to generate a new set of 

high pass coefficients after an S transform. 

The general form of the transform is  

d1,l
l
  = S0, 2l+1 – S0,2l 

S1,l = S0,2l + [d1,l
(2)

/2] 

d1,l = d1,l
(1)

 + [ -1(s1,l-2 – s1,l-1) + 0 (s1,l-1– s1,1) +1 

(s1,l– s1,1+1) - 1 d
(1)

1,l+1 

Wavelet transforms implemented as invertible integer 

wavelet transforms. The first set of transforms have names 

of the form (N,Ň) , where N is the number of vanishing 

moments of the analyzing high pass filter, While Ň is the 

number of vanishing moments of the synthesizing high 

pass filter. 

The next transform (2+2,2) is inspired by he S+P 

transform- we use one extra lifting step to build the earlier 

(2,2) into a transform with 4 vanishing moments of the high 

pass analyzing filter. The idea is to first compute a (2,2) 

yielding low pass samples s1,l and  preliminary detail or 

high pass samples d
(1)

1,l and then use the s1,l combined with 

d1,l+n to compute d‘1,l as a prediction of d
(1)

1,l. The final 

detail sample then is d
(1)

1,l - d‘1,l. 

Wavelet filters with more analyzing vanishing moments 

generally perform well with natural and smooth images and 

not so with images with a lot of edges and high frequency 

components. On the other hand low order filters like S-

transform generally perform the worst, especially with 

natural images. 
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2.2 Bit Plane Coder 

After receiving the lossless integer wavelet transforms, it 

has been sent to the bit plane coder. Bitplane coder consists 

of significance prediction, context modeling and adaptive 

arithmetic coding. We use significance and refinement 

consistent with the terminology of zero tree embedded 

coding. 

Embedded Coding:  

It is the one [8] representing a sequence of binary 

decisions that distinguish an image from the ―null‖ image. 

It is similar in spirit to binary finite-precision 

representations of real number.  It will produce a fully 

embedded bit stream . It will provide[20] competitive 

compression performance. The Advantages are Precise rate 

control and No training of any kind required 

2.3 Level Of Decomposition 

Two – fold problems: 

1. Obtain the best image quality   for a given bit rate. 

2. Accomplishing this task in an embedded fashion i.e. 

in such a way that all encoding of the same image of 

lower bit rates are embedded in the beginning  of the 

bit stream for the target bit rate. 

First stage of a discrete wavelet transforms. The image is 

divided into four subbands using separable filters. Each 

coefficient represents a spatial area corresponding to 

approximately a 2 x 2 area of the original picture. 

The image is divided into four subbands using separable 

filters. Each coefficient in the subbands LL2, LH2, HL2 

and HH2 represents a spatial area corresponding to 

approximately a 4 x 4 area of the original picture. 

 

Figure 2.1  first stage DWT 
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HL 

 

 

HH 

 

Figure 2.2 two scale wavelet decomposition 
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LH1 

 

HL2 

 

 

HH2 

 

 

 

 

HL1 

 

 

HH1 

 

The image is divided into four subbands using separable 

filters. Each coefficient in the subbands LL2, LH2, HL2 

and HH2 represents a spatial area corresponding to 

approximately a 4 x 4 area of the original picture. 

2.4 Embedded Zero Tree Wavelet Algorithm: 

The embedded zero tree wavelet algorithm (EZW) is a 

simple, yet remarkably effective, image compression 

algorithm, having the property that the bits in the bit stream 

are generated in order of importance, yielding a fully 

embedded code. The embedded code represents a sequence 

of binary decisions that distinguish an image from the 

―null‖ image. Parent child dependencies of sub bands. 

Arrow points from the sub band of the parent to the sub 

band of the children. 

 The lowest frequency sub band is the top left and 

the highest frequency subband is the bottom right. 

 Wavelet tree consisting of all the descendants of a 

single coefficient in sub band HH3. 

 The coefficient in HH3 is a zero tree root if it is 

significant and all of it descendants are 

insignificant. 

Scanning order of the sub bands for encoding a 

significance map that parents must be scanned children. 

Note that all positions in a given sub band are scanned 

before the scan moves to the next sub band. 
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Figure 2.3 Parent child dependencies 

2.5  Relationship Of Zero Tree To Bitplane Coding: 

For each coefficient get eventually coded as significant, 

the sign and bit position of the Most Significant Binary 

Digit (MSDB) are measured and encoded during a 

dominant pass. Binary digit as a sequence of binary 

decisions in a binary tree proceeding from left to right, if 

we have not yet encountered a ‗1‘ we expect the probability 

distribution for the next digit to be strongly biased ‗0‘. The 

digits to the left and including the MSDB are called the 

dominant bits and are measured during dominant passes. 

Those binary digits to the right of the MSDB are called 

subordinate bits. 

Zero tree – A new data structure is defined to improve 

the compression of significance maps of wavelet 

coefficients. 

The significance map can be efficiently represented as a 

string of symbols from a 4 symbols are used. 

1. Zero tree root (zr) => if (|xWT| < Ti) && (all 

descendants of xWT < Ti) 

2. Isolated zero (iz) 

=> if (|xWT| < Ti) &&  ((some descendants of xWT > Ti) || 

(xWT is the last item)) 

3. Significant positive (sp) 

 => if (|xWT| >= Ti) && (xWT > 0) 

4. Significant negative (sn) 

 => if (|xWT| >= Ti) && (xWT < 0) 

The first pass in a new bitplane is called the significance 

propagation pass. A bit is coded in this pass if its location is 

not significant, but at least one of its eight-connected 

neighbors is significant. If a bit is coded in this pass, and 

the value of that bit is 1, its location is marked as 

significant for the purpose of coding subsequent bits in the 

current and subsequent bitplanes. Also, the sign bit is coded 

immediately after the 1 bit just coded.  

 

 

 

 

The second pass is the magnitude refinement pass. In 

this pass, all bits from locations that became significant in a 

previous bitplane are coded. The third and final pass is the 

clean-up pass, which takes care of any bits not coded in the 

first two passes. 

2.6 Spiht Algorithm: 

A new, fast and different implementation based on set 

partitioning [17-19] in hierarchical trees (SPIHT), which 

provides even better performance than EZW algorithm. 

SPIHT algorithm is based on 3 concepts:  Ordered bit plane 

progressive transmission, Set partitioning sorting 

algorithm, Spatial orientation trees. 

A major objective in a progressive transmission scheme 

is to select the most important information – which yields 

the largest distortion reduction – to be transmitted first. 

Ordered bit plane progressive transmission scheme that 

incorporates the two concepts: Ordering the coefficients by 

magnitude, transmitting the most significant bits (MSBs) 

first. The sorting algorithm divides the set of pixels into 

partitioning subsets Tm and performs the significance test 

by using the function. 

Sn(T)    =   1, max { ( i,j)   T Ci,j > 2 
n
} 

         0, Otherwise 

The following sets of coordinates are used to present the 

new coding method： 

 (i, j)  set of coordinates of all offspring of  node (i, 

j) ; 

 D (i, j)  set of coordinates of all descendants of the 

node (i, j) ; 

 H          set of coordinates of all spatial orientation 

tree roots ; 

L (i, j) = D (i, j) – O (i, j) 

This SPIHT algorithm uses the principles of partial 

ordering by magnitude, set partitioning by significance of 

magnitudes with respect to a sequence of decreasing 

thresholds, ordered bit plane progressive transmission, and 

self-similarity across scale in an image wavelet transform. 

2.7 Ezw With Context Modeling: 

Inspired by theoretical results on universal modeling, a 

general frame work for sequential modeling of gray-scale 

images is proposed and applied to lossless compression. 

The model is based on stochastic complexity considerations 

and is implemented with a tree structure. It is efficiently 

estimated by a modification of the universal Algorithm 

Context. Several variants of the algorithm are described.  
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The compression ratios are compared with those 

obtained with state-of-the-art algorithms available in the 

literature, with the‘ results of the comparison consistently 

favoring the proposed approach. 

LOCO-I (LOW Complexity Lossless Compression for 

Images) [22] is a novel loss-less compression algorithm for 

continuous-tone images which  combines the simplicity of 

Huffman coding with the compression potential of context 

models, thus ―enjoying the best of both worlds.‖ The 

algorithm is based on a simple fixed context model, which 

approaches the capability of the more complex universal 

context modeling techniques for capturing high order 

dependencies. The model is tuned for efficient performance 

in conjunction with a collection of (context-conditioned) 

Huffman codes, which is realized with an adaptive, 

symbol-wise, Golomb Rice code. LOCO-I attains, in one 

pass, and without recourse to the higher complexity 

arithmetic coders, compression ratios similar or superior to 

those obtained with state-of-the-art schemes based on 

arithmetic coding. In fact, LOCO-I is being considered by 

the IS0 committee a s a replacement for the current lossless 

standard in low-complexity applications.  

Lossless image compression schemes often consist of 

two distinct and independent components: modeling and 

coding. The modeling part can be formulated as an 

inductive inference problem, in which an image is observed 

pixel by pixel in some pre-defined order (e.g., raster-scan). 

At each time instant i , and after having scanned past data 

xi = ~1 x 2 . . . xi, one wishes to make inferences on the 

next pixel value si+l by assigning a conditional probability 

distribution p (.l z z ) to it.‘ Ideally, the code length 

contributed by zz+l is - logp(zi+l(z‘) bits (hereafter, 

logarithms are taken to the base Z), which averages to the 

entropy of the probabilistic model. Thus, a skewed (low-

entropy) probability distribution, which assigns a high 

probability value to the next pixel, is desirable. In a 

sequential formulation, the distribution p (./z 2 ) is learned 

from the past and it is available to the decoder as it decodes 

the past string sequentially. Alternatively, in a two-pass 

scheme the conditional distribution can be learned from the 

whole image in a first pass and must be sent to the decoder 

as header information. In this case, the total code length 

includes the length of the header. Yet, both the second 

encoding pass and the (single-pass) decoding are subject to 

the same sequential formulation. ~  

2.8 Applications Of Universal Context Modeling  

Inspired by theoretical results[21] on universal 

modeling, a general framework for sequential modeling of 

gray-scale images is proposed and applied to lossless 

compression. 

It is efficiently estimated by a modification of the 

universal Algorithm Context. Several variants of the 

algorithm is described. The sequential, lossless 

compression schemes obtained when the context modeler is 

used with an arithmetic coder are tested with a 

representative set of gray-scale images. The compression 

ratios are compared with those obtained with state-of-the-

art algorithms available in the literature, with the‘ results of 

the comparison consistently favoring the proposed 

approach. 

Most of the literature in gray-scale image compression 

deals with lossy schemes for   which the original pixel  

intensities cannot be perfectly recovered from the encoded  

bit stream. The lossless (or ―noiseless‖) requirement 

implies that the coding algorithms yield decompressed 

images identical to the original digitized images. Thus, 

images from digital radiology in medicine or from satellites 

in space are usually compressed by reversible methods. 

Lossless compression is generally the choice also for 

images obtained at great cost, in applications where the 

desired quality of the rendered image is unknown at the 

time of acquisition or in applications where intensive 

editing or repeated compression decompression are 

required. Gray-scale images are considered as 2-D arrays of 

intensity values, digitized to some number of bits. In most 

applications eight bits are used, although 12 bits is 

customary in digital radiology. Color images, in turn, are 

usually represented in some color space (e.g., RGB, YUV, 

LAB), in which each component is a gray-scale image. 

Thus, the tools employed in the compression of color 

images are derived from those developed for gray-scale 

images, 

We present a new low-complexity method for modeling 

and coding the bit- planes of a wavelet-transformed image 

in a fully embedded fashion. The scheme uses a simple 

ordering model for embedding, based on the principle that 

coefficient bits that are likely to reduce the distortion the 

most should be described in the encoded bitstream. The 

ordering model is tied to a conditioning model in a way that 

deinterleaves the conditioned subsequences of coefficient 

bits, making them amenable to coding with a very simple, 

adaptive elementary Golomb code. The proposed scheme, 

without relying on zero trees or arithmetic coding, attains 

PSNR vs. bit rate performance superior to that of SPIHT, 

and competitive with its arithmetic coding variant, SPIHT-

AC. 

Progressive image compression refers to the encoding of 

an image into a bitstream that can be parsed efficiently to 

obtain lower rate and lower resolution descriptions of the 

image.  
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Such descriptions are said to be SNR (signal to noise 

ratio) and resolution scalable. Most state-of-the-art 

progressive image compression schemes are based on a 

wavelet transform followed by quantization of the 

transform coefficients. The multi-resolution nature of the 

wavelet transform leads to resolution scalability in a 

straightforward way. We focus on SNR scalability, where 

the goal is to produce a so called embedded bitstream 

which has the property that the of the bitstream yield a 

continuum of lower rate descriptions of the image at the 

highest possible levels of quality.  

In the context of image coding, a number of reversible 

integer-to-integer wavelet transforms are compared on the 

basis of their lossy compression performance, lossless 

compression performance, and computational complexity. 

Of the transforms considered, several were found to 

perform particularly well, with the best choice for a given 

application depending on the relative importance of the 

preceding criteria. Reversible integer-to-integer versions of 

numerous transforms are also compared to their 

conventional (i.e., nonreversible real-to-real) counterparts 

for lossy compression. At low bit rates, reversible integer-

to-integer and conventional versions of transforms were 

found to often yield results of comparable quality. Factors 

affecting the compression performance of reversible 

integer-to-integer wavelet transforms are also presented, 

supported by both experimental data and theoretical 

arguments. Index Terms—Image coding/compression, 

reversible integer-to-integer wavelet subband transforms. 

There has been a growing interest in reversible integer-

to-integer wavelet transforms for image coding applications 

.Such transforms are invertible in finite-precision 

arithmetic (i.e., reversible), map integers to integers, and 

approximate the linear wavelet transforms from which they 

are derived. Due largely to these properties, transforms of 

this type are extremely useful for compression systems 

requiring efficient handling of lossless coding, minimal 

memory usage, or low computational complexity. 

Furthermore, these transforms are particularly  attractive 

for supporting functionalities such as progressive lossy-to-

lossless recovery of images lossy compression with the 

lossless reproduction of a region of interest and strictly 

lossy compression with minimal memory usage Due to 

applications like these, we can see that there is a clear need 

to consider not only the lossless compression performance 

of a particular reversible integer-to-integer wavelet 

transform, but also its lossy compression performance.  

 

 

 

 

Several reversible integer-to-integer wavelet transforms 

are compared on the basis of their lossy compression 

performance, lossless compression performance, and 

computational complexity.  

Reversible integer-to-integer versions of transforms are 

also compared to their conventional (i.e., nonreversible 

real-to-real) counterparts for lossy compression. The 

objective, in this case, is to quantify any performance 

degradation associated with the introduction of the 

reversible and integer-to-integer properties. If these 

properties do not adversely affect image quality, this would 

provide a compelling argument for the use of reversible 

integer-to-integer transforms in strictly lossy compression 

systems in order to reduce memory and computational 

requirements. If, however, compression performance is 

negatively impacted, it would be useful to have some 

quantitative measure of this degradation. Finally, factors 

affecting the compression performance of reversible 

integer-to-integer wavelet transforms are discussed, 

supported by both experimental data and theoretical 

arguments. Through the insight such information provides, 

one can hope to design new and more effective transforms. 

3.1 Analysis Of Wavelet F0r 256x256 Image 

  
Figure 3.1 GUI FOR WAVLET 
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3.2 VHDL Output Waveforms 

 
Figure 3.2 ANCESTOR OUTPUT 

 

3.3 Synthesis Report (Area Details In Hardware) 

ROM 

Device Used Available Utilization 

Number of slices 5 1200 0% 

Number of slices FF‘s 8 2400 0% 

Number of IOB‘s 17 96 17% 

Number of BRAM‘s 1 10 10% 

Number of GCLK‘s 1 4 25% 

 

 

 

 

 

3.4 Reconstructed Image Using Ezw With Context 

Modeling 

Table 3.3 

PSNR values for EZW with context modeling 

Image CR PSNR MSE 

Flowers 1.45 28.43 94.008 

MRI Scan 4.28 28.43 94.008 

Cameraman 1.656 27.88 106.66 

Lena 1.06 28.89 84.46 
 

 
Figure 3.5 Input Image 

 
Figure 3.6 Reconstructed 3.5 USING EMBEDDED ZERO TREE 

WAVELET  
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Table 3.4  

PSNR values for EZW algorithm 

Image CR PSNR 

Flowers 4.92 20.543 

MRI Scan 4.85 20.34 

Cameraman 5.01 18.54 

Lena 5.05 17.85 

 

Figure 3.8  Significance Prediction 

3.6 Spiht Algorithm 

For 128 X 128 Image Pixels 

Table 3.5  

PSNR values for SPIHT algorithm 

Image CR PSNR 

Cameraman 5.143 13.040 

Flowers 5.44 13.236 

Rice 5.15 11.114 

Lena 5.09 12.49 

 
Figure 3.9 GUI for SPIHT algorithm 

 

 

 

 

3.7 Comparative Table For Various Algorithm 

For 1 : 100 Resolution 

For 256 x 256 Image Pixels 

For 128 X 128 Image Pixels                                                                         

For 64 X 64 Image Pixels 

Table 3.6  

Comparative values for various algorithm at resolution 1:100 

 

 

 SPIHT 

algorithm 

EZW with Context 

Modeling 

EZW 

Algorithm 

Image CR PSNR CR PSNR CR PSNR 

Cameraman 5.143 13.040 3.066 16.424 4.45 12.54 

Flowers 5.44 13.236 3.814 23.574 5.05 11.23 

Rice 5.15 11.114 3.19 23.57 4.95 11.14 

Lena 5.09 12.49 2.84 19.015 5.10 10.14 

 SPIHT 

algorithm 

EZW with 

Context 

Modeling 

EZW 

Algorithm 

Image CR PSNR CR PSNR CR PSNR 

Cameraman 5.254 19.5356 3.585 25.488 4.92 20.543 

Flowers 5.45 19.455 5.088 31.29 4.85 20.34 

Rice 5.15 17.461 4.130 31.448 5.01 18.54 

Lena 5.12 18.96 4.286 28.126 5.05 17.85 

 SPIHT 

algorithm 

EZW with 

Context 

Modeling 

EZW 

Algorithm 

Image CR PSNR CR PSNR CR PSNR 

Cameraman 5.056 6.483 2.412 8.504 4.95 5.423 

Flowers 5.09 4.455 2.745 9.395 5.15 4.451 

Rice 5.4 6.754 2.86 13.244 5.5 5.874 

Lena 5.05 5.81 2.37 10.448 4.85 5.48 
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For 1 : 50 Resolution 

For 256 x 256 Image Pixels 

For 128 X 128 Image Pixels 

For 64 X 64 Image Pixels 

Table 3.7  

Comparative values for various algorithm at resolution 1:50 

 

3.8 Comparative Graph For Algorithms 

 

Figure 3.10 Comparative Graph for various algorithm 

 

IV. CONCLUSION 

We have presented a regular and modular architecture to 

implement the significance map coding for the EZW 

algorithm which is suitable for VLSI implementation. The 

approach is based on an efficient scheme to determine 

ancestor-descendant relationships in the wavelet coefficient 

data stream by rearrangement of the data stream. An area 

detail for Hardware implementation has been reported. 

We have proposed a new low-complexity method for 

coding the bitplanes of a wavelet-transformed Image. In 

terms of PSNR our coder is competitive with other coder. 

The PSNR numbers for the proposed coding method 

coupled with the EZW algorithm at various bit rates on 

various images are listed in Table. For comparison 

purposes, we also include in the table the performance 

figures on the same test image of the EZW algorithm and 

the recent Said and Pearlman‘s method . Our method 

significantly outperformed the original EZW algorithm at 

all bit rates, and it fared slightly better than Said and 

Pearlman‘s method. The computation time required for the 

compression  is also reduced to some extent.  
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