

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

97

A Secure Software Access Measure using Coupling,

Complexity and Cohesion Metrics
K.Vaitheki

1
, S. Urmela

2

1
Assistant Professor,

2
M.Tech Scholar, Department of Computer Science, Pondicherry University, Puducherry, India

Abstract— Security being an imperative feature and a

crucial need of any software system the security issues have

always been secondary for the developers in SDLC

progression. The unavailability of the information about the

proactive vulnerabilities and the security breaches makes the

software much apprehensive. The vulnerability prone nature

of the software that affects the secure access that is aimed is

identified by adopting the CCC metrics. This paper

elaborates Security patterns as reusable solutions and further

it paves a way to develop patterns for secure access hence

providing explicit solutions to the context of the problem

related to secure access. The proposed work has refined the

values for the quality attributes related to secure access

through careful reviews and map them with necessary code

level metrics that affects security at different abstraction

levels. The modifications at the code levels based on the

internal and external metrics aims to provide a step up in

security correlated to secure access.

Keywords-- Security, Patterns, Secure access, SDLC, CCC
metrics.

I. INTRODUCTION

Software security is the idea of engineering software so

that it continues to function correctly under malicious

attack. Software security best practices leverage good

software engineering practice and involve thinking about

security early in the software lifecycle, knowing and

understanding common threats inclusive of language-based

flaws and pitfalls, security designing and testing. Software

securities need to fit in to the overall concept of operational

security and examine some best practices of building

security.

Software security best practices and the knowledge of

how to tackle need to be explored as there is no clear

implication of the design documentations. A security risk

may be classified as vulnerability. The time from when the

security opening was presented or showed in conveyed

programming, to when access was evacuated, a security fix

was accessible/ conveyed or the attacker was out of action

is the window of vulnerability.

II. THE NEED FOR SOFTWARE SECURITY

The proposed work aims at a lead to develop a general

pattern or redefining an existing pattern to achieve the

security related issues mainly for a secure access of

software. The CCC metrics generically used to access the

quality of the software attributes which in turn can be used

as a metric related to the identify the factors of

vulnerability that affects secure access.

The modifications at the code levels based on the

internal and external metrics of the software aims to

provide a step up in security correlated to secure access

Security patterns available for software that deals with

confidentiality, Integrity, authentication, authorization,

secure access, non-repudiation, availability and privacy.

Security denotes poles apart things with respect to software

systems but almost certainly it is associated with four vital

key principles.

The metric model that identifies how vulnerable a

software becomes the most essential need to avoid further

implication at the release stage of the software that may

require an enormous reengineering and thereby affect the

cost factor vigorously. The extensive researches to identify

the various metric models so far do not have a direct impact

over the system. Moreover they are much inclined towards

measuring the system’s dynamic behavior, neglecting the

need to evaluate system’s quality in the early design phase.

The vulnerabilities that exist do affect the

maintainability and testing of the system. Mostly prerelease

vulnerabilities which provoke at the testing phase are

considered. It will be better to weigh up on the post release

vulnerabilities that are proactive in nature and manifest at

the operational stage of the software where it also harder to

identify the vulnerabilities until they are patented. Pattern

users find it hard to locate the required appropriate solution

from the steep number of existing patterns.

III. METRICS FOR IDENTIFYING SOFTWARE

VULNERABILITY

The consequential model provides support for a software

quality assessment allied to security. Modifications to

support model were done in three steps

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

98

1. Identify desirable quality attributes for secure access

2. Select quality-carrying properties from design

components

3. Link CCC metrics with the quality attributes related

to secure access and provide the mapping of these

attributes with the metrics.

The design properties are derivative of the design

components such as services, operations, messages used in

operation calls, and connections among services.

When identifying and designing services, these design

components have to be appropriately combined to qualify a

good design.

The Coupling, complexity and Cohesive measure the

quality of the software attributes and more than it branches

out to locate the vulnerabilities of the system at the

operational level of the software proactively.

Fig 1 Operational level of the software

IV. ARCHITECTURE DESIGN

Service oriented architecture is a very popular

architecture paradigm for designing and developing

distributed system. It is as information technology

approach in which applications make use of network

services that are available over the internet.

It is an architectural style where system consists of

service consumers and service providers. An architecture

style defines a vocabulary of components and connectors

type and constraints on how they can be connected.

Table 1.

System’s Components And Connectors

The constraints that apply to the SOA architectural style

are

A. Service Provider

The service supplier is the system addressable element

that acknowledges and executes demands from consumers.

It could be a mainframe system, a part or some other sort of

programming framework that executes the administration

demand .The administration supplier or the service

provider distributes its agreement in the registry for access

by administration shoppers.

B. Service Consumer

The service consumer is a requisition administration, or

some other sort of programming module that obliges an

direction. It is the element that launches the spotting of the

service in the registry tying to the administration over a

transport, and executing the service capability.

C. Service Registry

A system based catalog that holds accessible

administrations is nonentity but the service registry. It is an

element that acknowledges and stores contracts from

administration suppliers and gives those agreements to the

intrigued service consumers.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

99

Fig 2. Activity Diagram of the entire system

D. Service Contract

Service contract is a particular of the way a consumer of

an administration will collaborate with the supplier of the

administration. It defines the arrangement of the appeal and

reaction from the administration. It may require a set of

preconditions and post conditions that indicate the state that

the service must be into execute a specific capacity. The

agreement might additionally point out nature of service
(QOS) levels. QOS levels are determinations for the non

practical parts of the administration. Case in point, a nature

of administration characteristic is the measure of time it

takes to execute a service technique.

Fig 3. The Quality Attributes Metric Paradigm

V. IDENTIFY SOFTWARE INTERNAL AND EXTERNAL

METRICS

A. Service Internal Metrics

Identify code software and analyze it thoroughly with a

testing tool which is used to hit upon the vulnerability of

Software at the code level. The service internal metrics use

service internal elements such as service name, operations

provided by the service, and characteristics of the messages

defined in the service. This module computes number of

operations, numbers of Fine-grained Parameter Operations,

number of Messages used, number of asynchronous

operations, number of synchronous operations, number of

inadequately named operations in the given services.

Number of operations is used to measure complexity and is

adapted from number of methods metric in systems.

Cohesion is a property which implies the degree of

relationships between operations defined in a service and is

measured by the metric defined as average used message

factor. This metric is inversely proportional to the average

number of messages in a service because smaller number of

messages.

Since the fine-grained service is defined that the service

which perform single function, it is assumed that fine-

grained parameter operations are operations which are

having single parameter. ―Number of message ―is

calculated by addition of total number of producer services

and total number of consumer services.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

100

Web Service operations might be either synchronous

appeal reaction or offbeat restricted synchronous

solicitation reaction (the default conduct) implies that each

time a customer provision summons a Web Service

operation, it gets a SOAP reaction Asynchronous restricted

implies that the customer never gets a SOAP reaction, even

an issue or exception when outlining non-concurrent one-

way Web service operations.

The backend segment that actualizes the operation

should expressly return void. The out or in-out parameters

to the operation cannot be specified whereas the in

parameters are specified .So the operation which have

return type are assumed as synchronous operations and the

operation which have return type as void are assumed as

asynchronous operations. All the constructors and

destructors are assumed as Inadequately Named

Operations.

B. External Metrics

The External metrics use information from services it is

connected to. Metrics in this group are used to measure the

characteristics of consumer and producer services either

directly or indirectly connected to a given service.

The external metrics is the computation of number of

Consumers in same level, number of directly connected

producer services, and number of directly connected

consumer services, total number of provider services and

the total number of consumer services in the system.

Table 2.

 System Metrics And Rationalization

Fig 4. Service Composition Diagram

The Service Composition shows connection between

different numbers of services in a file.

Number of Directed connected Consumer Services

NDCS (A):2 (F&C)

Number of Directed connected Producer Services

NDPS(A):2 (B&D)

Total number of Producer Services NTPS(A): 5 (B,D ,

E,F,C)

Total number of Consumer Services NTCS(A):4

(F,C,H,G)

C. Relationship between Design properties and Derived

Metrics

Table 3

System Metrics And Clarification

System metrics Clarification

SSNS System Size in Number of Services

NINS Number of Inadequately Named Services

NINO Number of Inadequately Named Operations

TMU Total Number of Message Used

NAO Number of Asynchronous Operations

NSO Number of Synchronous Operations

NFPO Number of Fine-Grained Parameter

Operations

NPS Number of Process Services

NIS Number of Intermediary Services

NBS Number of Basic Services

Metrics Rationalization

Coupling The strength of dependency between services in

system

Cohesion The strength of relationship between operations in a

service

Complexity Measures the difficulty of understanding

relationship between services

Design size The size of the system design

Service

Granularity

The appropriateness of size of services

Parameters

Granularity

The appropriateness of size of parameters

Consumability The likelihood of other services to discover the
given service

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

101

VI. IMPLEMENTATION AND RESULTS

The proposed work has utilized metrics and the

attributes related to evaluate design quality in the design

phase, giving organizations a chance to find and repair

problems before they find their way into the working

system excluding a huge aggregate of latent disbursement

for problem resolution. The Complexity, Coupling and

Cohesion metrics with respect software code behavior is

considered and result is exposed through a graphical

Structure related to Secure Access Attributes.

A. Identifying an Software

Identify software and evaluate it thoroughly with an

testing tool that identifies the vulnerability of a software. A

security danger may be considered as weakness. The

utilization of vulnerability with the same significance of

danger can prompt perplexity. The danger is fixed to the

potential of a misfortune. At that point there are

vulnerabilities without danger, for instance when the

influenced stake has no quality. The vulnerability with one

or more occasions of working and completely actualized

assaults is considered an exploitable vulnerability- a

weakness for which an exploit exists. The window of

weakness is the time from when the security gap was

presented or showed in sent programming, to when access

was evacuated, a security fix was available/deployed, or the

attacker was cripple.

 B. Analyzing an Software Internal and External Metrics

The service internal metrics use service internal

elements such as service name, operations provided by the

service, and characteristics of the messages defined in the

service This module computes number of operations,

numbers of fine-grained parameter operations, number of

Messages used, number of Asynchronous operations,

number of synchronous operations, number of Inadequately

named operations in the given services.

The External metrics use information from services it is

connected to. Metrics in this group are used to measure the

characteristics of consumer and producer services either

directly or indirectly connected to a given service.

C. Analyzing Overall System Metrics

The last group, system metrics, measures the

characteristics of the entire system in general such as

Usability, Reliability, Reusability, Maintainability,

Portability. Metrics attributes and quality characteristics

have the following relations: Functionality: this is the

capability of software can meet user’s requirement and run

stably in expect environment.

Here the capability means clear or unclear functions of

software. So this characteristic is used for description of

what the software will do in order to meet user’s

requirements.

D. Quality Attribute Factor

Anti-patterns may be technical, or more related to

general software processes and projects. When detecting

them in order to uncover potential quality problems in

software architecture, just the technical class of anti-

patterns is applicable. Finding an instance of an anti-pattern

from an architecture typically means that the architecture

should be improved by refactoring the suspicious instance

into a more robust form – e.g, into an instance of a design

pattern. So the design of a graphical model of an system

will deals that how an software can matches related to the

attributes of secure access.

1) Effectiveness The degree of business requirements

reflected in the design.

2) Understandability A measure of the effort necessary

to learn or comprehend the design.

3) Flexibility The ease of changing the previous design

to accommodate new functionalities.

4) Reusability Measures how much of the design allows

reapplication to other solutions.

5) Discoverability The likelihood of other services to

discover the given service.

E. Relationship between Derived Properties and Derived

Metrics

i. Coupling

Coupling was originally defined as the measure of the

strength of association established by a connection from

one module to another. Most of the existing techniques and

measuring coupling metrics are classified by procedural

programming and object-oriented programming.

Table 4

System Metrics Varaibles (Coupling) And Explanation

System
Metrics

(Variables)

Rationalization Values

Dbase Total number of Base Class Used in the

Program

1

Dcons Total number of Derived Class used in the
program

0

Service No of time the Class Called 1

Coupling= (base class constructor + derived class constructor)/ service = 1

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

102

ii. Cohesion

Cohesion was originally defined as a measure of

thedegree to which the elements of a module belong

together. In a highly cohesive module, all elements are

related to the performance of a single function. They are

categorized into Coincidental, Logical, Temporal,

Procedural, Communicational, Sequential, and Functional.

Table 5.

System Metrics Varaibles (Cohesion) And Explanation

System

Metrics

(Variables)

Rationalization Values

tmu Total number of messages used
1

Service No of time the Class Called
1

iaum
(base class constructor + derived class

constructor)/ service

1

Cohesion = service / Total number of messages used =1

iii. Complexity

The complexity metrics identified a relationship between

complexity of a service and amount of time required to

build such a service.

Measure the difficulty of understanding relationship

between services, but looks at the individual complexities

of each of the composed Services Metrics are first

computed for individual services and then compiled into a

more global metric.

The link between complexity and security is a well-

accepted fact in system security engineering. In particular

two of these design principles, namely the principle of

―psychological acceptability‖ and the principle of

―economy of mechanisms‖, directly relate to the issue of

complexity. The principle of ―psychological acceptability‖

states that the introduction of a security mechanism should

not make the system more complex than it is without it.

Table 6.

System Metrics Varaibles (Complexity) And Explanation

System

Metrics

(Variables)

Rationalization Values

no Complexity 3

tso Asynchronous operation 1

tao

Synchronous operation 1

complexity = (asynchronous operation + synchronous operation) * 1.5 =3

iv. Design

The objective of user interface configuration is to make

the user's association as regarding achieving client

objectives what is frequently known as user-centered

design. The immense user interface outline encourages

completing the assignment nearby without attracting

unnecessary consideration regarding it. Visual

computerization may be worn to help its convenience.

Table 7

System Metrics Varaibles (Design) And Explanation

System

Metrics

(Variables)

Rationalization Values

Ns Design Size 2

Service No of time the Class Called 1

design size(ns)= service + 1= 2

v. Service granularity and Parameter granularity

It measures the appropriateness of size of services. Web

administrations based SOA have a tendency to be coarse-

grained benefits that perform a related set of business

capacities rather than a single task are said to be coarse

grained Services that perform a single operation are said to

be fine grained.

The idea of granularity applies to services in two ways.

First and foremost, it is connected to the extent of space the

whole service executes. Second, it is connected to the

extent of the area that every strategy inside the interface

actualizes.

Table 8

System Metrics Varaibles (Service Granularity) And Explanation

System

Metrics

(Variables)

Rationalizatio

n

Values

Tso asynchronous

operation

1

Tao synchronous
operation

1

x /= service = /1=2

Service No of time the
Class Called

1

y /= service = 2/1

aomr(Service Granuality) = x / y= 4/4=1

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

103

Table 9.

System Metrics Varaibles (Parameter Granularity) And Explanation

System

Metrics

(Variables)

Rationalization Values

tso asynchronous operation 1

tao synchronous operation 1

cpr /= (tso + tao) =1/2=0.5

vi. Consumability

x = service - iaservice=1-0=1

y = tso + tao–iaoperation= 1+0=2

y = y / ((tso + tao) * 2) = 2/(1+1)*2)=2/(2*2)=2/4=1/2=0.5

ansor = x + y =0.5+0.5=1=Consumability

Consumability=1

VII. SECURE ACCESS QUALITY ATTRIBUTE FACTOR

COMPUTATION

Effectiveness = 0.33 * Cohesion + 0.33 * Service

 Granularity + 0.33 * Parameter

 Granularity

 = 0.33*1+0.33*1+0.33*0.5 =0.825

Understandability = -0.66 * Coupling + 0.25 * Cohesion -

 0.66 * Complexity -0.66 * Design

 Size +0.25 * Service Granularity +

 0.25 * Parameter Granularity + 0.25

 * Consumability

 =-0.66*1+0.25*1-0.66*3

 0.66*2+0.25*1+0.25*0.5+0.25*1

 =-3.085

Flexibility = -0.22 * Coupling + 0.61 * Service Granularity

 + 0.61 * Parameter Granularity

 = -0.22*1+0.61*1+0.61*0.5 =0.695

Reusability = -0.5 * Coupling + 0.5 * Cohesion + 0.5 *

 Service Granularity + 0.5 * Consumability

 = -0.5*1+0.5*1+0.5*1+0.5*1 = 1

Discoverability = 0.5 * Service Granularity + 0.5 *

 Parameter Granularity

 = 0.5*1+0.5*0.5 = 0.75

Fig 5. Graphical Representation of Secure Access Quality Attribute

VIII. CONCLUSION AND FUTURE ENHANCEMENTS

As per today’s requisite security is to be initiated at the

initial phase of software development to put off major

problems that may crop up at the implementation phase as

so this paper covers various security issues in software

development stages .It describes that how the quality

attributes related to secure access can be useful in the help

of security patterns for developing secure systems. The

Overall goals of our project are to allow the users to access

and manage the quality of service explicitly from the early

stages of system development. The new system addresses

the problems to prevent the waste of effort which would

otherwise be magnified in later stages. The use of CCC

metrics enables us to quantify system quality and realize

how menacing it would be to make use of the metric that

gets inferior at the stage of newer vulnerability releases that

compromises security. It is an attempt to improvise the

secure access of a system and reduce a static gap that

prevails between the availability, production and utilization

of security patterns. In future more and more security

patterns need to be developed and developers must

understand the need of security parameters and embrace

software security best practices throughout software

development process correlated to secure Access.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 1, July 2014)

104

The Complexity, Coupling and Cohesion metrics with

respect software code behavior is considered and result is

exposed through a graphical Structure related to Secure

Access Attributes. The proposed work has utilized metrics

and the attributes related to evaluate design quality in the

design phase, giving organizations a chance to find and

repair problems before they find their way into the working

system excluding a huge aggregate of latent disbursement

for problem resolution. The system can be enhanced to

measure the other quality attributes so as to evaluate the

design of any software application wherein any files can

be evaluated through adding some additional components

and tools, program execution can be shown graphically by

using software tools, forums, Local Language support and

patterns related to Secure Access for software.The idea of

the work can be further extended to propose a framework

for identifying the appropriate patterns for a software

security related to Secure Access. It is feasible through

analyses of the bug report by adopting statistical and data

mining techniques where the CCC metrics can act as

vulnerability indicators.

REFERENCES

[1] Bigger staff, Ted. ―Design Recovery for Maintenance and Reuse.‖

IEEE Computer 22, 7 (July 1989): 36-49.[Brooks 75] Brooks, F. The

Mythical Man-Month—Essays on Software Engineering.

[2] R. J. A. Buhr, R. S. Casselman,‖ Use case maps for object-oriented

systems‖, ISBN: 9780134565422, Prentice Hall India

[3] M. Schumacher et al., Security Patterns: Integrating Security and

Systems Engineering, John Wiley & Sons, 2005.

[4] Debra.S.Herrmann , ― Complete Guide to Security and privacy
metrics‖ , Auerbach publications, taylor&francis group.

[5] Nabil Fakhfakh, Herv´eVerjus, Fr´ed´ericPourraz,,PatriceMoreaux
―Measuring The Satisfaction Degree Of Quality Attributes

Requirements For Services Orchestrations‖,CTRQ 2011 : The

Fourth International Conference on Communication Theory,
Reliability, and Quality of Service, ISBN: 978-1-61208-126-7 pp -

89-94.

[6] Maxim Schnjakin, Michael Menzel, ChristophMeinel,‖ A Pattern-

driven Security Advisor for Service-oriented Architectures‖ ,

SWS’09, November 13, 2009, Chicago, Illinois, USA.pp: 13-20.

[7] S. S. Yau, N. Ye, H. Sarjoughian and D. Huang, Arizona State

University, Tempe, AZ 85287-8809, USA‖ Developing Service-based

Software Systems with QoS Monitoring and Adaptation‖ .

[8] Heather Hinto, Maryann Hondo ,Dr.Beth Hutchinson ,‖ Security

Patterns within a Service-Oriented Architecture‖, November 2005,
http://www.ibm.com/websphere/developer/services/.

[9] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua ,Philippe
Comte, PålKrogdahl, Min Luo Tony Newling,‖ Patterns: Service

Oriented Architectureand Web Services‖, ibm.com/redbooks.

[10] Liam O’Brien , Len Bass Paulo Merson, ―Quality Attributes and
Service-Oriented Architectures‖, Technical Note CMU/SEI-2005-

TN-014.

[11] Darrell M. Kienzle, , Matthew C. Elder, . David Tyre, James

Edwards-Hewitt, ―Security Patterns Repository Version

1.0‖.http://www.securitypatterns.com.

[12] Liam O’Brien, Len Bass, Paulo F. Merson, ―Quality Attributes and

Service-Oriented Architectures‖, Carnegie Mellon University,

Research Showcase ,Software Engineering Institute, 9-1-2005.

[13] Yanguo (Michael) Liu, IssaTraore,‖ Complexity Measures for

Secure Service-Oriented Software Architectures‖,
www.cs.unh.edu/~it666/reading.../complexity_leads_insecurity.pdf.

[14] Fernando Brito e Abreu ,RogérioCarapuça, ―Object-Oriented
Software Engineering:Measuring and Controlling the Development

Process‖, Revised version: Originally published in Proceedings o

"4th Int. Conf. on Software Quality", October 1994.

[15] Hamid Mcheick, Yan Qi ,‖ Quality Attributes and Design Decisions

in Service-Oriented Computing‖, 2012 International Conference on

Innovations in Information Technology (IIT), pp 283-287.

[16] Kai Qian, Jigang Liu, Frank Tsui ,‖ Decoupling Metrics for Services

Composition‖ 5th IEEE/ACIS International Conference on
Computer and Information Science, 2006 1st IEEE/ACIS

International Workshop on Component-Based Software Engineering,

Software Architecture and Reuse. Pp 44-47.

[17] Pham ThiQuynh, Huynh QuyetThang,‖ Dynamic Coupling Metrics

for Service – Oriented Software‖, International Journal of Computer

Science and Engineering 3:1 2009.

[18] Philip Bianco, Rick Kotermanski, Paulo F. Merson, ―Evaluating a

Service-Oriented Architecture‖, Carnegie Mellon University,
Research Showcase, 9-1-2007.

[19] MamounHirzalla, Jane Cleland-Huang, and Ali Arsanjani, ―A

Metrics Suite for Evaluating Flexibility and Complexity in Service
Oriented Architectures‖, ICSOC 2008, LNCS 5472, pp. 41–52,

2009. © Springer-Verlag Berlin Heidelberg 2009.

[20] Mikhail Perepletchikov*, Caspar Ryan, Keith Frampton, and Heinz

Schmidt,‖ Formalising Service-Oriented Design‖, JOURNAL OF

SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008.

[21] Claudia Steghuis, ― Service granularity in SOA Projects : A Trde off

Analysis‖, University of twente.

[22] Si Won Choi Soo Dong Kim ―A Quality model for evaluating

reusability

of services in SOA‖, IEEE,2008

[23] http://docs.oracle.com/

[24] http://academic.research.microsoft.com/Paper/5132835.aspx

