
 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 2, Issue 4, April 2014) 

99 

 

A Study on Complex Wavelet Transform and Its Application to 

Image Denoising 
Debalina Jana

1
, Kaushik Sinha

2
 

1
Assistant Professor, Department of AEIE, College of Engineering and Management, Kolaghat, KTPP Township, East 

Midnapur, West Bengal, INDIA - 721171 
2
Assistant Professor, Department of IT, College of Engineering and Management, Kolaghat, KTPP Township, East Midnapur, 

West Bengal, INDIA - 721171 

Abstract— This work addresses to a study on the wavelet 

transform and complex wavelet transform to demonstrate the 

capabilities of them in digital image denoising application. 

Standard Discrete Wavelet Transform (DWT) has some 

drawbacks like shift sensitivity, poor directionality and 

absence of phase information. To avoid these limitations, 

Complex Wavelet Transform (CWT) can be used. Complex 

Wavelet Transform is an extension of standard Discrete 

Wavelet Transform. In this paper, the capability of Complex 

Wavelet Transform is discussed in the process of noise 

removal from different images. 
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I. INTRODUCTION 

The need for efficient image restoration methods has 

grown with the massive production of digital images and 

movies of all kinds, often taken in poor conditions. No 

matter how good cameras are, an image improvement is 

always desirable to extend their range of action [1]. 

Many types of noises due to sensor or channel 

transmission errors often corrupt images and noise 

suppression becomes a particularly delicate and a difficult 

task [4], [7]. Applied noise removal techniques should take 

into account a trade-off between noise reduction and 

preservation of actual image content in a way that enhances 

the diagnostically relevant image content. 

The two main limitations in image accuracy are 

categorized as blur and noise. Blur is intrinsic to image 

acquisition systems, as digital images have a finite number 

of samples and must satisfy the Shannon–Nyquist sampling 

conditions. The second main image perturbation is noise. 

There are different types of noises that can affect an image. 

Some of them are: 

 

 

 

 

A. Salt and pepper noise 

It is the type of noise where some black and white pixels 

occurs randomly on an image. A false saturation gives a 

white spot (salt) and a failed response gives a black spot in 

the image (pepper) [23], [24].  

B. Gaussian white noise 

This is the most common type of noise [14], [15], [23], 

[24] which can be generated artificially using the formula 

 Y = X + sqrt(variance) × random(s) + mean; (1) 

Where, X is the input image, Y is the output image, s is 

the size of X. The value of mean and variance is taken as 

input. 

C. Poisson noise 

In probability theory and statistics, Poisson distribution 

is a discrete probability distribution that expresses the 

probability of a number of events occurring in a fixed 

interval of time and/or space. If the expected number of 

occurrences in a particular time interval is λ, then 

probability that there are exactly k (k = 0, 1, 2 …) 

occurrences is given by 

    (2) 

D. Speckle noise 

Within each resolution cell, a number of elementary 

scatters reflect the incident wave towards the sensor. The 

received image is thus corrupted by a random granular 

pattern, called Speckle. A speckle noise can be modelled as 

    (3) 

Where, v is the speckle noise, f is the noise-free image 

and ϑ is a unit mean random field. In this paper, the 

experimental work is done with Gaussian white noise [15]. 
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In the field of Image Processing, the wavelet transform 

has emerged with a great success [2], [3]. The complex 

wavelet transform is a specific area of wavelet transform 

which has so many advantages over discrete wavelet 

transform [5]. 

II. IMAGE DENOISING 

The image and noise model is given as: 

x = s + σ.g   (4) 

Where, s is an original image and x is a noisy image 

corrupted by additive white Gaussian noise g of standard 

deviation σ. Both images s and x are of size N by M 

(mostly M = N and always power of 2) [12], [13], [18] 

[19]. 

A. Basic steps for image denoising 

The following block diagram (Fig. 1) shows the basic 

steps involved in image denoising in this paper. 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

Fig. 1 Basic Steps for Image Denoising 

B. Performance Measure 

The performance of various denoising algorithms is 

quantitatively compared using MSE (mean square error) 

[4], [6] and PSNR [9] (Peak Signal to Noise Ratio) as 

      (5) 
 

        (6) 

Where, s is an original image and y(n,m) is a recovered 

image from a noisy image s(n,m). 

C. Determination of Threshold 

The standard thresholding of wavelet coefficients is 

governed mainly by either ‗hard‘ or ‗soft‘ thresholding 

function [2] as shown in figure 2.  

The first function in Fig. 2(a) is a ‗hard‘ function, and 

Fig. 2(b) is a ‗soft‘ function [11]. 

 

 

 

 

 

 

 

(a)                  (b) 

Fig. 2 Thresholding functions; (a) hard, (b) soft 

The hard thresholding function is given as 

   (7) 

Similarly, soft thresholding function is given as [14] 

(8) 

Where, w and z are the input and output wavelet 

coefficients respectively, λ is a selected threshold value for 

both (7) and (8). 

III. WAVELET TRANSFORM 

The term wavelet means a small wave. The smallness 

refers to the condition that this (window) function is of 

finite length (compactly supported). The wave refers to the 

condition that this function is oscillatory [21], [22]. 

 

(a)       (b) 

Fig. 3 Representation of a wave (a), and a wavelet (b) 

The wavelet transform (WT) is a powerful tool of signal 

processing for its multiresolutional possibilities [22]. 

Unlike the Fourier transform, the WT is suitable for 

handling the non-stationary signals – variable frequency 

with respect to time. 

D. Continuous Wavelet Transform (CoWT) 

For a prototype function ψ (t) ∈ L2(ℜ) called the 

mother wavelet, the family of functions can be obtained by 

shifting and scaling this ψ (t) as [21], [22] 
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    (9) 

Where, a, b ∈ℜ, (a > 0). The CoWT of a function f (t) 

∈ ℜ is then defined as 

  

(10) 

Since, the CoWT behaves like orthonormal basis 

decomposition, it is isometric and it preserves energy [22]. 

Hence the function f(t) can be recovered from its transform 

by the following reconstruction formula 

 (11) 

E. Discrete Wavelet Transform (DWT) 

The discrete wavelet transform (DWT) is a linear 

transformation that operates on a data vector whose length 

is an integer power of two, transforming it into a 

numerically different vector of the same length [10]. It 

separates data into different frequency components, and 

then matches each component with resolution to its scale. 

DWT is computed with a cascade of filters followed by a 

factor 2 subsampling (Fig. 4). 

 

 

 

 

 

 
Fig. 4 DWT Tree 

H and L denotes high and low-pass filters respectively, 

↓2 denotes subsampling. Outputs of these filters are given 

by equations (12) and (13).  

  (12) 

 (13) 

Elements aj are used for next step (scale) of the 

transform and elements dj, called wavelet coefficients, 

determine output of the transform. l[n] and h[n] are 

coefficients of low and high-pas filters respectively. 

Assume that on scale j+1 there is only half from number of 

a and d elements on scale j. 

DWT algorithm for two-dimensional pictures is similar. 

The DWT is performed firstly for all image rows and then 

for all columns (Fig. 5). 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 5 Wavelet decomposition for two-dimensional pictures 

F. Complex Wavelet Transform (CWT) 

Complex wavelets can provide both shift invariance and 

good directional selectivity [5], [8], [16]. The dual tree 

CWT can be used for signal and image processing 

applications, including motion estimation, denoising, 

texture analysis and synthesis, and object segmentation 

[17]. 

1)  Analytic Filter: Gabor introduced the Hilbert 

transform into signal theory, by defining a complex 

extension of a real signal f(t) as 

   (14) 

Where, g(t) is the Hilbert transform of f(t) and denoted 

as Η{f(t)} and j = √(-1) [17]. 

 

 

 

 

 

 

 

 

 
(a)       (b) 

Fig. 6 Hilbert Transform in (a) polar form, (b) frequency domain 

The signal g(t) is the 90
ο
 shifted version of f(t) as shown 

in Fig. 6(a). The real part f(t) and imaginary part g(t) of the 

analytic signal x(t) are also termed as the ‗Hardy Space‘ 

projections of original real signal f(t) in Hilbert space. 

Signal g(t) is orthogonal to f(t). In the time domain, g(t) can 

be represented as [17] 

 

L x 

H 

2 

2 

a
1
 

d
1
 

L 

H 

2 

2 

a
2
 

d
2
 

L x 

H 

2 

2 

L 

H 

2 

2 

a
LL

j+1
 

d
LH

j+1
 

L 

H 

2 

2 

d
HL

j+1
 

d
HH

j+1
 

Real Axis f(t) 

90
ο
 

Imaginary 

Axis g(t) 

j 

-j 

-j Sgn(ω)  

 

ω 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 2, Issue 4, April 2014) 

102 

 

     (15) 

If F(ω) is the Fourier transform of signal f(t) and G(ω) is 

the Fourier transform of signal g(t), then the Hilbert 

transform relation between f(t) and g(t) in the frequency 

domain is given by 

     (16) 

Where, -j Sgn(ω) is a modified ‗signum‘ function as 

shown in Fig 6(b). This analytic extension provides the 

instantaneous frequency and amplitude of the given signal 

x(t) as 

 
                                                                   (17) 

              (18) 

This is shown in Fig 7. 

 

 

 

 

 

 

 

 

 

Fig. 7 Magnitude and Angle of x(t) 

The formulation and interpretation of the analytic filter 

is shown in Fig 8. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8 The formulation and interpretation of the analytic filter 

2)  Filterbank Structure of Dual-Tree DWT based CWT: 

The filterbank structures for both DT-DWTs are identical. 

One tree is called as a real tree and other is called as an 

imaginary tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9 Filterbank structure for 2-D DT-DWT 

The filterbank structure of tree-a, similar to standard 2-D 

DWT(as shown in Fig. 5). All other trees- (b,c,d) have 

similar structures with the appropriate combinations of 

filters for row- and column- filtering. The tree-a and tree-b 

form the real pair, while the tree-c and tree-d form the 

imaginary pair of the analysis filterbank. Trees-(~a, ~b) and 

trees-(~c, ~d) are the real and imaginary pairs respectively 

in the synthesis filterbank similar to their corresponding 

analysis pairs. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

First of all, a clear noise free image is taken and 

Gaussian White Noise is added into it to get the noisy 

image. An example is shown in Fig. 10. This noisy image 

is taken as the input for image denoising using CWT. 

After applying denoising technique, shown in Fig 1, the 

denoised images are obtained. Some of them are shown in 

the Fig 11 and 12. 
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(a)       (b) 

Fig. 10 Experimental Image of lena (256×256) 

(a) Original, (b) After adding Gaussian White Noise of σ=2, 

variance=30 

 
(a)       (b) 

Fig. 11 Denoised Image using hard threshold (a)upto level 1, (b)upto 

level 8 

 

 
(a)       (b) 

Fig. 12 Denoised Image using soft threshold (a)upto level 1, (b)upto 

level 8 

The PSNR value is calculated from equation (5) and (6). 

The results obtained from our experiment is shown in                 

table I. 

 

 

TABLE I 

PSNR VALUES FOR IMAGES OF SIZE 256×256 

Image Th. 

Type 

Wavelet Decomposition Level 

2 4 6 8 

lena 

 

Hard 33.0080 32.8678 32.8673 32.8673 

Soft 25.6550 24.3593 24.1473 24.1262 

boat Hard 33.0000 32.8879 32.8874 32.8874 

Soft 25.3327 24.1045 23.9044 23.8845 

goldhil

l 

Hard 32.7035 32.5951 32.5943 32.5942 

Soft 25.4022 24.1575 23.9550 23.9349 

From the PSNR values shown in table I, it is very much 

clear that, as we increase the wavelet decomposition level, 

PSNR value gradually decreases.  

 
(a)   (b)  (c) 

Fig. 13 Boat Image 400% magnified (a)noisy image, (b)denoised 

image using hard threshold, (c) denoised image using soft threshold 

V. CONCLUSION 

In this paper, the advantages, applications, and 

limitations of popular standard DWT and its extensions are 

realized. Complex Wavelet Transforms (CWT), a powerful 

extension to real valued WT is investigated to reduce the 

major limitations of standard DWT and its extensions in 

certain signal processing applications. 

The history, basic theory, recent trends, and various 

forms of CWTs with their applications are collectively and 

comprehend-sively analysed. Recent developments in 

CWTs are critically compared with existing forms of WTs. 

Potential applications are investigated and suggested that 

can be benefited with the use of different variants of 

CWTs.  

Individual software codes are developed for simulation 

of selected applications such as Denoising both WTs and 

CWTs. The performance is statistically validated and 

compared to determine the advantages and limitations of 

CWTs over well-established WTs. Promising results are 

obtained using individual implementation of existing 

algorithms incorporating novel ideas into well-established 

frameworks. 
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